

IUCrData

ISSN 2414-3146

Received 27 October 2016 Accepted 3 November 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; benzimidazole; hydrogen bonding.

CCDC reference: 1514744

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 1-benzyl-2-(4-methoxyphenyl)-1*H*-benzimidazole-5-carboxylate

S. Naveen,^a Vasantha Kumar,^{b,c} Boja Poojary,^c B. Shivarama Holla,^b N. K. Lokanath^d and M. M. Abdoh^e*

^aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^bPG Department of Chemistry, SDM College (Autonomous), Ujire, 574 240, India, ^cDepartment of Chemistry, Mangalore University, Mangaluru 574 199, India, ^dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and ^eDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories. *Correspondence e-mail: muneer@najah.edu

The title benzimidazole derivative, $C_{24}H_{22}N_2O_3$, is T-shaped with the methoxyphenyl and benzyl rings inclined to the imidazole ring system (r.m.s. deviation = 0.009 Å) by 46.73 (10) and 88.88 (15)°, respectively. The phenyl ring and methoxyphenyl rings are inclined at an angle of 82.14 (16)°. In the crystal, weak $C-H\cdots O$ hydrogen bonds link the molecules into [101] C(14) chains.

Structure description

Benzimidazole ring systems occur in many marketed drugs such as candesartan and pimobendan. Benzimidazole-5-carboxylates act as anti-HIV agents against hepatitis C virus infections (Zhao *et al.* 2015). As a part of our ongoing research on benzimidazoles (Saberi *et al.* 2009), we report herein on the synthesis and crystal structure of the title compound.

The *ORTEP* of the molecule is shown in Fig. 1. The molecule is T-shaped with the methoxyphenyl (C8–C13) and the benzyl (C19–C24) rings inclined to the imidazole ring system N1/N2/C1–C7 by 46.73 (10) and 88.88 (15)°, respectively, indicating that the benzyl ring is nearly orthogonal to the imidazole ring system. The phenyl ring and the methoxy phenyl rings are inclined at an angle of 82.14 (16)°.

In the crystal, weak C-H···O hydrogen bonds link the molecules into [101] C(14) chains (Table 1). The molecules exhibit layered stacking when viewed along the *b* axis (Fig. 2).

data reports

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C14-H14C\cdotsO1^{i}$	0.96	2.59	3.498 (4)	157

Symmetry code: (i) x - 1, y, z - 1.

Figure 1

A view of the molecular structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Synthesis and crystallization

Sodium dithionite (3.0 equiv) was added to a stirred solution of ethyl-4-(4-benzylamino)-3-nitrobenzoate (0.01 mol) and 4methoxybenzaldehyde (0.01 mol) in DMSO (20 ml). The reaction mixture was stirred at 90°C for 3 h. After the completion of reaction [monitored by TLC; hexane:ethyl acetate (7: 3, v/v)], it was poured onto crushed ice. The solid that separated was filtered off, washed with water and dried. The product was recrystallized from dimethylformamide solution to yield colourless prisms; m.p.: 156–158°C.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	$C_{24}H_{22}N_2O_3$
M _r	386.44
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	296
a, b, c (Å)	10.3178 (11), 10.6067 (11), 10 9071 (12)
$lpha,eta,\gamma(^\circ)$	112.306 (3), 104.249 (4), 101.904 (4)
$V(Å^3)$	1008.81 (19)
Z	2
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	0.68
Crystal size (mm)	$0.28 \times 0.25 \times 0.22$
Data collection	
Diffractometer	Bruker X8 Proteum
Absorption correction	Multi-scan (SADABS; Bruker, 2013)
T_{\min}, T_{\max}	0.832, 0.865
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13401, 3314, 2905
R _{int}	0.043
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.585
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.065, 0.204, 1.05
No. of reflections	3314
No. of parameters	264
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.45, -0.35

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Acknowledgements

The authors are grateful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Saberi, A., Manjunath, H. R., Naveen, S., Prasad, T. N. M., Rangappa, K. S., Sridhar, M. A. & Prasad, J. S. (2009). *Mol. Cryst. Liq. Cryst.* 515, 199–206.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Zhao, C., Wang, Y. & Ma, S. (2015). Eur. J. Med. Chem. 102, 188–214.

full crystallographic data

IUCrData (2016). 1, x161759 [https://doi.org/10.1107/S2414314616017594]

