

ISSN 2414-3146

Received 18 October 2016 Accepted 26 October 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; cyclized oxadiazole derivative; hydrogen bonding; C—H $\cdots\pi$ interactions; π – π interactions.

CCDC reference: 1506092

Structural data: full structural data are available from iucrdata.iucr.org

5-(2-Methylfuran-3-yl)-*N*-phenyl-1,3,4-oxadiazol-2amine

Santosh Paswan,^a Manoj K. Bharty,^a* Sushil K. Gupta,^b Ray J. Butcher^c and Jerry P. Jasinski^d

^aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, ^bSchool of Studies in Chemistry, Jiwaji University, Gwalior 47011, India, ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA. *Correspondence e-mail: manoj_vns2005@yahoo.co.in

In the title compound, $C_{13}H_{11}N_3O_2$, the furan ring is disordered over two orientations, with occupancies of 0.902 (2) and 0.098 (2). The dihedral angles between the central oxadiazole ring and the pendant phenyl ring and the furan ring (major disorder component) are 10.12 (11) and 1.76 (15)°, respectively. A short intramolecular $C-H\cdots O$ contact generates an S(6) ring. In the crystal, inversion dimers linked by pairs of $N-H\cdots N$ hydrogen bonds generate $R_2^2(8)$ loops. The dimers are linked by $C-H\cdots \pi$ and $\pi-\pi$ interactions [range of centroid–centroid distances = 3.301 (7)–3.689 (1) Å], generating a three-dimensional network.

Structure description

The coordination chemistry of nitrogen–oxygen containing heterocyclic ligands such as 1,3,4-oxadiazoles and their derivatives containing the HNCO moiety is an emerging and rapidly developing area of research (Wang *et al.*, 2007; Foroumadi *et al.*, 2001; Bharty *et al.*, 2012). 1,3,4-Oxadiazole derivatives have also been the subject of extensive study in the recent years because of their diverse biological activities (Luo *et al.*, 2016; Aboraia *et al.*, 2006; El-Emam *et al.*, 2004; Bharty *et al.*, 2015). These molecules can act as spacers in coordination compounds, resulting in intermolecular cooperative interactions (Du & Zhao, 2004). In the presence of a base, the cyclization of acyldithiocarbazate esters to the corresponding 1,3,4-oxadiazole is reported (Foks *et al.*, 2002). Several other methods are available for the synthesis of oxadiazoles from acyclic precursors. These include oxidative cyclization of acylhydrazones (Jedlovská & Leško, 1994) and acylthiosemicarbazides (Omar *et al.*, 1996, Paswan *et al.*, 2015). It is reported that in the presence of a strong acid,

Figure 1

A reaction scheme showing the synthesis of the title compound. For clarity in this and subsequent Figures, only the major disorder component of the furan ring is shown.

an *N*-acylhydrazine carbodithioate is converted to a thiadiazole whereas in the presence of weak acid or base or on complexation they can be cyclized to the corresponding oxadiazole (Reid & Heindel, 1976; Jasinski *et al.*, 2011). Previously, we have reported 1,3,4-thiadiazoles that were prepared by the reaction of a substituted thiosemicarbazide with manganese(II) nitrate, in which the substituted thiosemicarbazide cyclized to the corresponding thiadiazole *via* loss of H₂O (Dani *et al.*, 2014). However, in the present case, the substituted thiosemicarbazide is cyclized to (2-methyl)-5furan-2-yl-[1,3,4]-oxadiazole-2-yl)phenylamine in the presence of manganese(II) acetate in this case with loss of H₂S (Fig. 1). Thus, the Mn^{II} acetate behaves here as a weak acid.

