

ISSN 2414-3146

Received 26 October 2016
Accepted 8 November 2016

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic

Keywords: crystal structure; polymorphs; 1,2-dithiole-3-thione derivatives; sulfur organic compounds; heterocyclic compounds.

CCDC reference: 1515751

Structural data: full structural data are available from iucrdata.iucr.org

A second polymorph of 3H-1,2-benzodithiole-3thione

Khaled Boukebbous, ${ }^{\text {a* }}$ El Adoui Laifa, ${ }^{\text {a }}$ Aimery De Mallmann ${ }^{\text {b }}$ and Mostafa Taoufik ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Constantine, BP, 325 Route de Ain El Bey, Constantine 25017, Algeria, and ${ }^{\mathbf{b}}$ C2P2 (CNRS-UMR 5265), COMS group, Lyon 1 University, ESCPE Lyon, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69626, France. *Correspondence e-mail: boukebbous.khaled@gmail.com

The title compound, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~S}_{3}$, is crystallizes in the monoclinic space group $P 2_{1} / n$; it is the second polymorph, the first having been reported recently in space group C2/c [Boukebbous et al. (2016) IUCrData, 1, x161688]. The molecule displays an almost planar geometry with two fused rings [$\mathrm{S} 10-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$ torsion angle $=0.2(5)^{\circ}$]. In the crystal, short S \cdots S [3.555 (1) and 3.503 (1) Å] contacts and $\pi-\pi$ aromatic stacking [shortest centroid-centroid separation $=$ 4.006 (5) \AA] sustain the three-dimensional molecular packing.

Chemical scheme

Structure description

The title compound is a derivative of the 1,2-dithiole-3-thione family, which has attracted much interest because of the important bioactive properties and potential applications (Li et al., 2016, Russell et al., 2015), (Wallace et al., 2007). Recrystallization of 3H-1,2-benzodithiole-3-thione in toluene solution leads to a monoclinic polymorph in the space group C2/c (Boukebbous et al., 2016) whereas recrystallization in diethyl ether solution leads to a second polymorph in the monoclinic system, and space group $P 2_{1} / n$ (the present work). The 3H-1,2-benzodithiole-3-thione molecule is composed of an aromatic ring fused with five-membered ring that containing two S atoms and thione functional groups (Fig. 1). The molecule displays an almost planar geometry with two fused rings $\left[\mathrm{S} 10-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9=0.2(5)^{\circ}\right]$ with bond lengths of 2.064 (1), 1.738 (4), 1.726 (4) and 1.645 (3) A for S1-S2, C5-S1, C3-S2 and C3-S10 bonds, respectively, and values of 94.0 (1) and $98.3(1)^{\circ}$ observed for angles $\mathrm{C} 5-\mathrm{S} 1-\mathrm{S} 2$ and $\mathrm{S} 1-\mathrm{S} 2-\mathrm{C} 3$, respectively. The angle $\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 4\left[113.1(2)^{\circ}\right]$ deviates from the expected value of 120° for a Csp ${ }^{2}$ atom $\left(\mathrm{C} 3=\mathrm{S} 10\right.$ bond). Likewise, a minor deviation (about 3°) is observed for the angles $\mathrm{S} 1-$ $\mathrm{C} 5-\mathrm{C} 4$ and $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ from the expected value of 120°.

Figure 1
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

In the crystal (Figs. 2, 3 and 4), short S \cdots S $[\mathrm{S} 10 \cdots \mathrm{~S} 1=$ 3.555 (1) and $\mathrm{S} 10 \cdots \mathrm{~S} 2=3.503$ (1) \AA] contacts are observed. Moreover, parallel displaced $\pi-\pi$ aromatic stacking interactions [shortest centroid-to-centroid separation = 4.006 (5) \AA] linking adjacent molecules into a three-dimensional network are observed.

Synthesis and crystallization

The synthesis of 4.5-benzo-3H-1.2-dithiole-3-thione was based on a previously reported method (Klingsberg \& Schreiber, 1962). To a xylene solution (150 ml) of 2,2-dithiodibenzoic acid $(10 \mathrm{~g}, 0.033 \mathrm{~mol})$, phosphorus pentasulfide (10 g ,

Figure 2
A view of the packing of the title compound, with displacement ellipsoids drawn at the 50% probability level. The inversion centre at $[0,0,0]$ with symmetry operation $(-x,-y,-z)$ is shown as orange dots. The twofold screw axis in the [010] direction at $\left(\frac{1}{4}, y, \frac{1}{4}\right)$, with symmetry operation $\left(\frac{1}{2}-x\right.$, $\frac{1}{2}+y, \frac{1}{2}-z$), is shown as purple lines. The glide plane perpendicular to [010] with glide component $\left[\frac{1}{2}, 0, \frac{1}{2}\right]$ and symmetry operation $\left(\frac{1}{2}+x, \frac{1}{2}-y\right.$, $\frac{1}{2}+z$) is shown as light-blue planes.