Ethyl 1-benzyl-2-(4-methoxyphenyl)-1H-benzimidazole-5-carboxylate

S. Naveen, Vasantha Kumar, Boja Poojary, B. Shivarama Holla, N. K. Lokanath and M. M. M. Abdoh

Ethyl 1-benzyl-2-(4-methoxyphenyl)-1H-benzimidazole-5-carboxylate

Crystal data

 $C_{24}H_{22}N_2O_3$ $M_r = 386.44$ Triclinic, *P*1 Hall symbol: -P 1 a = 10.3178 (11) Å b = 10.6067 (11) Å c = 10.9071 (12) Å $a = 112.306 (3)^{\circ}$ $\beta = 104.249 (4)^{\circ}$ $\gamma = 101.904 (4)^{\circ}$ $V = 1008.81 (19) \text{ Å}^3$

Data collection

Bruker X8 Proteum diffractometer Radiation source: Bruker MicroStar microfocus rotating anode Helios multilayer optics monochromator Detector resolution: 18.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2013)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.204$ S = 1.053314 reflections 264 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 408 $D_x = 1.272 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 2905 reflections $\theta = 4.5-64.5^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 296 K Prism, colourless $0.28 \times 0.25 \times 0.22 \text{ mm}$

 $T_{\min} = 0.832, T_{\max} = 0.865$ 13401 measured reflections 2905 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$ $\theta_{\max} = 64.5^\circ, \theta_{\min} = 4.7^\circ$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -12 \rightarrow 12$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1321P)^2 + 0.249P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.45$ e Å⁻³ $\Delta\rho_{min} = -0.35$ e Å⁻³