In the title compound (Fig. 2), the mean plane of the central oxadiazole ring (O1/C7/N2/N3/C8) subtends dihedral angles of 10.12 (11) and 1.76 (15)° with the furan (O2/C12/C9/C10/C11) and phenyl rings (C1–C6), respectively. The furan and phenyl rings are inclined to one another at an angle of 9.92 (14)°. Intramolecular C2–H2A···O1 and C13–H13A···O1 hydrogen bonds generate S(6) rings, contributing to the planarity of the whole molecule. The C–N bond lengths [N2–C7 1.2947 (19) and N3–C8 1.270 (2) Å] are similar to the standard C—N distance of 1.28 Å. The C–O and C–N distances found within the oxadiazole ring are intermediate between single and double bonds, suggesting considerable delocalization in this ring. Deviation of the bond angles from

$\begin{array}{c} \begin{array}{c} \begin{array}{c} C4 \\ C2 \\ C5 \\ C6 \\ C1 \\ N1 \\ C7 \\ N2 \end{array} \begin{array}{c} C13 \\ C13 \\ C12 \\ C12 \\ C12 \\ C12 \\ C11 \\ C11 \\ C11 \\ C2 \\ C11 \\$

Figure 2

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen bonds are drawn as dashed lines.

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg3, Cg2 are the centroids of the benzene (C1–C6) and furan (O2/C9–C12) rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdot \cdot \cdot N2^{i}$	0.92 (2)	1.97 (2)	2.885 (2)	171 (2)
$C2-H2A\cdots O1$	0.95	2.31	2.930 (2)	122
C13-H13A···O1	0.98	2.46	3.151 (3)	127
$C13A - H13D \cdots N3$	0.98	2.65	3.41 (3)	134
$C5-H5A\cdots Cg3^{ii}$	0.95	2.89	3.655 (4)	138
$C13A - H13F \cdots Cg2^{iii}$	0.98	2.80	3.612 (8)	141
Symmetry codes: (i)	-r + 1 - v	-7 ± 1 (ii)	r - 1 - v -	$1 - \frac{1}{2}$ (iii)

 $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

 120° in the oxadiazole ring is a common feature in five-membered rings.

In the crystal, pairs of intermolecular N-H···N hydrogen bonds between the oxadiazole ring and the amine group form dimers with an $R_2^2(8)$ ring motif (Fig. 3, Table 1). Molecules are further linked by two C-H··· π interactions (Fig. 4 and Table 1) involving the (O2/C9-C12) and (C1-C6) rings. In addition, weak π - π stacking interactions [Cg1···Cg1(-x, -y,1 - z) = 3.301 (7) Å; Cg1···Cg2(x, -1 + y, z) = 3.612 (5) Å; Cg2···Cg2 (1/2 - x, 1/2 - y, 1 - z) = 3.689 (1) Å; Cg1, Cg2and Cg3 are the centroids of the O1/C7-C8/N2-N3, O2/C9-C12 and C1-C6 rings respectively] are also present and influence the crystal packing (Fig. 5). These contacts lead to a three-dimensional structure.

Synthesis and crystallization

A mixture of 2-methyl furan-3-carboxylic acid hydrazide (1.40 g, 10.0 mmol) and phenyl isothiocyanate (1.2 ml, 10.0 mmol) in absolute ethanol (20.0 ml) was refluxed for 2 h. The solid 4-phenyl-1-(2-methyl-3-furan) thiosemicarbazide obtained upon cooling was filtered off and washed with water and ether (50:50 ν/ν). A mixture of a methanolic solution of 4-phenyl-1-(2-methyl-3-furan)thiosemicarbazide (0.275 g,

The crystal packing of the title compound, viewed along the *b* axis. Dashed lines indicate weak intermolecular N-H \cdots N hydrogen bonding between the oxadiazole ring and the amine group, forming dimers with an $R_2^2(8)$ ring motif.

Figure 4 A view of the packing along the *b* axis, showing the $C-H\cdots\pi$ contacts.