Figure 3
A view along the c axis of the molecular packing. The van der Waals interactions are shown as dashed blue lines. Centroids are shown as purple dots.
0.04 mol) dissolved in xylene was added. The mixture was stirred for 1 h at reflux. The orange precipitate that formed was washed successively with distilled water and cold ethanol at 273 K and dried at room temperature for several hours. The recrystallization process was performed from diethyl ether solution by slow evaporation and red needles in a yield of 80% were obtained.

Figure 4
A view along the a axis of the molecular packing. S \cdots S contacts are shown as dashed blue lines. H atoms have been omitted for clarity.

Table 1
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~S}_{3}$
M_{r}	184.31
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	150
$a, b, c(\AA)$	$4.0062(9), 10.739(2), 17.178(3)$
$\beta\left({ }^{\circ}{ }^{\circ}\right)$	$95.237(18)$
$V\left(\AA^{3}\right)$	$736.0(3)$
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.91
Crystal size (mm)	$0.52 \times 0.10 \times 0.06$
Data collection	Rigaku OD Xcalibur Atlas Gemini
Diffractometer	ultra
	Analytical [CrysAlis PRO (Rigaku
Absorption correction	OD, 2015), based on expressions
	derived by Clark \& Reid (1995)]
$T_{\text {min }}, T_{\text {max }}$	$0.724,0.947$
No. of measured, independent and	$6569,1832,1482$
observed $[I>2.0 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.053
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.694
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.046,0.101,1.02$
No. of reflections	1826
No. of parameters	91
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.77,-0.65$

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003) and CAMERON (Watkin et al., 1996).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were initially refined
with soft restraints on the bond lengths and angles to regularize their geometry $(\mathrm{C}-\mathrm{H}$ in the range $0.93-0.98$ and $\mathrm{N}-\mathrm{H}$ in the range $0.86-0.89 \AA$) and $U_{\text {iso }}(\mathrm{H})$ (in the range 1.2-1.5 times $U_{\text {eq }}$ of the parent atom), after which the positions were refined with riding constraints. (Cooper et al., 2010).

Acknowledgements

We are grateful to The French National Center for Scientific Research (CNRS) for financial support.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Boukebbous, K., Laifa, E. A. \& De Mallmann, A. (2016). IUCrData, 1, x161688.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Cooper, R. I., Thompson, A. L. \& Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.
Klingsberg, E. \& Schreiber, A. M. (1962). J. Am. Chem. Soc. 84, 29412944.

Li, K. R., Yang, S. Q., Gong, Y. Q., Yang, H., Li, X. M., Zhao, Y. X., Yao, J., Jiang, Q. \& Cao, C. (2016). Sci. Rep. 6, 13.
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
Russell, G. K., Gupta, R. C. \& Vadhanam, M. V. (2015). Mutat. Res./ Fundam. Mol. Mech. Mutagen. 774, 25-32.
Wallace, J. L., Caliendo, G., Santagada, V., Cirino, G. \& Fiorucci, S. (2007). Gastroenterology, 132, 261-271.

Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.

full crystallographic data

IUCrData (2016). 1, x161799 [https://doi.org/10.1107/S2414314616017995]
A second polymorph of 3H-1,2-benzodithiole-3-thione

Khaled Boukebbous, El Adoui Laifa, Aimery De Mallmann and Mostafa Taoufik

(I)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{~S}_{3}$
$M_{r}=184.31$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=4.0062$ (9) \AA
$b=10.739$ (2) \AA
$c=17.178$ (3) \AA
$\beta=95.237(18)^{\circ}$
$V=736.0(3) \AA^{3}$
$Z=4$

Data collection

Rigaku OD Xcalibur Atlas Gemini ultra diffractometer
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 10.4685 pixels mm^{-1}
ω scans
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark \& Reid (1995)]

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.101$
$S=1.02$
1826 reflections
91 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Hydrogen site location: difference Fourier map
H -atom parameters constrained
$F(000)=376$
$D_{\mathrm{x}}=1.663 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1997 reflections
$\theta=4.0-28.7^{\circ}$
$\mu=0.91 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Needle, red
$0.52 \times 0.10 \times 0.06 \mathrm{~mm}$
$T_{\min }=0.724, T_{\max }=0.947$
6569 measured reflections
1832 independent reflections
1482 reflections with $I>2.0 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=29.6^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-5 \rightarrow 5$
$k=-14 \rightarrow 14$
$l=-23 \rightarrow 23$

Method, part 1, Chebychev polynomial,
(Watkin, 1994, Prince, 1982) [weight] $=$ $\left.1.0 /\left[\mathrm{A}_{0} * \mathrm{~T}_{0}(\mathrm{x})+\mathrm{A}_{1} * \mathrm{~T}_{1}(\mathrm{x}) \cdots+\mathrm{A}_{\mathrm{n}-1}\right] * \mathrm{~T}_{\mathrm{n}-1}(\mathrm{x})\right]$
where A_{i} are the Chebychev coefficients listed
belo w and $\mathrm{x}=F / F \max$ Method $=$ Robust
Weighting (Prince, 1982) $\mathrm{W}=[$ weight $] *$
$\left[1-(\operatorname{delta} F / 6 * \operatorname{sigma} F)^{2}\right]^{2} \mathrm{~A}_{\mathrm{i}}$ are: $950.0 .135 \mathrm{E}+$
04758.229.
$(\Delta / \sigma)_{\max }=0.0002003$
$\Delta \rho_{\max }=0.77 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.65$ e \AA^{-3}

