

IUCrData

ISSN 2414-3146

Received 5 November 2016 Accepted 12 November 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrogen bonds; bilayer.

CCDC reference: 1517120

Structural data: full structural data are available from iucrdata.iucr.org

4-Amino-5-tetradecylamino-4*H*-1,2,4-triazol-1-ium chloride

Youness El Bakri,^a* Abdallah Harmaoui,^a Jihad Sebhaoui,^a Youssef Ramli,^b El Mokhtar Essassi^a and Joel T. Mague^c

^aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Mohammed V University, Rabat, Morocco, ^bMedicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10170 Rabat, Morocco, and ^cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: youness.chimie14@gmail.com

In the crystal of the title molecular salt, $C_{16}H_{34}N_5^+ \cdot Cl^-$, (100) bilayers arise in which the tetradecylamino 'tails' (which adopt extended conformations) interdigitate and the triazolium 'heads' associate with the chloride anions through N-H···Cl hydrogen bonds.

Structure description

As part of our ongoing synthetic and structural studies of triazole derivatives (El Bakri *et al.*, 2016*a,b*), we now describe the synthesis and crystal structure of the title salt, $C_{16}H_{34}N_5^+ \cdot Cl^-$ (Fig. 1).

The alkyl chain of the cation adopts an extended conformation. In the crystal, the cations form bilayers with the tetradecylamino chains interdigitating to form the hydrophobic portion (Fig. 2). The triazolium 'heads' and the chloride ions form the hydrophilic portion and are connected through a network of $N-H\cdots$ Cl hydrogen bonds (Table 1).

Synthesis and crystallization

A large excess of hydroxylammonium chloride was added to a solution of 6-methyl-7,9ditetradecyl-7*H*-[1,2,4]triazolo[4,3-*b*][1,2,4]triazepin-8(9*H*)-thione (0.3 g) in ethanol (10 ml). The reaction mixture was stirred for 72 h at room temperature. The solution was then concentrated to dryness under reduced pressure and the residue was recrystallized from ethanol solution to give crystals of the title compound in the form of colourless plates with a yield of 50%.

Figure 1

The title compound, showing 50% probability ellipsoids.

Figure 2

The packing of the title compound, viewed along the *b* axis, with N- $H \cdots Cl$ hydrogen bonds shown as dotted lines.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS . Bruker AXS Inc., Madison, Wisconsin, USA.

Table 1	
Hydrogen-bond geometry (Å, °).	

	D 11 1
$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots Cl1$ 0.86 (3) 2.19 (3) 3.0423 (17)	172 (2)
$N4-H4C\cdots Cl1^{i}$ 0.91 (3) 2.50 (3) 3.3301 (19)	153 (2)
$N4 - H4D \cdots Cl1^{ii}$ 0.98 (3) 2.33 (3) 3.253 (2)	156 (3)
$N5-H5\cdots Cl1^{iii}$ 0.86 (3) 2.42 (3) 3.1700 (17)	146 (2)

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{16}H_{34}N_5^+ \cdot Cl^+$
M _r	331.93
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	21.5980 (6), 7.0666 (2), 13.3909 (4)
β (°)	105.031 (2)
$V(Å^3)$	1973.85 (10)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	1.74
Crystal size (mm)	$0.29\times0.21\times0.03$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
T_{\min}, T_{\max}	0.82, 0.95
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14321, 3808, 3006
R _{int}	0.048
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.121, 1.07
No. of reflections	3808
No. of parameters	335
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.23, -0.19

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

El Bakri, Y., Harmaoui, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2016). *IUCrData*, **1**, x161229.

- El Bakri, Y., Harmaoui, A., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2016). *IUCrData*, 1, x161245.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). 1, x161819 [https://doi.org/10.1107/S2414314616018198]

4-Amino-5-tetradecylamino-4H-1,2,4-triazol-1-ium chloride

Youness El Bakri, Abdallah Harmaoui, Jihad Sebhaoui, Youssef Ramli, El Mokhtar Essassi and Joel T. Mague