1.00 mmol) and Mn(OAc)₂·4H₂O (0.251 g, 1.00 mmol) was stirred for 2 h. The clear orange-red solution obtained was filtered off and kept for crystallization, pale orange-red crystals of title compound suitable for X-ray analyses were obtained after eight days (Fig. 1). Yield: 60%. m.p. 205°C. Analysis: found. C, 64.35; H, 4.30; N, 17.55%. Calculated for C₁₃H₁₁N₃O₂ (241.25): C, 64.71; H, 4.59; N, 17.41%. IR (KBr, cm⁻¹): ν (N-H) 3244; ν (C=N) 1601; ν (N-N) 1061 s. ¹H NMR (DMSO-*d*₆), δ [p.p.m.] = 10.05 (*s*,1*H*, NH), 7.52–7.13 (*m*, 3H, furan), 7.42–6.90 (*m*, 5H, phenyl), 2.46 (*s*, 3H, CH₃). ¹³C NMR (DMSO-*d*₆): δ [p.p.m.] = 163.2 (C7), 157.5 (C8); 139.7

Figure 5 π - π contacts for the title compound.

Experimental details.	
Crystal data	
Chemical formula	$C_{13}H_{11}N_{3}O_{2}$
M_r	241.25
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	173
a, b, c (Å)	20.8964 (16), 5.9156 (3), 21.9821 (17)
β(°)	120.415 (10)
$V(Å^3)$	2343.4 (3)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.39\times0.17\times0.15$
Data collection	
Diffractometer	Agilent Xcalibur Eos Gemini
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.814, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8528, 3895, 2403
R _{int}	0.021
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.760
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.057, 0.167, 1.03
No. of reflections	3895
No. of parameters	188
No. of restraints	51
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m A}^{-3})$	0.21, -0.19

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).

(C12), 128.4 (C11), 126.5 (C9), 125.5 (C10) (furan C); 110.6–141.1 (phenyl C), 13.8 (C13).

Refinement

Table 0

Crystal data, data collection and structure refinement details are summarized in Table 2. All atoms of the furan ring are disordered over two positions with occupancies that refine to 0.902 (2) and 0.098 (2).

Acknowledgements

MKB is thankful to the Science and Engineering Research Board, India, for the award of a project (No. SB/EMEQ-150/ 2014). JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

- Aboraia, A. S., Abdel-Rahman, H. M., Mahfouz, N. H. & El-Gendy, M. A. (2006). *Bioorg. Med. Chem.* 14, 1236–1246.
- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Bharty, M. K., Bharti, A., Dani, R. K., Dulare, R., Bharati, P. & Singh, N. K. (2012). J. Mol. Struct. 1011, 34–41.
- Bharty, M. K., Dani, R. K., Nath, P., Bharti, A., Singh, N. K., Prakash, O., Singh, R. K. & Butcher, R. J. (2015). *Polyhedron*, **98**, 84–95.

- Dani, R. K., Bharty, M. K., Kushawaha, S. K., Prakash, O., Sharma, V. K., Kharwar, R. N., Singh, R. K. & Singh, N. K. (2014). *Polyhedron*, 81, 261–272.
- Du, M. & Zhao, X.-J. (2004). J. Mol. Struct. 694, 235-240.
- El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.
- Foks, H., Mieczkowska, J., Janowiec, M., Zwolska, Z. & Andrzejczyk, Z. (2002). Chem. Heterocycl. Compd. 38, 810–816.
- Foroumadi, A., Mirzaei, M. & Shafiee, A. (2001). *Pharmazie*, **56**, 610–612.
- Jasinski, J. P., Bharty, M. K., Singh, N. K., Kushwaha, S. K. & Butcher, R. J. (2011). J. Chem. Crystallogr. 41, 6–11.
- Jedlovská, E. & Leško, J. (1994). Synth. Commun. 24, 1879-1885.

