ISSN 2414-3146

Received 3 November 2016 Accepted 5 November 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; ferrocene; acid anhydride; hydrogen bonds.

CCDC reference: 1515202

Structural data: full structural data are available from iucrdata.iucr.org

Ferrocenecarboxylic anhydride: a redetermination

C. John McAdam and Jim Simpson*

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand. *Correspondence e-mail: jsimpson@alkali.otago.ac.nz

The title molecule, $[Fe_2(C_5H_5)_2(C_{12}H_8O_3)]$, briefly reported previously [Zhang (2015). Private Communication (CCDC reference 1056736). CCDC, Cambridge, England], comprises two ferrocenyl units connected by an acid anhydride bridge. Both ferrocene units have near coplanar [dihedral angles between the ring planes = 2.84 (4) and 1.74 (13)°] and eclipsed [pseudo torsion angles = 6.3 (2) and 5.1 (2)°] cyclopentadienyl (Cp) rings. A twist through the anhydride linkage results in a dihedral angle of 73.81 (8)° between the two substituted Cp rings planes. An intramolecular C-H···O hydrogen bond is also found. In the crystal, C-H···O hydrogen bonds link the molecules into a three-dimensional network.

Structure description

The title compound is a common by-product in the synthesis of ferrocenoyl chloride from ferrocene carboxylic acid (Wang & Huang, 2000). Two ferrocene units [(C101–C105)Fe1(C106–C110)] (Fc1) and [(C201–C205)Fe2(C206–C210)] (Fc2) are bridged by an acid anhydride system, with an intramolecular C206–H206···O1 hydrogen bond influencing the molecular conformation, Fig. 1. The room-temperature structure of this molecule has been deposited with the Cambridge Structural Database, CSD, (Groom *et al.*, 2016) but no details of the molecular or crystal structure were provided (Zhang, 2015). The CSD gives four other examples of Cp carboxylic anhydrides (Elschenbroich *et al.*, 1997; Siebler *et al.*, 2010; Micallef *et al.*, 2011; Liu *et al.*, 2015). The two Cp rings of each ferrocenyl group are almost eclipsed with mean $C \cdots Cg1a \cdots Cg1b \cdots C$ and $C \cdots Cg2a \cdots Cg2b \cdots C$ torsion angles of 6.3 (2) and 5.1 (2)° [Cg1a, Cg1b, Cg2a and Cg2b are the centroids of the C101–C105, C106–C110, C201–C205 and C206–C210 Cp rings respectively]. Within each ferrocenyl moiety the rings are close to coplanar, with angles between the Cp ring planes of 2.84 (4)° for Fc1 and 1.74 (13)° for Fc2. Although the two acyl carbonyls lie close to the planes of their respective Cp rings, there is a twist through

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C206-H206····O1	0.95	2.57	3.413 (2)	149
$C205-H205\cdots O2^{i}$	0.95	2.38	3.319 (2)	169
$C204-H204\cdots O1^{ii}$	0.95	2.55	3.463 (2)	160
$C207 - H207 \cdots O2^{iii}$	0.95	2.64	3.542 (2)	159

(i) (ii) Symmetry codes: -x + 1, -v, -z + 1: $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, z.$

Figure 1

The structure of the title compound with ellipsoids drawn at the 50% probability level. The intramolecular $C-H \cdots O$ hydrogen bond is shown as a dashed line.

Figure 2

Zigzag chains of molecules of the title compound along the *a* axis.

Chains of molecules of the title compound along the b axis.

Crystal data	
Chemical formula	$[Fe_2(C_5H_5)_2(C_{12}H_8O_3)]$
Mr	442.06
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.8773 (2), 12.2499 (2), 19.3288 (3)
$V(Å^3)$	3522.59 (9)
Ζ	8
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	13.38
Crystal size (mm)	$0.16 \times 0.13 \times 0.11$
Data collection	
Diffractometer	Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction	Gaussian (CrysAlis PRO; Agilent, 2014)
T_{\min}, T_{\max}	0.267, 0.456
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13584, 3468, 3262
R _{int}	0.040
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.621
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.090, 0.84
No. of reflections	3468
No. of parameters	244
H-atom treatment	H-atom parameters constrained

Table 2

 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$

Experimental details.