4-Amino-5-tetradecylamino-4H-1,2,4-triazol-1-ium chloride

$C_{16}H_{34}N_5^{+} \cdot Cl^+$ $M_r = 331.93$ Monoclinic, $P2_1/c$ $a = 21.5980$ (6) Å b = 7.0666 (2) Å c = 13.3909 (4) Å $\beta = 105.031$ (2)°	F(000) = 728 $D_x = 1.117 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8831 reflections $\theta = 4.2-72.1^{\circ}$ $\mu = 1.74 \text{ mm}^{-1}$ T = 150 K
$V = 1973.85 (10) \text{ Å}^3$	Plate, colourless
Z = 4	$0.29 \times 0.21 \times 0.03 \text{ mm}$
Data collection	
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer	$T_{\min} = 0.82, T_{\max} = 0.95$ 14321 measured reflections
Radiation source: INCOATEC IµS micro–focus source	3808 independent reflections 3006 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.048$
Detector resolution: 10.4167 pixels mm ⁻¹	$\theta_{\text{max}} = 72.2^{\circ}, \ \theta_{\text{min}} = 4.2^{\circ}$
ω scans	$h = -23 \rightarrow 26$
Absorption correction: multi-scan	$k = -8 \rightarrow 8$
(SADABS; Bruker, 2016)	$l = -16 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.121$	All H-atom parameters refined
S = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0529P)^2 + 0.6009P]$
3808 reflections	where $P = (F_o^2 + 2F_c^2)/3$
335 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Crystal data