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The hydrogen atoms were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ and $= 1.2U_{eq}(C)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	1.1345 (2)	0.4707 (2)	0.9490 (2)	0.0819 (7)
O2	1.2422 (2)	0.7026 (2)	1.0151 (2)	0.1004 (8)
O3	0.15440 (19)	0.06462 (19)	-0.0631 (2)	0.0761 (6)
N1	0.70029 (18)	0.34906 (19)	0.5025 (2)	0.0541 (6)
N2	0.75013 (18)	0.53336 (17)	0.44821 (18)	0.0479 (5)
C1	0.8274 (2)	0.4539 (2)	0.6035 (2)	0.0478 (6)
C2	0.9192 (2)	0.4567 (2)	0.7220 (2)	0.0523 (7)
C3	1.0411 (2)	0.5752 (2)	0.8052 (2)	0.0537 (7)
C4	1.0716 (2)	0.6898 (2)	0.7699 (3)	0.0612 (7)
C5	0.9822 (2)	0.6887 (2)	0.6530 (3)	0.0593 (7)
C6	0.8595 (2)	0.5695 (2)	0.5706 (2)	0.0475 (6)
C7	0.6583 (2)	0.3990 (2)	0.4119 (2)	0.0489 (6)
C8	0.5275 (2)	0.3191 (2)	0.2854 (2)	0.0515 (7)
C9	0.4973 (3)	0.1723 (2)	0.2028 (3)	0.0652 (8)
C10	0.3729 (3)	0.0916 (3)	0.0883 (3)	0.0710 (8)
C11	0.2729 (2)	0.1544 (3)	0.0531 (2)	0.0589 (7)
C12	0.3010 (2)	0.3007 (2)	0.1350 (2)	0.0581 (7)
C13	0.4272 (2)	0.3818 (2)	0.2499 (2)	0.0559 (7)
C14	0.0398 (3)	0.1163 (3)	-0.0935 (3)	0.0814 (10)
C15	1.1414 (3)	0.5745 (3)	0.9281 (3)	0.0622 (8)
C16	1.3552 (4)	0.7102 (5)	1.1320 (4)	0.1037 (14)
C17	1.4595 (5)	0.6764 (9)	1.0836 (6)	0.181 (3)
C18	0.7560 (2)	0.6083 (2)	0.3608 (2)	0.0549 (7)
C19	0.7436 (2)	0.7562 (2)	0.4225 (2)	0.0496 (6)
C20	0.6656 (3)	0.7919 (3)	0.5065 (3)	0.0737 (10)
C21	0.6474 (5)	0.9258 (3)	0.5525 (4)	0.1012 (15)
C22	0.7078 (4)	1.0245 (3)	0.5153 (5)	0.1011 (15)
C23	0.7836 (4)	0.9912 (4)	0.4318 (6)	0.121 (2)
C24	0.8041 (4)	0.8571 (4)	0.3853 (4)	0.0938 (14)
H2	0.89910	0.38060	0.74480	0.0630*
H4	1.15460	0.76830	0.82740	0.0730*
Н5	1.00300	0.76460	0.63000	0.0710*
H9	0.56230	0.12810	0.22530	0.0780*
H10	0.35520	-0.00630	0.03370	0.0850*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12	0.23530	0.34430	0.11290	0.0700*
H13	0.44520	0.47980	0.30430	0.0670*
H14A	0.00560	0.14070	-0.01620	0.1220*
H14B	-0.03540	0.04250	-0.17890	0.1220*
H14C	0.07180	0.20060	-0.10620	0.1220*
H16A	1.39300	0.80690	1.21060	0.1240*
H16B	1.31810	0.64270	1.16510	0.1240*
H17A	1.42420	0.57690	1.01350	0.2710*
H17B	1.53920	0.69110	1.16130	0.2710*
H17C	1.48860	0.73720	1.04200	0.2710*
H18A	0.68000	0.54940	0.26930	0.0660*
H18B	0.84510	0.61700	0.34470	0.0660*
H20	0.62380	0.72530	0.53340	0.0880*
H21	0.59330	0.94790	0.60940	0.1210*
H22	0.69670	1.11490	0.54750	0.1220*
H23	0.82320	1.05820	0.40430	0.1450*
H24	0.85890	0.83630	0.32900	0.1120*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0830 (12)	0.0793 (13)	0.0802 (12)	0.0231 (10)	0.0081 (10)	0.0481 (11)
O2	0.0881 (14)	0.0772 (13)	0.0923 (14)	0.0109 (11)	-0.0177 (11)	0.0349 (12)
O3	0.0630 (10)	0.0582 (10)	0.0732 (11)	0.0116 (8)	0.0016 (8)	0.0147 (9)
N1	0.0513 (10)	0.0429 (9)	0.0650 (11)	0.0133 (8)	0.0130 (8)	0.0274 (8)
N2	0.0523 (9)	0.0384 (9)	0.0529 (10)	0.0154 (7)	0.0155 (8)	0.0226 (7)
C1	0.0482 (10)	0.0389 (10)	0.0580 (12)	0.0179 (8)	0.0192 (9)	0.0218 (9)
C2	0.0554 (11)	0.0470 (11)	0.0629 (12)	0.0224 (9)	0.0225 (10)	0.0298 (10)
C3	0.0544 (12)	0.0482 (12)	0.0581 (12)	0.0224 (10)	0.0182 (10)	0.0223 (10)
C4	0.0538 (12)	0.0457 (12)	0.0701 (14)	0.0097 (9)	0.0103 (10)	0.0232 (11)
C5	0.0604 (12)	0.0443 (12)	0.0683 (14)	0.0110 (10)	0.0162 (11)	0.0283 (11)
C6	0.0505 (11)	0.0395 (10)	0.0539 (11)	0.0176 (8)	0.0182 (9)	0.0215 (9)
C7	0.0516 (11)	0.0397 (10)	0.0569 (12)	0.0188 (9)	0.0189 (9)	0.0220 (9)
C8	0.0533 (11)	0.0433 (11)	0.0578 (12)	0.0169 (9)	0.0183 (9)	0.0236 (10)
C9	0.0602 (13)	0.0473 (13)	0.0771 (15)	0.0215 (10)	0.0130 (12)	0.0228 (12)
C10	0.0675 (14)	0.0408 (12)	0.0777 (16)	0.0147 (11)	0.0082 (12)	0.0129 (11)
C11	0.0571 (12)	0.0510 (12)	0.0569 (12)	0.0114 (10)	0.0144 (10)	0.0200 (10)
C12	0.0576 (12)	0.0534 (13)	0.0616 (13)	0.0227 (10)	0.0166 (10)	0.0251 (11)
C13	0.0592 (12)	0.0434 (11)	0.0572 (12)	0.0185 (10)	0.0148 (10)	0.0180 (10)
C14	0.0644 (15)	0.0829 (19)	0.0781 (17)	0.0157 (13)	0.0071 (13)	0.0339 (15)
C15	0.0599 (13)	0.0604 (14)	0.0596 (13)	0.0218 (11)	0.0144 (11)	0.0242 (12)
C16	0.085 (2)	0.110 (3)	0.092 (2)	0.0154 (19)	-0.0024 (18)	0.052 (2)
C17	0.101 (3)	0.354 (9)	0.128 (4)	0.081 (4)	0.035 (3)	0.151 (5)
C18	0.0626 (12)	0.0553 (13)	0.0558 (12)	0.0217 (10)	0.0252 (10)	0.0307 (10)
C19	0.0471 (10)	0.0444 (11)	0.0572 (12)	0.0109 (8)	0.0123 (9)	0.0293 (10)
C20	0.103 (2)	0.0551 (14)	0.0897 (18)	0.0356 (14)	0.0527 (16)	0.0433 (13)
C21	0.149 (3)	0.0676 (18)	0.122 (3)	0.061 (2)	0.073 (2)	0.0500 (19)
C22	0.112 (3)	0.0550 (17)	0.140 (3)	0.0331 (17)	0.038 (2)	0.0497 (19)

data reports

C23	0.118 (3)	0.079 (2)	0.205 (5)	0.026 (2)	0.066 (3)	0.103 (3)
C24	0.096 (2)	0.083 (2)	0.143 (3)	0.0294 (16)	0.067 (2)	0.077 (2)