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

0.31, -0.68

the connecting O3 atom of the anhydride unit that results in a torsion angle of approximately 57.36° for O1-C1···C2-O2. Similar torsional geometry is observed in the ruthenium analogue IVOYOY (62.31°; Micallef et al., 2011), the 1',2'-bissubstituted ferrocene system KAJBUU (57.04°; Siebler et al., 2010) and the vanadium compound NEWFIE (66.68°; Elschenbroich et al., 1997). In the bis-ferrocenophanone structure HOVYEY (Liu et al., 2015) where two ferrocene groups are constrained by two anhydride linkages, the two carbonyl groups are still inclined at an $O-C \cdots C-O$ torsion angle of 27.47° despite the fact that the bridged Cp rings are almost coplanar, suggesting the O-C···C-O torsion is a mechanism to relieve steric strain in the molecule.

Overall packing of the title compound viewed along the *b*-axis direction.

In the crystal, C204—H204···O1 hydrogen bonds (Table 1) generate zigzag chains along the *a* axis, Fig. 2. The carbonyl oxygen atom O2 acts as a dual acceptor with C207—H207···O2 hydrogen bonds forming chains along the *b* axis Fig. 3, and C205—H205···O2-generated inversion dimers linking the two chain motifs in the third dimension with molecules stacked along the *b* axis in such a way that one ferrocene unit of each individual molecule lies approximately parallel to the *b*-axis direction while the other lies in the *ac* plane, Fig. 4.

Synthesis and crystallization

The title compound was obtained as a by-product in the synthesis of ferrocenoyl chloride from the reaction of ferrocene carboxylic acid with triphosgene and 4-dimethylaminopyridine (Wang & Huang, 2000). Orange block-shaped crystals were obtained from diffusion of a dichloromethane solution layered with petroleum ether.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank the NZ Ministry of Business Innovation and Employment Science Investment Fund (grant No. UOO- X1206) for support of this work and the University of Otago for the purchase of the diffractometer.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Elschenbroich, C., Schiemann, O., Burghaus, O. & Harms, K. (1997). J. Am. Chem. Soc. 119, 7452–7457.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hunter, K. A. & Simpson, J. (1999). *TITAN2000*. University of Otago, New Zealand.
- Liu, Y., Khalili Najafabadi, B., Azizpoor Fard, M. & Corrigan, J. F. (2015). Angew. Chem. Int. Ed. 54, 4832–4835.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Micallef, L. S., Loughrey, B. T., Healy, P. C., Parsons, P. G. & Williams, M. L. (2011). Organometallics, 30, 1395–1403.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Siebler, D., Förster, C. & Heinze, K. (2010). Eur. J. Inorg. Chem. pp. 3986–3992.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, Q. & Huang, R. (2000). J. Organomet. Chem. 604, 287-289.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhang, Y. (2015). Private Communication (CCDC reference 1056736). CCDC, Cambridge, England.

full crystallographic data

IUCrData (2016). 1, x161769 [https://doi.org/10.1107/S2414314616017697]

Ferrocenecarboxylic anhydride: a redetermination

C. John McAdam and Jim Simpson

Ferrocenecarboxylic anhydride

Crystal data $D_{\rm x} = 1.667 {\rm Mg} {\rm m}^{-3}$ $[Fe_2(C_5H_5)_2(C_{12}H_8O_3)]$ $M_r = 442.06$ Cu *K* α radiation, $\lambda = 1.54184$ Å Cell parameters from 7707 reflections Orthorhombic, Pbca $\theta = 4.6 - 73.5^{\circ}$ a = 14.8773 (2) Å *b* = 12.2499 (2) Å $\mu = 13.38 \text{ mm}^{-1}$ T = 100 Kc = 19.3288 (3) Å V = 3522.59 (9) Å³ Block, orange Z = 8 $0.16 \times 0.13 \times 0.11 \text{ mm}$ F(000) = 1808Data collection Agilent SuperNova, Dual, Cu at zero, Atlas 13584 measured reflections diffractometer 3468 independent reflections Radiation source: SuperNova (Cu) X-ray 3262 reflections with $I > 2\sigma(I)$ Source $R_{\rm int} = 0.040$ Detector resolution: 5.1725 pixels mm⁻¹ $\theta_{\rm max} = 73.3^\circ, \ \theta_{\rm min} = 4.6^\circ$ $h = -17 \rightarrow 18$ ω scans $k = -14 \rightarrow 8$ Absorption correction: gaussian $l = -20 \rightarrow 23$ (CrysAlis PRO; Agilent, 2014)