- Luo, Y., Liu, Z.-J., Chen, G., Shi, J., Li, J.-R. & Zhu, H.-L. (2016). *Med. Chem. Commun.* 7, 263–271.
- Omar, F. A., Mahfouz, N. M. & Rahman, M. A. (1996). Eur. J. Med. Chem. 31, 819–825.
- Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, 0880–0881.
- Reid, J. R. & Heindel, N. D. (1976). J. Heterocycl. Chem. 13, 925-926.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, Y. T., Tang, G. M., Ma, W. Y. & Wan, W. Z. (2007). *Polyhedron*, **26**, 782–790.

full crystallographic data

IUCrData (2016). 1, x161724 [https://doi.org/10.1107/S2414314616017247]

5-(2-Methylfuran-3-yl)-N-phenyl-1,3,4-oxadiazol-2-amine

Santosh Paswan, Manoj K. Bharty, Sushil K. Gupta, Ray J. Butcher and Jerry P. Jasinski

5-(2-Methylfuran-3-yl)-N-phenyl-1,3,4-oxadiazol-2-amine

Crystal data

C13H11N3O2 $M_r = 241.25$ Monoclinic, C2/ca = 20.8964 (16) Åb = 5.9156(3) Å c = 21.9821 (17) Å $\beta = 120.415 \ (10)^{\circ}$ V = 2343.4 (3) Å³ Z = 8

Data collection

Agilent Xcalibur Eos Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Detector resolution: 16.0416 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\rm min} = 0.814, T_{\rm max} = 1.000$

Refinement

Refinement on F^2 Hydrogen site location: mixed Least-squares matrix: full H atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.057$ and constrained refinement $wR(F^2) = 0.167$ $w = 1/[\sigma^2(F_o^2) + (0.0691P)^2 + 0.7747P]$ S = 1.03where $P = (F_0^2 + 2F_c^2)/3$ 3895 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$ 188 parameters $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 51 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles: correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 1008 $D_{\rm x} = 1.368 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1741 reflections $\theta = 4.4 - 31.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 173 KPrismatic, pale orange-red $0.39 \times 0.17 \times 0.15 \text{ mm}$

8528 measured reflections 3895 independent reflections 2403 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$ $\theta_{\text{max}} = 32.7^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$ $h = -30 \rightarrow 30$ $k = -8 \rightarrow 8$ $l = -33 \rightarrow 32$

	x	y	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.53261 (6)	0.43941 (18)	0.42073 (5)	0.0470 (3)	
N1	0.45640 (7)	0.1226 (2)	0.40325 (7)	0.0506 (3)	
H1N	0.4489 (10)	0.005 (3)	0.4262 (9)	0.057 (5)*	
N2	0.55136 (7)	0.2429 (2)	0.51379 (6)	0.0484 (3)	
N3	0.60380 (7)	0.4184 (2)	0.53713 (7)	0.0514 (3)	
C1	0.40324 (8)	0.1415 (3)	0.33125 (7)	0.0441 (3)	
C2	0.39829 (11)	0.3187 (3)	0.28835 (9)	0.0670 (5)	
H2A	0.4326	0.4404	0.3069	0.080*	
C3	0.34293 (12)	0.3180 (4)	0.21804 (10)	0.0761 (6)	
H3A	0.3399	0.4398	0.1885	0.091*	
C4	0.29263 (10)	0.1458 (4)	0.19026 (9)	0.0652 (5)	
H4A	0.2550	0.1474	0.1419	0.078*	
C5	0.29707 (10)	-0.0287 (4)	0.23293 (9)	0.0629 (5)	
H5A	0.2619	-0.1482	0.2142	0.075*	
C6	0.35219 (9)	-0.0330 (3)	0.30314 (8)	0.0545 (4)	
H6A	0.3551	-0.1560	0.3322	0.065*	
C7	0.51143 (8)	0.2623 (3)	0.44590 (7)	0.0424 (3)	
C8	0.59135 (8)	0.5285 (3)	0.48257 (8)	0.0465 (4)	
O2	0.66884 (14)	1.0275 (4)	0.44789 (13)	0.0586 (6)	0.902 (2)
С9	0.63019 (9)	0.7286 (3)	0.48103 (9)	0.0427 (4)	0.902 (2)
C10	0.68975 (12)	0.8339 (4)	0.54232 (11)	0.0531 (5)	0.902 (2)
H10A	0.7102	0.7862	0.5899	0.064*	0.902 (2)
C11	0.71062 (11)	1.0098 (4)	0.51977 (10)	0.0595 (5)	0.902 (2)
H11A	0.7494	1.1106	0.5494	0.071*	0.902 (2)
C12	0.61913 (9)	0.8524 (3)	0.42467 (9)	0.0477 (4)	0.902 (2)
C13	0.56757 (15)	0.8395 (5)	0.34734 (11)	0.0692 (7)	0.902 (2)
H13A	0.5325	0.7151	0.3367	0.104*	0.902 (2)
H13B	0.5959	0.8129	0.3236	0.104*	0.902 (2)
H13C	0.5402	0.9821	0.3306	0.104*	0.902 (2)
O2A	0.6546 (18)	1.057 (4)	0.4397 (12)	0.0586 (6)	0.098 (2)
C9A	0.6013 (8)	0.735 (3)	0.4376 (7)	0.0427 (4)	0.098 (2)
C10A	0.5807 (13)	0.803 (3)	0.3684 (9)	0.0531 (5)	0.098 (2)
H10B	0.5522	0.7164	0.3268	0.064*	0.098 (2)
C11A	0.6069 (10)	1.005 (3)	0.3706 (8)	0.0595 (5)	0.098 (2)
H11B	0.5950	1.0994	0.3313	0.071*	0.098 (2)
C12A	0.6552 (8)	0.873 (3)	0.4795 (7)	0.0477 (4)	0.098 (2)
C13A	0.7071 (16)	0.887 (5)	0.5558 (9)	0.0692 (7)	0.098 (2)
H13D	0.6946	0.7703	0.5798	0.104*	0.098 (2)
H13E	0.7035	1.0362	0.5730	0.104*	0.098 (2)
H13F	0.7578	0.8623	0.5656	0.104*	0.098 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
01	0.0482 (6)	0.0443 (6)	0.0459 (6)	-0.0052 (5)	0.0218 (5)	0.0039 (5)