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.07493 (9)	0.5920 (2)	0.05555 (12)	0.0415 (4)
H1	0.0856 (11)	0.546 (3)	0.117 (2)	0.054 (7)*
N2	0.04242 (9)	0.7636 (2)	0.03771 (12)	0.0443 (4)
N3	0.05586 (8)	0.6421 (2)	-0.10682 (11)	0.0396 (4)
N4	0.05546 (11)	0.6121 (3)	-0.21102 (12)	0.0482 (5)
H4C	0.0739 (13)	0.716 (4)	-0.231 (2)	0.075 (8)*
H4D	0.0105 (15)	0.599 (4)	-0.251 (2)	0.084 (10)*
N5	0.11118 (10)	0.3574 (2)	-0.04370 (13)	0.0477 (5)
C1	0.08315 (10)	0.5171 (3)	-0.03142 (14)	0.0389 (4)
C2	0.03191 (11)	0.7888 (3)	-0.06109 (15)	0.0430 (5)
H2	0.0101 (12)	0.898 (4)	-0.100 (2)	0.058 (7)*
C3	0.14181 (12)	0.2353 (3)	0.04370 (16)	0.0488 (5)
H3A	0.1459 (11)	0.110 (4)	0.0142 (19)	0.056 (7)*
H3B	0.1142 (10)	0.228 (3)	0.0916 (17)	0.045 (6)*
C4	0.20681 (12)	0.3084 (3)	0.10316 (18)	0.0502 (5)
H4A	0.2357 (11)	0.312 (3)	0.0583 (19)	0.055 (7)*
H4B	0.2016 (10)	0.442 (3)	0.1237 (18)	0.049 (6)*
C5	0.23699 (12)	0.1955 (3)	0.20055 (18)	0.0501 (5)
H5A	0.2424 (12)	0.057 (4)	0.182 (2)	0.069 (8)*
H5B	0.2081 (11)	0.195 (3)	0.2432 (18)	0.047 (6)*
Н5	0.1083 (12)	0.323 (4)	-0.106 (2)	0.062 (7)*
C6	0.30078 (12)	0.2777 (3)	0.26025 (19)	0.0530 (6)
H6A	0.3321 (13)	0.276 (4)	0.216 (2)	0.071 (8)*
H6B	0.2924 (12)	0.414 (4)	0.272 (2)	0.065 (7)*
C7	0.33079 (12)	0.1835 (3)	0.36325 (18)	0.0512 (5)
H7A	0.3350 (12)	0.048 (4)	0.352 (2)	0.066 (7)*
H7B	0.3016 (12)	0.197 (3)	0.408 (2)	0.060 (7)*
C8	0.39563 (12)	0.2647 (3)	0.41916 (19)	0.0514 (6)
H8A	0.4242 (12)	0.247 (4)	0.375 (2)	0.067 (8)*
H8B	0.3899 (11)	0.408 (4)	0.4251 (19)	0.057 (7)*
C9	0.42485 (12)	0.1812 (3)	0.52507 (18)	0.0493 (5)
H9A	0.4283 (12)	0.042 (4)	0.522 (2)	0.063 (7)*
H9B	0.3942 (11)	0.200 (3)	0.5684 (18)	0.051 (6)*
C10	0.48964 (12)	0.2627 (3)	0.57950 (19)	0.0517 (6)
H10A	0.5183 (12)	0.243 (3)	0.535 (2)	0.060 (7)*
H10B	0.4858 (12)	0.401 (4)	0.5840 (19)	0.058 (7)*
C11	0.51906 (12)	0.1806 (3)	0.68599 (19)	0.0500 (5)
H11A	0.5241 (13)	0.042 (4)	0.682 (2)	0.074 (8)*
H11B	0.4903 (12)	0.202 (3)	0.7273 (19)	0.055 (7)*
C12	0.58380 (12)	0.2617 (3)	0.7403 (2)	0.0518 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H12A	0.6129 (12)	0.247 (4)	0.694 (2)	0.066 (7)*
H12B	0.5796 (12)	0.399 (4)	0.747 (2)	0.067 (8)*
C13	0.61347 (12)	0.1762 (3)	0.84547 (19)	0.0518 (5)
H13A	0.6157 (12)	0.037 (4)	0.837 (2)	0.063 (7)*
H13B	0.5853 (12)	0.198 (3)	0.889 (2)	0.062 (7)*
C14	0.67833 (12)	0.2564 (3)	0.9004 (2)	0.0544 (6)
H14A	0.7063 (12)	0.241 (4)	0.854 (2)	0.064 (7)*
H14B	0.6741 (12)	0.396 (4)	0.911 (2)	0.062 (7)*
C15	0.70822 (13)	0.1684 (4)	1.0053 (2)	0.0635 (7)
H15A	0.7103 (13)	0.030 (4)	0.995 (2)	0.073 (8)*
H15B	0.6784 (13)	0.185 (4)	1.049 (2)	0.069 (8)*
C16	0.77319 (15)	0.2468 (5)	1.0580 (3)	0.0826 (10)
H16A	0.7733 (14)	0.391 (5)	1.073 (2)	0.088 (10)*
H16B	0.7894 (15)	0.187 (5)	1.123 (3)	0.098 (11)*
H16C	0.8041 (16)	0.224 (4)	1.016 (2)	0.090 (10)*
C11	0.09950 (3)	0.43921 (6)	0.27475 (3)	0.04379 (16)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0670 (12)	0.0325 (8)	0.0274 (8)	-0.0044 (7)	0.0165 (7)	-0.0009 (6)
N2	0.0657 (12)	0.0327 (9)	0.0367 (8)	-0.0027 (8)	0.0175 (8)	-0.0005 (6)
N3	0.0599 (10)	0.0343 (8)	0.0265 (7)	-0.0089 (7)	0.0148 (7)	-0.0013 (6)
N4	0.0803 (14)	0.0417 (10)	0.0252 (8)	-0.0128 (9)	0.0183 (8)	-0.0025 (7)
N5	0.0803 (13)	0.0352 (9)	0.0309 (9)	-0.0046 (8)	0.0204 (8)	-0.0054 (7)
C1	0.0566 (12)	0.0327 (10)	0.0293 (9)	-0.0112 (8)	0.0145 (8)	-0.0028 (7)
C2	0.0607 (13)	0.0339 (10)	0.0364 (10)	-0.0081 (9)	0.0159 (9)	-0.0002 (8)
C3	0.0783 (16)	0.0302 (11)	0.0424 (11)	-0.0016 (10)	0.0238 (11)	-0.0014 (8)
C4	0.0688 (15)	0.0392 (12)	0.0497 (12)	0.0012 (10)	0.0281 (11)	0.0033 (9)
C5	0.0690 (15)	0.0368 (12)	0.0512 (12)	0.0049 (10)	0.0277 (11)	0.0024 (9)
C6	0.0643 (15)	0.0448 (13)	0.0566 (13)	0.0088 (11)	0.0275 (11)	0.0079 (10)
C7	0.0701 (16)	0.0351 (12)	0.0564 (13)	0.0071 (10)	0.0311 (12)	0.0022 (9)
C8	0.0591 (14)	0.0414 (12)	0.0627 (14)	0.0105 (10)	0.0319 (12)	0.0098 (10)
C9	0.0664 (15)	0.0318 (11)	0.0577 (13)	0.0048 (9)	0.0304 (11)	0.0050 (9)
C10	0.0613 (15)	0.0377 (12)	0.0659 (14)	0.0121 (10)	0.0343 (12)	0.0115 (10)
C11	0.0645 (15)	0.0336 (11)	0.0606 (13)	0.0040 (9)	0.0320 (12)	0.0060 (9)
C12	0.0586 (14)	0.0367 (12)	0.0704 (15)	0.0084 (10)	0.0351 (12)	0.0098 (10)
C13	0.0647 (15)	0.0343 (11)	0.0644 (14)	0.0045 (10)	0.0312 (12)	0.0078 (9)
C14	0.0554 (14)	0.0369 (12)	0.0790 (16)	0.0094 (10)	0.0317 (12)	0.0141 (10)
C15	0.0630 (16)	0.0485 (15)	0.0837 (18)	0.0079 (12)	0.0273 (14)	0.0217 (13)
C16	0.0629 (19)	0.069 (2)	0.110 (3)	0.0094 (15)	0.0109 (18)	0.0388 (19)
Cl1	0.0688 (3)	0.0359 (3)	0.0283 (2)	0.0019 (2)	0.01565 (19)	0.00279 (16)

Geometric parameters (Å, °)