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier \& Glazer, 1986) with a nominal stability of 0.1 K .
Cosier, J. \& Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.3003(2)$	$0.52792(8)$	$0.39805(5)$	0.0270
S2	$0.2657(2)$	$0.54353(8)$	$0.27784(5)$	0.0258
C3	$0.0569(8)$	$0.6841(3)$	$0.26919(19)$	0.0228
C4	$-0.0083(8)$	$0.7372(3)$	$0.34414(18)$	0.0199
C5	$0.1038(8)$	$0.6697(3)$	$0.41121(18)$	0.0211
C6	$0.0514(9)$	$0.7144(4)$	$0.48597(19)$	0.0271
C7	$-0.1163(9)$	$0.8257(4)$	$0.4917(2)$	0.0303
C8	$-0.2306(9)$	$0.8936(4)$	$0.4254(2)$	0.0302
C9	$-0.1787(8)$	$0.8500(3)$	$0.3520(2)$	0.0238
S10	$-0.0445(3)$	$0.73941(10)$	$0.18088(5)$	0.0327
H61	0.1275	0.6685	0.5306	0.0328^{*}
H71	-0.1565	0.8563	0.5416	0.0356^{*}
H81	-0.3459	0.9684	0.4305	0.0358^{*}
H91	-0.2554	0.8942	0.3071	0.0286^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0281(4)$	$0.0246(4)$	$0.0274(4)$	$0.0007(3)$	$-0.0027(3)$	$0.0049(3)$
S2	$0.0258(4)$	$0.0255(4)$	$0.0256(4)$	$-0.0001(3)$	$0.0007(3)$	$-0.0043(3)$
C3	$0.0195(14)$	$0.0253(16)$	$0.0231(15)$	$-0.0043(13)$	$-0.0010(12)$	$0.0012(13)$
C4	$0.0195(14)$	$0.0208(15)$	$0.0195(14)$	$-0.0047(12)$	$0.0014(11)$	$0.0001(12)$
C5	$0.0202(14)$	$0.0249(16)$	$0.0178(14)$	$-0.0044(13)$	$-0.0003(12)$	$0.0021(12)$
C6	$0.0288(17)$	$0.0327(18)$	$0.0197(15)$	$-0.0087(15)$	$0.0012(13)$	$0.0022(14)$
C7	$0.0315(18)$	$0.037(2)$	$0.0236(16)$	$-0.0089(16)$	$0.0090(14)$	$-0.0076(15)$
C8	$0.0275(17)$	$0.0282(18)$	$0.0357(19)$	$-0.0018(15)$	$0.0076(15)$	$-0.0047(15)$
C9	$0.0204(15)$	$0.0251(17)$	$0.0260(16)$	$-0.0030(13)$	$0.0029(13)$	$0.0058(13)$
S10	$0.0417(5)$	$0.0381(5)$	$0.0175(4)$	$-0.0030(4)$	$-0.0016(3)$	$0.0039(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1-S2	$2.0637(13)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.379(5)$
$\mathrm{S} 1-\mathrm{C} 5$	$1.738(4)$	$\mathrm{C} 6-\mathrm{H} 61$	0.938
$\mathrm{~S} 2-\mathrm{C} 3$	$1.726(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.394(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.453(4)$	$\mathrm{C} 7-\mathrm{H} 71$	0.945
C3-S10	$1.645(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.378(5)$
C4-C5	$1.400(4)$	$\mathrm{C} 8-\mathrm{H} 81$	0.935
C4-C9	$1.403(5)$	$\mathrm{C} 9-\mathrm{H} 91$	0.935
C5-C6	$1.404(5)$		

$\mathrm{S} 2-\mathrm{S} 1-\mathrm{C} 5$	$93.97(11)$
$\mathrm{S} 1-\mathrm{S} 2-\mathrm{C} 3$	$98.33(12)$
$\mathrm{S} 2-\mathrm{C} 3-\mathrm{C} 4$	$113.1(2)$
$\mathrm{S} 2-\mathrm{C} 3-\mathrm{S} 10$	$118.2(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{S} 10$	$128.7(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.1(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$123.6(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$119.3(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1$	$117.5(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.8(3)$
$\mathrm{S} 1-\mathrm{C} 5-\mathrm{C} 6$	$121.7(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$118.4(3)$

$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 61$	120.2
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 61$	121.4
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$121.4(3)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 71$	119.5
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 71$	119.2
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$120.2(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 81$	120.1
C9-C $8-\mathrm{H} 81$	119.7
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$	$119.8(3)$
$\mathrm{C} 4-\mathrm{C} 9-\mathrm{H} 91$	119.0
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 91$	121.2