Refinement

 $T_{\rm min} = 0.267, T_{\rm max} = 0.456$

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$w R(E^2) = 0.000$	$m = 1/[-2(E^2) + (0.080 P)^2 + 0.2107 P]$
$WR(P^2) = 0.090$	$w = 1/[\sigma^{2}(F_{0}^{2}) + (0.089P)^{2} + 0.210/P]$
S = 0.84	where $P = (F_{0}^{2} + 2F_{c}^{2})/3$
244 parameters 0 restraints	$(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.31 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{max} = -0.68 \text{ e } \text{Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = 0.00 {\rm cm}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

				TT ~ / / TT	
	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
Fel	0.12604 (2)	0.19991 (2)	0.26009 (2)	0.01531 (11)	
Fe2	0.39445 (2)	0.28549 (2)	0.51371 (2)	0.01595 (11)	
02	0.38674 (9)	0.00699 (11)	0.43945 (7)	0.0246 (3)	
01	0.19839 (8)	0.05176 (10)	0.42555 (6)	0.0226 (3)	
C2	0.37846 (11)	0.09637 (16)	0.41529 (9)	0.0188 (4)	
C205	0.50220 (13)	0.19334 (16)	0.48270 (9)	0.0204 (4)	
H205	0.5261	0.1314	0.5059	0.024*	
03	0.31555 (8)	0.11814 (10)	0.36295 (6)	0.0206 (3)	
C107	0.06717 (12)	0.32095 (15)	0.31823 (10)	0.0229 (4)	
H107	0.0316	0.3117	0.3586	0.027*	
C102	0.08858 (13)	0.05045 (14)	0.29736 (9)	0.0210 (4)	
H102	0.0477	0.0366	0.3341	0.025*	
C202	0.41558 (13)	0.30383 (14)	0.41050 (9)	0.0191 (4)	
H202	0.3724	0.3276	0.3776	0.023*	
C101	0.18384 (12)	0.06756 (14)	0.30387 (9)	0.0179 (3)	
C201	0.43179 (12)	0.19276 (15)	0.43170 (9)	0.0184 (4)	
C105	0.21968 (13)	0.08585 (14)	0.23576 (8)	0.0202 (4)	
H105	0.2808	0.0999	0.2245	0.024*	
C210	0.34157 (13)	0.21774 (16)	0.60180 (10)	0.0243 (4)	
H210	0.3607	0.1521	0.6234	0.029*	
C106	0.16221 (13)	0.33524 (15)	0.31630 (10)	0.0236 (4)	
H106	0.2013	0.3371	0.3552	0.028*	
C204	0.52947 (13)	0.30364 (16)	0.49200 (10)	0.0218 (4)	
H204	0.5754	0.3283	0.5224	0.026*	
C208	0.32878 (12)	0.39904 (16)	0.57213 (10)	0.0259 (4)	
H208	0.3380	0.4757	0.5705	0.031*	
C103	0.06679 (14)	0.05807 (15)	0.22591 (10)	0.0250 (4)	
H103	0.0084	0.0504	0.2066	0.030*	
C1	0.23007 (11)	0.07514 (14)	0.37007 (8)	0.0178 (3)	
C209	0.37555 (12)	0.3243 (2)	0.61544 (10)	0.0258 (4)	
H209	0.4214	0.3422	0.6477	0.031*	
C104	0.14701 (15)	0.07904 (14)	0.18836 (9)	0.0238 (4)	
H104	0.1513	0.0872	0.1396	0.029*	
C108	0.03498 (15)	0.32293 (18)	0.24893 (11)	0.0292 (4)	
H108	-0.0259	0.3148	0.2350	0.035*	
C206	0.27372 (13)	0.22702 (17)	0.55000 (10)	0.0245 (4)	
H206	0.2398	0.1686	0.5310	0.029*	