N1—C1	1.332 (2)	C8—C9	1.514 (3)
N1—N2	1.391 (2)	C8—H8A	0.97 (3)
N1—H1	0.86 (3)	C8—H8B	1.03 (3)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C2	1.295 (3)	C9—C10	1.514 (4)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C1	1.356 (2)	С9—Н9А	0.98 (3)
	N3—C2	1.372 (3)	С9—Н9В	1.00 (2)
N4—H4C 0.91 (3) C10—H10A 0.97 (3) N4—H4D 0.98 (3) C10—H10B 0.99 (3) N5—C1 1.31 (3) C11—C12 1.512 (4) N5—C3 1.466 (3) C11—H11A 0.99 (3) N5—H5 0.86 (3) C11—H11B 0.94 (3) C2—H2 0.98 (3) C12—C13 1.514 (3) C3—H3A 0.98 (2) C13—H13A 0.99 (3) C3—H3B 0.98 (2) C13—H13A 0.99 (3) C4—H4A 0.97 (2) C13—H13A 0.99 (3) C4—H4A 0.97 (2) C13—H13A 0.99 (3) C5—H5A 1.03 (3) C14—H14A 0.98 (3) C5—H5A 1.03 (3) C14—H14B 1.01 (3) C5—H5A 1.03 (3) C15—H15A 0.99 (3) C6—H6A 1.00 (3) C15—H15A 0.99 (3) C6—H6A 1.00 (3) C15—H15B 0.98 (3) C1—N1—N2 H11.84 (16) C9—C8—H8B 109.2 (14) C1—N1—N2 H11.84 (16) C9—C8—H8B <td< td=""><td>N3—N4</td><td>1.409 (2)</td><td>C10—C11</td><td>1.518 (3)</td></td<>	N3—N4	1.409 (2)	C10—C11	1.518 (3)
N4—H4D 0.98 (3) C10—H10B 0.99 (3) N5—C1 1.311 (3) C11—C12 1.512 (4) N5—C3 1.466 (3) C11—H11A 0.99 (3) N5—H5 0.86 (3) C11—H11B 0.94 (3) C2—H2 0.98 (3) C12—C13 1.514 (3) C3—C4 1.514 (3) C12—H12A 0.99 (3) C3—H3A 0.98 (2) C13—C14 1.513 (4) C4—C5 1.522 (3) C13—H13A 0.99 (3) C4—H4A 0.97 (2) C13—H13B 0.96 (3) C4—H4B 1.00 (2) C14—C15 1.518 (4) C5—C6 1.518 (4) C14—H14B 1.01 (3) C5—H5B 0.95 (2) C15—C16 1.503 (4) C6—H6B 1.00 (3) C16—H16A 1.04 (3) C7—C8 1.519 (4) C16—H16B 0.95 (4) C7—H7B 0.97 (3) C16—H16C 0.99 (3) C6—H6B 1.00 (3) C16—H16B 109.2 (15) C1—N1—N2 111.84 (16) C9—C8—H8B 106	N4—H4C	0.91 (3)	С10—Н10А	0.97 (3)
	N4—H4D	0.98 (3)	С10—Н10В	0.99 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5—C1	1.311 (3)	C11—C12	1.512 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5—C3	1.466 (3)	C11—H11A	0.99 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5—H5	0.86 (3)	С11—Н11В	0.94 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—H2	0.98 (3)	C12—C13	1.514 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—C4	1.514 (3)	С12—Н12А	0.99 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—H3A	0.98 (2)	C12—H12B	0.98 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—H3B	0.98 (2)	C13—C14	1.513 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.523 (3)	С13—Н13А	0.99 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4A	0.97 (2)	С13—Н13В	0.96 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4B	1.00 (2)	C14—C15	1.518 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.518 (4)	C14—H14A	0.98 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—H5A	1.03 (3)	C14—H14B	1.01 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—H5B	0.95 (2)	C15—C16	1.503 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7	1.517 (3)	С15—Н15А	0.99 (3)