Geometric parameters (Å, °)

O1—C15	1.198 (4)	C19—C24	1.371 (5)
O2—C15	1.334 (4)	C20—C21	1.386 (5)
O2—C16	1.464 (5)	C21—C22	1.352 (6)
O3—C11	1.360 (3)	C22—C23	1.337 (7)
O3—C14	1.422 (4)	C23—C24	1.398 (7)
N1—C1	1.388 (3)	C2—H2	0.9300
N1—C7	1.314 (3)	C4—H4	0.9300
N2—C6	1.376 (3)	С5—Н5	0.9300
N2—C7	1.384 (3)	С9—Н9	0.9300
N2—C18	1.459 (3)	C10—H10	0.9300
C1—C2	1.388 (3)	C12—H12	0.9300
C1—C6	1.402 (3)	C13—H13	0.9300
C2—C3	1.380 (3)	C14—H14A	0.9600
C3—C4	1.408 (3)	C14—H14B	0.9600
C3—C15	1.482 (4)	C14—H14C	0.9600
C4—C5	1.372 (4)	C16—H16A	0.9700
C5—C6	1.388 (3)	C16—H16B	0.9700
С7—С8	1.472 (3)	C17—H17A	0.9600
C8—C9	1.389 (3)	C17—H17B	0.9600
C8—C13	1.395 (3)	C17—H17C	0.9600
C9—C10	1.373 (4)	C18—H18A	0.9700
C10—C11	1.392 (4)	C18—H18B	0.9700
C11—C12	1.387 (4)	C20—H20	0.9300
C12—C13	1.387 (3)	C21—H21	0.9300
C16—C17	1.364 (7)	C22—H22	0.9300
C18—C19	1.501 (3)	C23—H23	0.9300
C19—C20	1.362 (4)	C24—H24	0.9300
C15—O2—C16	117.5 (3)	C3—C2—H2	121.00
C11—O3—C14	118.6 (2)	C3—C4—H4	119.00
C1—N1—C7	105.3 (2)	C5—C4—H4	119.00
C6—N2—C7	106.36 (18)	C4—C5—H5	121.00
C6—N2—C18	123.52 (19)	С6—С5—Н5	121.00
C7—N2—C18	128.33 (17)	С8—С9—Н9	120.00
N1—C1—C2	130.1 (2)	С10—С9—Н9	120.00
N1—C1—C6	109.81 (18)	C9—C10—H10	120.00
C2—C1—C6	120.1 (2)	C11—C10—H10	120.00
C1—C2—C3	118.4 (2)	C11—C12—H12	120.00
C2—C3—C4	120.7 (2)	C13—C12—H12	120.00
C2—C3—C15	118.0 (2)	C8—C13—H13	119.00
C4—C3—C15	121.3 (2)	C12—C13—H13	119.00
C3—C4—C5	121.8 (2)	O3—C14—H14A	110.00
C4—C5—C6	117.1 (2)	O3—C14—H14B	109.00