C109	0.10961 (16)	0.33925 (17)	0.20395 (11)	0.0314 (5)	
H109	0.1073	0.3445	0.1549	0.038*	
C110	0.18818 (16)	0.34619 (15)	0.24563 (11)	0.0290 (4)	
H110	0.2478	0.3564	0.2292	0.035*	
C207	0.26578 (12)	0.33924 (17)	0.53162 (9)	0.0245 (4)	
H207	0.2257	0.3689	0.4983	0.029*	
C203	0.47615 (12)	0.37101 (15)	0.44800 (9)	0.0216 (4)	
H203	0.4805	0.4482	0.4444	0.026*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Fel	0.01694 (18)	0.01469 (19)	0.01431 (17)	0.00019 (9)	-0.00108 (10)	0.00082 (9)
Fe2	0.01265 (17)	0.02041 (18)	0.01477 (17)	0.00060 (9)	0.00069 (10)	0.00078 (9)
O2	0.0259 (7)	0.0202 (7)	0.0279 (7)	0.0041 (5)	-0.0058 (5)	-0.0001 (5)
01	0.0233 (6)	0.0270 (6)	0.0175 (6)	-0.0009(5)	0.0002 (5)	0.0032 (5)
C2	0.0168 (8)	0.0242 (9)	0.0156 (8)	0.0040 (6)	-0.0003 (6)	-0.0007 (7)
C205	0.0141 (8)	0.0273 (9)	0.0196 (9)	0.0040 (7)	0.0001 (7)	0.0006 (7)
O3	0.0179 (6)	0.0256 (6)	0.0183 (6)	-0.0024 (5)	-0.0030 (5)	0.0034 (5)
C107	0.0228 (9)	0.0209 (8)	0.0250 (9)	0.0061 (7)	0.0027 (7)	-0.0039 (7)
C102	0.0228 (8)	0.0173 (8)	0.0228 (8)	-0.0032 (7)	-0.0034 (7)	0.0037 (7)
C202	0.0173 (8)	0.0258 (9)	0.0143 (8)	0.0001 (7)	0.0022 (7)	0.0032 (6)
C101	0.0203 (8)	0.0157 (8)	0.0177 (8)	0.0009 (6)	-0.0011 (6)	0.0000 (6)
C201	0.0143 (8)	0.0267 (9)	0.0142 (8)	0.0021 (7)	0.0004 (7)	-0.0001 (6)
C105	0.0227 (9)	0.0181 (8)	0.0199 (9)	0.0042 (7)	0.0007 (7)	-0.0012 (6)
C210	0.0232 (10)	0.0329 (10)	0.0167 (8)	0.0012 (7)	0.0046 (7)	0.0044 (7)
C106	0.0273 (10)	0.0168 (8)	0.0266 (9)	-0.0019 (7)	-0.0004 (7)	-0.0060 (7)
C204	0.0129 (8)	0.0317 (10)	0.0208 (9)	-0.0015 (7)	0.0009 (7)	-0.0008 (7)
C208	0.0231 (9)	0.0276 (10)	0.0269 (9)	0.0046 (7)	0.0076 (7)	-0.0054 (8)
C103	0.0294 (10)	0.0195 (9)	0.0262 (9)	-0.0053 (7)	-0.0096 (8)	0.0020 (7)
C1	0.0164 (8)	0.0168 (7)	0.0204 (8)	0.0030 (6)	-0.0009 (6)	0.0011 (6)
C209	0.0192 (9)	0.0403 (11)	0.0180 (9)	-0.0006 (8)	0.0020 (7)	-0.0062 (8)
C104	0.0363 (10)	0.0175 (8)	0.0175 (8)	0.0009 (8)	-0.0036 (7)	-0.0035 (7)
C108	0.0314 (11)	0.0258 (9)	0.0304 (9)	0.0134 (9)	-0.0067 (8)	-0.0020 (8)
C206	0.0168 (8)	0.0350 (10)	0.0216 (8)	-0.0047 (8)	0.0050 (7)	-0.0013 (8)
C109	0.0537 (13)	0.0175 (10)	0.0230 (9)	0.0068 (9)	0.0014 (9)	0.0066 (8)
C110	0.0376 (11)	0.0170 (9)	0.0324 (10)	-0.0059 (8)	0.0119 (9)	-0.0026 (8)
C207	0.0136 (8)	0.0368 (10)	0.0232 (8)	0.0068 (8)	0.0032 (7)	0.0005 (8)
C203	0.0196 (8)	0.0251 (9)	0.0200 (8)	-0.0034 (7)	0.0036 (7)	0.0030 (7)