C6—H6B1.00 (3)C16—H16A1.04 (3)C7—C81.519 (4)C16—H16A1.04 (3)C7—C70.97 (3)C16—H16B0.95 (4)C7—H7A0.97 (3)C16—H16C0.99 (3)C7—H7B0.98 (2)C1C1C1—N1—N2111.84 (16)C9—C8—H8B107.2 (13)N2—N1—H1128.3 (16)C7—C8—H8B106 (2)C2—N2—N1104.02 (16)C10—C9—C8114.30 (19)C1—N3—C2107.54 (15)C10—C9—H9A109.2 (15)C1—N3—N4121.93 (17)C8—C9—H9A111.4 (16)C2—N3—N4130.53 (17)C10—C9—H9B109.8 (13)N3—N4—H4D107.8 (18)H9A—C9—H9B103.1 (19)H4C—N4—H4D111 (2)C9—C10—C11114.61 (19)C1—N5—C3122.27 (17)C9—C10—H10A109.8 (15)C3—N5—H5121.1 (17)C9—C10—H10B109.0 (15)N5—C1—N1128.46 (18)C11—C10—H10B105 (2)N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2122.8 (15)C10—C11—H11A105.6 (17)N3—C2—H2122.8 (15)C10—C11—H11A105.6 (17)N3—C2—H2122.8 (15)C12—C11—H11B109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B107.2 (2C4—C3—H3A106.1 (14)H11A—C12—C13114.32 (19)	C6—H6A	1.00 (3)	C15—H15B	0.98 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—Н6В	1.00 (3)	С16—Н16А	1.04 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C8	1.519 (4)	C16—H16B	0.95 (4)
C7—H7B $0.98 (2)$ C1—N1—N2111.84 (16)C9—C8—H8B109.9 (14)C1—N1—H1128.3 (16)C7—C8—H8B107.2 (13)N2—N1—H1119.8 (16)H8A—C8—H8B106 (2)C2—N2—N1104.02 (16)C10—C9—C8114.30 (19)C1—N3—C2107.54 (15)C10—C9—H9A109.2 (15)C1—N3—N4121.93 (17)C8—C9—H9A109.8 (13)N3—N4130.53 (17)C10—C9—H9B108.4 (13)N3—N4—H4C106.2 (17)C8—C9—H9B108.4 (13)N3—N4—H4D107.8 (18)H9A—C9—H9B103.1 (19)H4C—N4—H4D111 (2)C9—C10—C11114.61 (19)C1—N5—C3122.27 (17)C9—C10—H10A109.8 (15)C3—N5—H5121.1 (17)C9—C10—H10B109.0 (15)N5—C1—N1128.46 (18)C11—C10—H10B105 (2)N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2125.8 (15)C10—C11—H11A107.6 (16)N2—C2—H2125.8 (17)C10—C11—H11B109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B107.(2)N3—C2—H2125.8 (17)C10—C11—H11B107.(2)N3—C2—H3A106.1 (14)H11A—C11—H11B107.(2)	С7—Н7А	0.97 (3)	C16—H16C	0.99 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—Н7В	0.98 (2)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—N2	111.84 (16)	С9—С8—Н8В	109.9 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—H1	128.3 (16)	C7—C8—H8B	107.2 (13)
C2-N2-N1104.02 (16)C10-C9-C8114.30 (19)C1-N3-C2107.54 (15)C10-C9-H9A109.2 (15)C1-N3-N4121.93 (17)C8-C9-H9A111.4 (16)C2-N3-N4130.53 (17)C10-C9-H9B109.8 (13)N3-N4-H4C106.2 (17)C8-C9-H9B108.4 (13)N3-N4-H4D107.8 (18)H9A-C9-H9B103.1 (19)H4C-N4-H4D111 (2)C9-C10-C11114.61 (19)C1-N5-C3122.27 (17)C9-C10-H10A107.9 (15)C3-N5-H5116.5 (17)C11-C10-H10B109.8 (15)N5-C1-N1128.46 (18)C11-C10-H10B105 (2)N1-C1-N3105.16 (17)C12-C11-C10114.62 (19)N2-C2-H2125.8 (15)C10-C11-H11A107.6 (16)N2-C2-H2122.8 (15)C12-C11-H11B109.0 (15)N5-C3-C4112.58 (17)C10-C11-H11B108.1 (14)N5-C3-H3A106.1 (14)H1A-C11-H11B107 (2)	N2—N1—H1	119.8 (16)	H8A—C8—H8B	106 (2)
C1N3C2107.54 (15)C10C9H9A109.2 (15)C1N3N4121.93 (17)C8C9H9A111.4 (16)C2N3N4130.53 (17)C10C9H9B109.8 (13)N3N4H4C106.2 (17)C8C9H9B108.4 (13)N3N4H4D107.8 (18)H9AC9H9B103.1 (19)H4CN4H4D111 (2)C9C10C11114.61 (19)C1N5C3122.27 (17)C9C10H10A107.9 (15)C1N5H5116.5 (17)C11C10H10B109.0 (15)N5C1N1128.46 (18)C11C10H10B100.1 (15)N5C1N3126.38 (17)H10AC10H10B105 (2)N1C1N3105.16 (17)C12C11C10114.62 (19)N2C2N3111.45 (19)C12C11H11A107.6 (16)N2C2H2122.8 (15)C10C11H11B109.0 (15)N5C3C4112.58 (17)C10C11H11B108.1 (14)N5C3H3A106.1 (14)H11AC11H11B107 (2)C4C3H3A110.5 (14)C11C12C13114.32 (19)	C2—N2—N1	104.02 (16)	С10—С9—С8	114.30 (19)