N2—C6—C1	105.79 (18)	O3—C14—H14C	109.00
N2—C6—C5	132.2 (2)	H14A—C14—H14B	109.00
C1—C6—C5	122.1 (2)	H14A—C14—H14C	109.00
N1—C7—N2	112.80 (18)	H14B—C14—H14C	109.00
N1—C7—C8	123.1 (2)	O2—C16—H16A	110.00
N2—C7—C8	124.14 (19)	O2—C16—H16B	110.00
C7—C8—C9	118.8 (2)	C17—C16—H16A	110.00
C7—C8—C13	122.90 (19)	C17—C16—H16B	110.00
C9—C8—C13	118.2 (2)	H16A—C16—H16B	108.00
C8—C9—C10	120.9 (3)	С16—С17—Н17А	109.00
C9—C10—C11	120.9 (3)	С16—С17—Н17В	109.00
O3-C11-C10	115.8 (3)	С16—С17—Н17С	110.00
03-C11-C12	125.2 (2)	H17A—C17—H17B	109.00
C10-C11-C12	119.0 (2)	H17A - C17 - H17C	110.00
$C_{11} - C_{12} - C_{13}$	119.9 (2)	H17B—C17—H17C	109.00
C8-C13-C12	121.2(2)	N2-C18-H18A	109.00
01-C15-02	122.6(3)	N2-C18-H18B	109.00
01-C15-C3	122.0(3) 1243(3)	C19—C18—H18A	108.00
02-C15-C3	121.3(3)	C19—C18—H18B	109.00
02-C16-C17	108.2(4)	H18A—C18—H18B	108.00
N_2 —C18—C19	114.94 (17)	C19—C20—H20	119.00
C_{18} C_{19} C_{20}	122.7(2)	C21—C20—H20	119.00
C18 - C19 - C24	119.2 (2)	C_{20} C_{21} H_{21}	120.00
C_{20} C_{19} C_{24}	118.0(3)	C_{22} C_{21} H_{21}	120.00
C19 - C20 - C21	1211(3)	C21—C22—H22	120.00
C20-C21-C22	120.4 (4)	C23—C22—H22	120.00
$C_{21} - C_{22} - C_{23}$	119.5 (4)	C22—C23—H23	119.00
C_{22} C_{23} C_{24}	120.9 (4)	C24—C23—H23	120.00
C19 - C24 - C23	120.1 (4)	C19—C24—H24	120.00
C1—C2—H2	121.00	C23—C24—H24	120.00
C16—O2—C15—O1	6.0 (4)	C2-C3-C15-O2	-169.0(2)
C16—O2—C15—C3	-173.9(3)	C4—C3—C15—O1	-166.1 (3)
C15—O2—C16—C17	87.3 (6)	C4—C3—C15—O2	13.8 (4)
C14—O3—C11—C10	171.4 (3)	C3—C4—C5—C6	0.2 (4)
C14—O3—C11—C12	-9.7 (4)	C4—C5—C6—N2	-179.1 (2)
C7—N1—C1—C2	-178.7 (2)	C4—C5—C6—C1	-0.5 (3)
C7—N1—C1—C6	0.5 (2)	N1—C7—C8—C9	-44.3(3)
C1—N1—C7—N2	-0.8 (2)	N1-C7-C8-C13	131.1 (2)
C1—N1—C7—C8	178.96 (19)	N2-C7-C8-C9	135.4 (2)
C7—N2—C6—C1	-0.5 (2)	N2-C7-C8-C13	-49.2 (3)
C7—N2—C6—C5	178.4 (2)	C7—C8—C9—C10	176.4 (2)
C18—N2—C6—C1	-166.32 (19)	C13—C8—C9—C10	0.8 (4)
C18—N2—C6—C5	12.5 (4)	C7—C8—C13—C12	-175.8 (2)
C6—N2—C7—N1	0.8 (2)	C9—C8—C13—C12	-0.4 (3)
C6—N2—C7—C8	-179.0 (2)	C8—C9—C10—C11	-0.9 (4)
C18—N2—C7—N1	165.8 (2)	C9—C10—C11—O3	179.4 (3)
C18—N2—C7—C8	-14.0 (3)	C9—C10—C11—C12	0.5 (4)
			-

C6—N2—C18—C19	-73.5 (3)	O3—C11—C12—C13	-178.8 (2)
C7—N2—C18—C19	123.9 (2)	C10-C11-C12-C13	0.0 (4)
N1—C1—C2—C3	179.3 (2)	C11—C12—C13—C8	0.0 (3)
C6—C1—C2—C3	0.1 (3)	N2-C18-C19-C20	-31.9 (3)
N1-C1-C6-N2	0.0 (2)	N2-C18-C19-C24	153.0 (3)
N1—C1—C6—C5	-179.0 (2)	C18—C19—C20—C21	-174.9 (3)
C2-C1-C6-N2	179.32 (19)	C24—C19—C20—C21	0.3 (4)
C2-C1-C6-C5	0.3 (3)	C18—C19—C24—C23	174.5 (3)
C1—C2—C3—C4	-0.4 (3)	C20-C19-C24-C23	-0.8 (5)
C1—C2—C3—C15	-177.5 (2)	C19—C20—C21—C22	-0.4 (6)
C2—C3—C4—C5	0.2 (4)	C20—C21—C22—C23	1.0 (7)
C15—C3—C4—C5	177.3 (2)	C21—C22—C23—C24	-1.6 (7)
C2—C3—C15—O1	11.0 (4)	C22—C23—C24—C19	1.5 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C14—H14 <i>C</i> ···O1 ⁱ	0.96	2.59	3.498 (4)	157

Symmetry code: (i) x-1, y, z-1.