N1	0.0484 (7)	0.0478 (8)	0.0391 (6)	-0.0095 (6)	0.0100 (6)	0.0062 (5)
N2	0.0426 (6)	0.0444 (7)	0.0432 (7)	-0.0068 (6)	0.0107 (5)	0.0049 (5)
N3	0.0432 (7)	0.0462 (7)	0.0517 (7)	-0.0071 (6)	0.0142 (6)	0.0022 (6)
C1	0.0402 (7)	0.0474 (8)	0.0375 (7)	-0.0003 (6)	0.0143 (6)	0.0014 (6)
C2	0.0646 (11)	0.0627 (11)	0.0479 (9)	-0.0138 (9)	0.0096 (8)	0.0120 (8)
C3	0.0753 (13)	0.0787 (14)	0.0491 (10)	-0.0088 (11)	0.0130 (9)	0.0186 (9)
C4	0.0603 (10)	0.0847 (14)	0.0358 (8)	-0.0021 (10)	0.0133 (7)	0.0004 (8)
C5	0.0600 (10)	0.0728 (12)	0.0442 (9)	-0.0170 (9)	0.0178 (8)	-0.0097 (8)
C6	0.0565 (9)	0.0570 (10)	0.0412 (8)	-0.0096 (8)	0.0184 (7)	0.0001 (7)
C7	0.0405 (7)	0.0390 (7)	0.0428 (7)	-0.0014 (6)	0.0175 (6)	0.0042 (6)
C8	0.0381 (7)	0.0442 (8)	0.0529 (9)	-0.0039 (6)	0.0199 (6)	-0.0035 (7)
O2	0.0619 (15)	0.0533 (10)	0.0601 (9)	-0.0143 (10)	0.0305 (9)	0.0024 (7)
C9	0.0386 (8)	0.0426 (9)	0.0437 (9)	-0.0037 (7)	0.0185 (7)	-0.0017 (7)
C10	0.0490 (11)	0.0551 (13)	0.0472 (10)	-0.0105 (9)	0.0185 (9)	-0.0030 (8)
C11	0.0592 (11)	0.0577 (11)	0.0534 (11)	-0.0206 (9)	0.0224 (9)	-0.0110 (9)
C12	0.0473 (9)	0.0465 (10)	0.0488 (9)	-0.0075 (8)	0.0240 (8)	-0.0018 (7)
C13	0.0665 (15)	0.0825 (17)	0.0459 (12)	-0.0067 (13)	0.0193 (11)	0.0064 (11)
O2A	0.0619 (15)	0.0533 (10)	0.0601 (9)	-0.0143 (10)	0.0305 (9)	0.0024 (7)
C9A	0.0386 (8)	0.0426 (9)	0.0437 (9)	-0.0037 (7)	0.0185 (7)	-0.0017 (7)
C10A	0.0490 (11)	0.0551 (13)	0.0472 (10)	-0.0105 (9)	0.0185 (9)	-0.0030 (8)
C11A	0.0592 (11)	0.0577 (11)	0.0534 (11)	-0.0206 (9)	0.0224 (9)	-0.0110 (9)
C12A	0.0473 (9)	0.0465 (10)	0.0488 (9)	-0.0075 (8)	0.0240 (8)	-0.0018 (7)
C13A	0.0665 (15)	0.0825 (17)	0.0459 (12)	-0.0067 (13)	0.0193 (11)	0.0064 (11)