C1N3N4121.93 (17)C8C9H9A111.4 (16)C2N3N4130.53 (17)C10C9H9B109.8 (13)N3N4H4C106.2 (17)C8C9H9B108.4 (13)N3N4H4D107.8 (18)H9AC9H9B103.1 (19)H4CN4H4D111 (2)C9C10C11114.61 (19)C1N5C3122.27 (17)C9C10H10A107.9 (15)C1N5H5116.5 (17)C11C10H10A109.8 (15)C3N5H5121.1 (17)C9C10H10B100.0 (15)N5C1N1128.46 (18)C11C10H10B105 (2)N1C1N3105.16 (17)C12C11C10114.62 (19)N2C2N3111.45 (19)C12C11H11A107.6 (16)N2C2H2125.8 (15)C10C11H11B109.0 (15)N5C3C4112.58 (17)C10C11H11B109.0 (15)N5C3H3A106.1 (14)H11AC11H11B107 (2)C4C3H3A110.5 (14)C11C12C13114.32 (19)	C1—N3—C2	107.54 (15)	С10—С9—Н9А	109.2 (15)
C2-N3-N4130.53 (17)C10-C9-H9B109.8 (13)N3-N4-H4C106.2 (17)C8-C9-H9B108.4 (13)N3-N4-H4D107.8 (18)H9A-C9-H9B103.1 (19)H4C-N4-H4D111 (2)C9-C10-C11114.61 (19)C1-N5-C3122.27 (17)C9-C10-H10A107.9 (15)C1-N5-H5116.5 (17)C11-C10-H10A109.8 (15)C3-N5-H5121.1 (17)C9-C10-H10B109.0 (15)N5-C1-N1128.46 (18)C11-C10-H10B105 (2)N1-C1-N3105.16 (17)C12-C11-C10114.62 (19)N2-C2-H2125.8 (15)C10-C11-H11A107.6 (16)N2-C2-H2125.8 (15)C10-C11-H11B109.0 (15)N5-C3-C4112.58 (17)C10-C11-H11B108.1 (14)N5-C3-H3A106.1 (14)H11A-C11-H11B107 (2)C4-C3-H3A110.5 (14)C11-C12-C13114.32 (19)	C1—N3—N4	121.93 (17)	С8—С9—Н9А	111.4 (16)
N3-N4-H4C106.2 (17)C8-C9-H9B108.4 (13)N3-N4-H4D107.8 (18)H9A-C9-H9B103.1 (19)H4C-N4-H4D111 (2)C9-C10-C11114.61 (19)C1-N5-C3122.27 (17)C9-C10-H10A107.9 (15)C1-N5-H5116.5 (17)C11-C10-H10A109.8 (15)C3-N5-H5121.1 (17)C9-C10-H10B109.0 (15)N5-C1-N1128.46 (18)C11-C10-H10B105 (2)N1-C1-N3105.16 (17)C12-C11-C10114.62 (19)N2-C2-N3111.45 (19)C12-C11-H11A107.6 (16)N2-C2-H2125.8 (15)C10-C11-H11B109.0 (15)N5-C3-C4112.58 (17)C10-C11-H11B108.1 (14)N5-C3-H3A106.1 (14)H11A-C11-H11B107 (2)C4-C3-H3A110.5 (14)C11-C12-C13114.32 (19)	C2—N3—N4	130.53 (17)	С10—С9—Н9В	109.8 (13)
N3—N4—H4D107.8 (18)H9A—C9—H9B103.1 (19)H4C—N4—H4D111 (2)C9—C10—C11114.61 (19)C1—N5—C3122.27 (17)C9—C10—H10A107.9 (15)C1—N5—H5116.5 (17)C11—C10—H10A109.8 (15)C3—N5—H5121.1 (17)C9—C10—H10B109.0 (15)N5—C1—N1128.46 (18)C11—C10—H10B105 (2)N1—C1—N3126.38 (17)H10A—C10—H10B105 (2)N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2125.8 (15)C10—C11—H11B109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	N3—N4—H4C	106.2 (17)	С8—С9—Н9В	108.4 (13)
H4C—N4—H4D111 (2)C9—C10—C11114.61 (19)C1—N5—C3122.27 (17)C9—C10—H10A107.9 (15)C1—N5—H5116.5 (17)C11—C10—H10A109.8 (15)C3—N5—H5121.1 (17)C9—C10—H10B109.0 (15)N5—C1—N1128.46 (18)C11—C10—H10B110.1 (15)N5—C1—N3126.38 (17)H10A—C10—H10B105 (2)N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2125.8 (15)C10—C11—H11A109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	N3—N4—H4D	107.8 (18)	H9A—C9—H9B	103.1 (19)