Geometric parameters (Å, °)

Fe1—C101	2.0210 (17)	C102—C101	1.438 (2)
Fe1—C105	2.0283 (18)	C102—H102	0.9500
Fe1—C110	2.0355 (19)	C202—C203	1.419 (3)
Fe1—C109	2.037 (2)	C202—C201	1.441 (2)
Fe1—C108	2.038 (2)	C202—H202	0.9500
Fe1—C102	2.0449 (18)	C101—C105	1.438 (2)
Fe1—C104	2.0523 (18)	C101—C1	1.456 (2)
Fe1—C106	2.0538 (18)	C105—C104	1.420 (3)
Fe1—C107	2.0563 (18)	C105—H105	0.9500
Fe1—C103	2.0573 (19)	C210—C209	1.424 (3)
Fe2—C201	2.0277 (18)	C210—C206	1.426 (3)
Fe2—C202	2.0320 (18)	C210—H210	0.9500
Fe2—C208	2.0407 (18)	C106—C110	1.426 (3)
Fe2—C209	2.0423 (19)	C106—H106	0.9500
Fe2—C203	2.0465 (17)	C204—C203	1.426 (3)

E-2 C205	2.0501(10)	C204 U204	0.0500
Fe2 = C203	2.0301(19)	С204—Н204	0.9300
Fe2—C210	2.0510(18)	$C_{208} = C_{209}$	1.422 (3)
Fe2—C207	2.0538 (18)	$C_{208} = C_{207}$	1.424 (3)
Fe2—C206	2.0570 (19)	C208—H208	0.9500
Fe2—C204	2.064 (2)	C103—C104	1.420 (3)
02	1.197 (2)	С103—Н103	0.9500
01—C1	1.206 (2)	С209—Н209	0.9500
C2—O3	1.404 (2)	C104—H104	0.9500
C2—C201	1.457 (3)	C108—C109	1.424 (3)
C205—C204	1.422 (3)	C108—H108	0.9500
C205—C201	1.438 (2)	C206—C207	1.425 (3)
С205—Н205	0.9500	С206—Н206	0.9500
O3—C1	1.383 (2)	C109—C110	1.422 (3)
C107—C108	1.423 (3)	C109—H109	0.9500
C107—C106	1.425 (3)	C110—H110	0.9500
C107—H107	0.9500	С207—Н207	0.9500
C102—C103	1.422 (3)	С203—Н203	0.9500
C101—Fe1—C105	41.60(7)	C103—C102—H102	126.3
C101—Fe1—C110	124.78 (8)	C101—C102—H102	126.3
C105 - Fe1 - C110	105.23 (8)	Fe1—C102—H102	126.7
C101 - Fe1 - C109	161 12 (8)	C_{203} C_{202} C_{201}	107 21 (16)
C105 - Fe1 - C109	122 41 (8)	$C_{203} = C_{202} = C_{201}$	70 18 (10)
C_{110} Fe1 C_{109}	40.88 (9)	$C_{203} = C_{202} = F_{e2}$	69.04 (10)
$C_{101} = F_{e1} = C_{109}$	156.00(8)	$C_{201} = C_{202} = 1.62$	126.4
C_{101} $-re_{1}$ C_{108} C_{105} E_{21} C_{108}	150.99(8)	$C_{203} - C_{202} - H_{202}$	120.4
C_{103} $-re1$ $-C_{108}$	100.30(8)	$C_{201} - C_{202} - H_{202}$	120.4
C100 - FeI - C108	08.08 (9)	Fe2—C202—H202	120.0
C109—FeI— $C108$	40.92 (9)	C105 - C101 - C102	107.93 (15)
C101—Fe1— $C102$	41.42 (7)		128.30 (16)
C105—Fe1—C102	69.64 (8)	C102—C101—C1	123.49 (15)
C110—Fe1—C102	163.80 (8)	C105—C101—Fe1	69.47 (10)
C109—Fe1—C102	154.83 (9)	C102—C101—Fe1	70.18 (10)
C108—Fe1—C102	121.21 (9)	C1—C101—Fe1	121.20 (12)
C101—Fe1—C104	68.87 (7)	C205—C201—C202	108.18 (16)
C105—Fe1—C104	40.71 (7)	C205—C201—C2	123.34 (16)
C110—Fe1—C104	118.25 (8)	C202—C201—C2	127.72 (16)
C109—Fe1—C104	105.24 (8)	C205—C201—Fe2	70.18 (10)
C108—Fe1—C104	124.27 (8)	C202—C201—Fe2	69.36 (10)
C102—Fe1—C104	68.50 (8)	C2-C201-Fe2	118.35 (12)
C101—Fe1—C106	108.33 (8)	C104—C105—C101	107.42 (16)
C105—Fe1—C106	119.92 (7)	C104—C105—Fe1	70.55 (10)
C110—Fe1—C106	40.81 (7)	C101—C105—Fe1	68.93 (10)
C109—Fe1—C106	68.71 (9)	C104—C105—H105	126.3
C108—Fe1—C106	68.49 (8)	C101—C105—H105	126.3
C102 - Fe1 - C106	127 42 (8)	Fe1—C105—H105	125.8
C104—Fe1—C106	154 15 (8)	$C_{209} - C_{210} - C_{206}$	107 95 (17)
C101 - Fe1 - C107	122.06 (7)	$C_{209} = C_{210} = C_{200}$	60 31 (11)
$C_{105} = E_{01} = C_{107}$	122.00(7) 156.34(7)	$C_{20} = C_{210} = C_{20}$	60.01(11)
C105-FC1-C10/	130.34 (7)	C200-C210-FC2	(10) 16.60