C1—N5—C3122.27 (17)C9—C10—H10A107.9 (15)C1—N5—H5116.5 (17)C11—C10—H10A109.8 (15)C3—N5—H5121.1 (17)C9—C10—H10B109.0 (15)N5—C1—N1128.46 (18)C11—C10—H10B110.1 (15)N5—C1—N3126.38 (17)H10A—C10—H10B105 (2)N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2125.8 (15)C10—C11—H11A109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	H4C—N4—H4D	111 (2)	C9—C10—C11	114.61 (19)
C1—N5—H5116.5 (17)C11—C10—H10A109.8 (15)C3—N5—H5121.1 (17)C9—C10—H10B109.0 (15)N5—C1—N1128.46 (18)C11—C10—H10B110.1 (15)N5—C1—N3126.38 (17)H10A—C10—H10B105 (2)N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2125.8 (15)C10—C11—H11A109.0 (15)N3—C2—H2122.8 (15)C12—C11—H11B109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	C1—N5—C3	122.27 (17)	C9-C10-H10A	107.9 (15)
C3—N5—H5121.1 (17)C9—C10—H10B109.0 (15)N5—C1—N1128.46 (18)C11—C10—H10B110.1 (15)N5—C1—N3126.38 (17)H10A—C10—H10B105 (2)N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2125.8 (15)C10—C11—H11A110.5 (17)N3—C2—H2122.8 (15)C12—C11—H11B109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	C1—N5—H5	116.5 (17)	C11—C10—H10A	109.8 (15)
N5—C1—N1128.46 (18)C11—C10—H10B110.1 (15)N5—C1—N3126.38 (17)H10A—C10—H10B105 (2)N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2125.8 (15)C10—C11—H11A110.5 (17)N3—C2—H2122.8 (15)C12—C11—H11B109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	C3—N5—H5	121.1 (17)	C9—C10—H10B	109.0 (15)
N5—C1—N3126.38 (17)H10A—C10—H10B105 (2)N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2125.8 (15)C10—C11—H11A110.5 (17)N3—C2—H2122.8 (15)C12—C11—H11B109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	N5—C1—N1	128.46 (18)	C11—C10—H10B	110.1 (15)
N1—C1—N3105.16 (17)C12—C11—C10114.62 (19)N2—C2—N3111.45 (19)C12—C11—H11A107.6 (16)N2—C2—H2125.8 (15)C10—C11—H11A110.5 (17)N3—C2—H2122.8 (15)C12—C11—H11B109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	N5—C1—N3	126.38 (17)	H10A—C10—H10B	105 (2)
N2—C2—N3 111.45 (19) C12—C11—H11A 107.6 (16) N2—C2—H2 125.8 (15) C10—C11—H11A 110.5 (17) N3—C2—H2 122.8 (15) C12—C11—H11B 109.0 (15) N5—C3—C4 112.58 (17) C10—C11—H11B 108.1 (14) N5—C3—H3A 106.1 (14) H11A—C11—H11B 107 (2) C4—C3—H3A 110.5 (14) C11—C12—C13 114.32 (19)	N1—C1—N3	105.16 (17)	C12—C11—C10	114.62 (19)
N2—C2—H2 125.8 (15) C10—C11—H11A 110.5 (17) N3—C2—H2 122.8 (15) C12—C11—H11B 109.0 (15) N5—C3—C4 112.58 (17) C10—C11—H11B 108.1 (14) N5—C3—H3A 106.1 (14) H11A—C11—H11B 107 (2) C4—C3—H3A 110.5 (14) C11—C12—C13 114.32 (19)	N2—C2—N3	111.45 (19)	C12—C11—H11A	107.6 (16)
N3—C2—H2122.8 (15)C12—C11—H11B109.0 (15)N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	N2—C2—H2	125.8 (15)	C10-C11-H11A	110.5 (17)
N5—C3—C4112.58 (17)C10—C11—H11B108.1 (14)N5—C3—H3A106.1 (14)H11A—C11—H11B107 (2)C4—C3—H3A110.5 (14)C11—C12—C13114.32 (19)	N3—C2—H2	122.8 (15)	C12—C11—H11B	109.0 (15)
N5—C3—H3A 106.1 (14) H11A—C11—H11B 107 (2) C4—C3—H3A 110.5 (14) C11—C12—C13 114.32 (19)	N5—C3—C4	112.58 (17)	C10-C11-H11B	108.1 (14)
C4—C3—H3A 110.5 (14) C11—C12—C13 114.32 (19)	N5—C3—H3A	106.1 (14)	H11A—C11—H11B	107 (2)
	С4—С3—НЗА	110.5 (14)	C11—C12—C13	114.32 (19)