C110—Fe1—	-C107	68.51 (8)	С209—С210—Н210	126.0
C109—Fe1-	-C107	68.65 (8)	C206—C210—H210	126.0
C108—Fe1-	-C107	40.67 (8)	Fe2—C210—H210	126.3
C102—Fe1—	C107	109.69 (7)	C107—C106—C110	107.78 (17)
C104—Fe1—	C107	162.58 (8)	C107—C106—Fe1	69.80 (10)
C106—Fe1—	C107	40.58 (7)	C110-C106-Fe1	68.91 (10)
C101—Fe1—	C103	68.85 (7)	C107—C106—H106	126.1
C105—Fe1—	C103	68.78 (7)	C110—C106—H106	126.1
C110—Fe1—	-C103	153.38 (8)	Fe1—C106—H106	126.7
C109—Fe1—	C103	119.02 (8)	C205—C204—C203	108.41 (17)
C108—Fe1—	-C103	107.80 (9)	C205—C204—Fe2	69.25 (11)
C102—Fe1—	-C103	40.55 (7)	C203—C204—Fe2	69.04 (11)
C104—Fe1—	-C103	40.44 (8)	C205—C204—H204	125.8
C106—Fe1—	-C103	164.54 (8)	C203—C204—H204	125.8
C107—Fe1—	-C103	127.01 (8)	Fe2—C204—H204	127.5
C201—Fe2—	-C202	41.59 (7)	C209—C208—C207	108.32 (18)
C201—Fe2—	-C208	161.01 (8)	C209—C208—Fe2	69.67 (11)
C202—Fe2—	-C208	122.82 (8)	C_{207} C_{208} F_{e2}	70 14 (10)
C201—Fe2—	-C209	157.03 (8)	$C_{209} - C_{208} - H_{208}$	125.8
C202—Fe2—	-C209	160 18 (9)	C207—C208—H208	125.8
C208—Fe2—	-C209	40.78 (8)	Fe2—C208—H208	125.9
C201—Fe2—	-C203	68.83 (7)	C104 - C103 - C102	108.46 (17)
C202—Fe2—	-C203	40.73 (7)	C104-C103-Fe1	69.59 (10)
C208—Fe2—	-C203	106.19 (8)	C102—C103—Fe1	69.25 (10)
C209—Fe2—	-C203	124.07 (8)	C104—C103—H103	125.8
C201—Fe2—	-C205	41.30(7)	C102-C103-H103	125.8
C202—Fe2—	-C205	69.69 (7)	Fe1—C103—H103	127.0
C208—Fe2—	-C205	155.70 (8)	01	122.57 (15)
C209—Fe2—	-C205	121.15 (8)	01 - C1 - C101	125.59 (16)
C203—Fe2—	-C205	68.66 (8)	O_{3} C_{1} C_{101}	111.78 (14)
C201—Fe2—	-C210	121.83 (8)	$C_{208} - C_{209} - C_{210}$	107.90 (17)
C202—Fe2—	-C210	156.79 (8)	C208—C209—Fe2	69.55 (11)
C208—Fe2—	-C210	68.46 (8)	C210—C209—Fe2	69.97 (11)
C209—Fe2—	-C210	40.72 (8)	C208—C209—H209	126.0
C203—Fe2—	-C210	161.84 (8)	C210—C209—H209	126.0
C205—Fe2—	-C210	108.65 (8)	Fe2—C209—H209	126.0
C201—Fe2—	-C207	124.52 (8)	C105—C104—C103	108.71 (16)
C202—Fe2—	-C207	105.92 (8)	C105—C104—Fe1	68.74 (10)
C208—Fe2—	-C207	40.71 (8)	C103—C104—Fe1	69.97 (11)
C209—Fe2—	-C207	68.58 (7)	C105—C104—H104	125.6
C203—Fe2—	-C207	119 61 (8)	C103 - C104 - H104	125.6
C205—Fe2—	-C207	162.67 (8)	Fe1—C104—H104	127.2
C210—Fe2—	-C207	68.42 (8)	C107 - C108 - C109	108.34 (18)
C201—Fe2—	-C206	108.10 (8)	C107—C108—Fe1	70.36 (11)
C202—Fe2—	-C206	120.55 (8)	C109—C108—Fe1	69.52 (11)
C208—Fe2—	-C206	68.32 (8)	C107—C108—H108	125.8
C209—Fe2—	-C206	68.44 (8)	C109—C108—H108	125.8
C203—Fe2—	-C206	155 30 (8)	Fe1—C108—H108	125.9
2203 102	2200	100.00 (0)		

C205—Fe2—C206	126.21 (8)	C207—C206—C210	108.09 (17)
C210—Fe2—C206	40.63 (8)	C207—C206—Fe2	69.60 (10)
C207—Fe2—C206	40.56 (8)	C210—C206—Fe2	69.46 (11)
C201—Fe2—C204	68.58 (7)	C207—C206—H206	126.0
C202—Fe2—C204	68.78 (7)	C210—C206—H206	126.0
C208—Fe2—C204	120.33 (8)	Fe2—C206—H206	126.6
C209—Fe2—C204	107.74 (7)	C110-C109-C108	107.65 (18)
C203—Fe2—C204	40.60 (7)	C110-C109-Fe1	69.49 (11)
C205—Fe2—C204	40.44 (7)	C108—C109—Fe1	69.56 (11)
C210—Fe2—C204	125.85 (8)	C110—C109—H109	126.2
C207—Fe2—C204	155.07 (8)	C108—C109—H109	126.2
C206—Fe2—C204	163.06 (8)	Fe1—C109—H109	126.3
02-C2-03	121.58 (17)	C109—C110—C106	108.33 (18)
02-C2-C201	126.89 (16)	C109—C110—Fe1	69.63 (12)
03-C2-C201	111 46 (15)	C106—C110—Fe1	70.28 (11)
$C_{204} - C_{205} - C_{201}$	107 41 (16)	C109 - C110 - H110	125.8
C_{204} C_{205} E_{201} C_{204} C_{205} F_{e^2}	70 30 (11)	C106—C110—H110	125.8
$C_{201} = C_{205} = F_{e2}$	68 51 (10)	Fe1H110	125.8
$C_{201} = C_{205} = 1.62$	126.3	C_{208} C_{207} C_{206}	107 73 (16)
$C_{201} - C_{205} - H_{205}$	126.3	$C_{208} C_{207} E_{200}$	69 15 (10)
$E_{201} = C_{205} = H_{205}$	126.5	$C_{208} - C_{207} - F_{e2}$	69.13 (10) 69.84 (10)
$C_{1} = C_{2} = C_{3} = C_{1} = C_{3}$	117.06 (13)	$C_{200} = C_{207} = 1.62$	126.1
C108 C107 C106	117.90(13) 107.80(17)	$C_{208} = C_{207} = H_{207}$	120.1
$C_{108} = C_{107} = C_{100}$	107.89(17) 68.07(11)	$E_{200} = C_{207} = H_{207}$	120.1
$C_{108} = C_{107} = F_{e1}$	60.67(11)	$C_{202} = C_{203} = C_{204}$	120.4
C100 - C107 - FeI	126.1	$C_{202} = C_{203} = C_{204}$	108.79(17)
$C_{106} = C_{107} = H_{107}$	120.1	$C_{202} - C_{203} - F_{e2}$	70.36(10)
C100 - C107 - H107	120.1	$C_{204} = C_{203} = F_{e2}$	125.6
FeI = CI07 = HI07	120.9	$C_{202} - C_{203} - H_{203}$	125.0
C103 - C102 - C101	10/.4/(10)	$C_{204} = C_{203} = H_{203}$	125.6
C103—C102—Fel	/0.20 (10)	Fe2—C203—H203	120.5
C101—C102—Fe1	08.40 (9)		
O_{1} C_{2} O_{2} C_{1}	44.2 (2)	C105 C101 C1 O2	8 2 (2)
02-02-03-01	44.5(2)	C103 - C101 - C1 - O3	0.2(2)
$C_{201} - C_{2} - C_{3} - C_{1}$	-138.50(15)	C102 - C101 - C1 - 03	-164.96(13)
C103 - C102 - C101 - C105	0.1(2)	FeI = CI0I = CI = 03	=/9.25(17)
Fel—C102—C101—C105	-59.44(12)	$C_{20}/=C_{208}=C_{209}=C_{210}$	0.0(2)
	1/4.50 (16)	$Fe_2 = C_2 08 = C_2 09 = C_2 10$	-59.69 (13)
FeI = C102 = C101 = C1	114.94 (16)	$C_{20}/-C_{208}/C_{209}/Fe_{2}$	59.71 (12)
C103—C102—C101—Fel	59.56 (12)	$C_{206} - C_{210} - C_{209} - C_{208}$	0.0(2)
C204—C205—C201—C202	-0.6(2)	Fe2—C210—C209—C208	59.43 (13)
Fe2—C205—C201—C202	59.16 (12)	C206—C210—C209—Fe2	-59.45 (13)
C204—C205—C201—C2	-1/1.34 (17)	C101—C105—C104—C103	0.62 (19)
Fe2—C205—C201—C2	-111.54 (17)	Fe1—C105—C104—C103	-58.68 (13)
C204—C205—C201—Fe2	-59.80 (13)	C101—C105—C104—Fel	59.31 (11)
C203—C202—C201—C205	0.4 (2)	C102—C103—C104—C105	-0.6 (2)
Fe2—C202—C201—C205	-59.67 (12)	Fe1—C103—C104—C105	57.93 (12)
C203—C202—C201—C2	170.58 (17)	C102—C103—C104—Fe1	-58.49 (13)
Fe2—C202—C201—C2	110.50 (18)	C106—C107—C108—C109	-0.4(2)