N5—C3—H3B	109.0 (13)	C11—C12—H12A	108.6 (15)
C4—C3—H3B	108.1 (13)	C13—C12—H12A	110.5 (15)
НЗА—СЗ—НЗВ	110.6 (18)	C11—C12—H12B	108.9 (16)
C3—C4—C5	113.84 (18)	C13—C12—H12B	109.7 (16)
C3—C4—H4A	109.9 (14)	H12A—C12—H12B	104 (2)
C5—C4—H4A	110.0 (14)	C14—C13—C12	114.73 (19)
C3—C4—H4B	108.2 (13)	C14—C13—H13A	111.1 (15)
C5—C4—H4B	108.3 (13)	C12—C13—H13A	108.0 (16)
H4A—C4—H4B	106.3 (19)	C14—C13—H13B	107.1 (15)
C6—C5—C4	112.28 (19)	C12—C13—H13B	108.8 (15)
С6—С5—Н5А	110.3 (15)	H13A—C13—H13B	107 (2)
С4—С5—Н5А	110.3 (15)	C13—C14—C15	114.5 (2)
С6—С5—Н5В	109.5 (14)	C13—C14—H14A	107.3 (15)
С4—С5—Н5В	108.4 (14)	C15—C14—H14A	110.8 (15)
H5A—C5—H5B	106 (2)	C13—C14—H14B	109.3 (14)
C7—C6—C5	115.3 (2)	C15—C14—H14B	107.9 (15)
С7—С6—Н6А	109.5 (16)	H14A—C14—H14B	107 (2)
С5—С6—Н6А	110.2 (16)	C16—C15—C14	113.8 (2)
С7—С6—Н6В	109.5 (15)	C16—C15—H15A	111.1 (16)
С5—С6—Н6В	105.9 (15)	C14—C15—H15A	107.2 (17)
H6A—C6—H6B	106 (2)	C16—C15—H15B	110.8 (16)
C6—C7—C8	113.87 (19)	C14—C15—H15B	108.4 (16)
С6—С7—Н7А	109.1 (16)	H15A—C15—H15B	105 (2)
С8—С7—Н7А	109.5 (15)	C15—C16—H16A	114.1 (17)
С6—С7—Н7В	108.8 (15)	C15—C16—H16B	110 (2)
С8—С7—Н7В	108.6 (15)	H16A—C16—H16B	106 (3)
H7A—C7—H7B	107 (2)	C15—C16—H16C	111 (2)
C9—C8—C7	114.95 (19)	H16A—C16—H16C	108 (3)
С9—С8—Н8А	110.1 (16)	H16B—C16—H16C	108 (3)
С7—С8—Н8А	107.7 (16)		
C1—N1—N2—C2	-0.3 (2)	N5—C3—C4—C5	174.31 (18)
C3—N5—C1—N1	-2.9 (3)	C3—C4—C5—C6	-177.71 (19)
C3—N5—C1—N3	177.3 (2)	C4—C5—C6—C7	174.63 (19)
N2—N1—C1—N5	-179.6 (2)	C5—C6—C7—C8	177.98 (19)
N2—N1—C1—N3	0.3 (2)	C6—C7—C8—C9	176.51 (19)
C2—N3—C1—N5	179.7 (2)	C7—C8—C9—C10	179.65 (18)
N4—N3—C1—N5	-0.7 (3)	C8—C9—C10—C11	179.65 (19)
C2—N3—C1—N1	-0.1 (2)	C9—C10—C11—C12	179.90 (19)
N4—N3—C1—N1	179.50 (17)	C10-C11-C12-C13	-178.78 (19)
N1—N2—C2—N3	0.2 (2)	C11—C12—C13—C14	180.0 (2)
C1—N3—C2—N2	0.0 (2)	C12—C13—C14—C15	-179.3 (2)
N4—N3—C2—N2	-179.61 (19)	C13—C14—C15—C16	178.8 (3)
C1—N5—C3—C4	-77.5 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
0.86 (3)	2.19 (3)	3.0423 (17)	172 (2)
0.91 (3)	2.50 (3)	3.3301 (19)	153 (2)
0.98 (3)	2.33 (3)	3.253 (2)	156 (3)
0.86 (3)	2.42 (3)	3.1700 (17)	146 (2)
	<i>D</i> —H 0.86 (3) 0.91 (3) 0.98 (3) 0.86 (3)	D—H H···A 0.86 (3) 2.19 (3) 0.91 (3) 2.50 (3) 0.98 (3) 2.33 (3) 0.86 (3) 2.42 (3)	D—H H···A D···A 0.86 (3) 2.19 (3) 3.0423 (17) 0.91 (3) 2.50 (3) 3.3301 (19) 0.98 (3) 2.33 (3) 3.253 (2) 0.86 (3) 2.42 (3) 3.1700 (17)

Symmetry codes: (i) *x*, -*y*+3/2, *z*-1/2; (ii) -*x*, -*y*+1, -*z*; (iii) *x*, -*y*+1/2, *z*-1/2.