C203—C202—C201—Fe2	60.09 (12)	Fe1-C107-C108-C109	-59.36 (14)
O2—C2—C201—C205	-2.1 (3)	C106-C107-C108-Fe1	58.92 (12)
O3—C2—C201—C205	-179.04 (15)	C209—C210—C206—C207	0.0 (2)
O2—C2—C201—C202	-170.88 (18)	Fe2-C210-C206-C207	-59.07 (12)
O3—C2—C201—C202	12.2 (2)	C209—C210—C206—Fe2	59.07 (13)
O2-C2-C201-Fe2	-86.0 (2)	C107—C108—C109—C110	0.6 (2)
O3—C2—C201—Fe2	97.05 (15)	Fe1-C108-C109-C110	-59.28 (14)
C102—C101—C105—C104	-0.45 (19)	C107-C108-C109-Fe1	59.88 (14)
C1-C101-C105-C104	-174.49 (17)	C108—C109—C110—C106	-0.5 (2)
Fe1-C101-C105-C104	-60.34 (12)	Fe1-C109-C110-C106	-59.86 (14)
C102-C101-C105-Fe1	59.89 (12)	C108-C109-C110-Fe1	59.32 (14)
C1-C101-C105-Fe1	-114.15 (18)	C107—C106—C110—C109	0.3 (2)
C108—C107—C106—C110	0.1 (2)	Fe1-C106-C110-C109	59.46 (14)
Fe1-C107-C106-C110	58.62 (13)	C107-C106-C110-Fe1	-59.18 (13)
C108-C107-C106-Fe1	-58.52 (13)	C209—C208—C207—C206	0.0 (2)
C201—C205—C204—C203	0.6 (2)	Fe2-C208-C207-C206	59.41 (12)
Fe2-C205-C204-C203	-58.05 (13)	C209—C208—C207—Fe2	-59.42 (12)
C201-C205-C204-Fe2	58.67 (13)	C210—C206—C207—C208	0.0 (2)
C101—C102—C103—C104	0.3 (2)	Fe2-C206-C207-C208	-58.97 (12)
Fe1-C102-C103-C104	58.69 (13)	C210-C206-C207-Fe2	58.98 (13)
C101-C102-C103-Fe1	-58.43 (12)	C201—C202—C203—C204	0.0 (2)
C2-O3-C1-O1	24.4 (2)	Fe2-C202-C203-C204	59.33 (13)
C2-O3-C1-C101	-158.36 (15)	C201—C202—C203—Fe2	-59.36 (12)
C105—C101—C1—O1	-174.66 (17)	C205—C204—C203—C202	-0.4 (2)
C102—C101—C1—O1	12.1 (3)	Fe2-C204-C203-C202	-58.55 (13)
Fe1—C101—C1—O1	97.86 (19)	C205—C204—C203—Fe2	58.18 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
С206—Н206…О1	0.95	2.57	3.413 (2)	149	
C205— $H205$ ···O2 ⁱ	0.95	2.38	3.319 (2)	169	
C204—H204…O1 ⁱⁱ	0.95	2.55	3.463 (2)	160	
C207—H207…O2 ⁱⁱⁱ	0.95	2.64	3.542 (2)	159	

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*+1/2, -*y*+1/2, -*z*+1; (iii) -*x*+1/2, *y*+1/2, *z*.