Geometric parameters (Å, °)

O1—C7	1.3592 (18)	O2—C12	1.370 (3)
O1—C8	1.3938 (18)	C9—C12	1.355 (2)
N1—C7	1.3388 (19)	C9—C10	1.433 (2)
N1-C1	1.4040 (19)	C10—C11	1.318 (3)
N1—H1N	0.919 (19)	C10—H10A	0.9500
N2C7	1.2947 (19)	C11—H11A	0.9500
N2—N3	1.4049 (18)	C12—C13	1.484 (3)
N3—C8	1.270 (2)	C13—H13A	0.9800
C1—C2	1.379 (2)	C13—H13B	0.9800
C1—C6	1.385 (2)	C13—H13C	0.9800
C2—C3	1.384 (2)	O2A—C11A	1.363 (19)
C2—H2A	0.9500	O2A—C12A	1.391 (16)
C3—C4	1.366 (3)	C9A—C12A	1.317 (14)
С3—НЗА	0.9500	C9A—C10A	1.415 (16)
C4—C5	1.366 (3)	C10A—C11A	1.304 (17)
C4—H4A	0.9500	C10A—H10B	0.9500
C5—C6	1.382 (2)	C11A—H11B	0.9500
С5—Н5А	0.9500	C12A—C13A	1.468 (12)
С6—Н6А	0.9500	C13A—H13D	0.9800
C8—C9	1.446 (2)	C13A—H13E	0.9800
C8—C9A	1.649 (15)	C13A—H13F	0.9800
O2—C11	1.369 (3)		

C7—O1—C8	101.65 (11)	C10—C9—C8	124.36 (16)
C7—N1—C1	130.48 (14)	C11—C10—C9	106.53 (19)
C7—N1—H1N	114.2 (11)	C11—C10—H10A	126.7
C1—N1—H1N	114.9 (11)	C9—C10—H10A	126.7
C7—N2—N3	106.47 (12)	C10—C11—O2	110.83 (18)
C8—N3—N2	106.56 (12)	C10—C11—H11A	124.6
C2-C1-C6	119.18 (15)	O2—C11—H11A	124.6
C2-C1-N1	125.04 (15)	C9—C12—O2	108.78 (17)
C6-C1-N1	115.78 (14)	C9—C12—C13	135.13 (18)
C1—C2—C3	119.50 (18)	O2—C12—C13	116.09 (19)
C1—C2—H2A	120.3	C12—C13—H13A	109.5
C3—C2—H2A	120.3	C12—C13—H13B	109.5
C4—C3—C2	121.35 (19)	H13A—C13—H13B	109.5
C4—C3—H3A	119.3	C12—C13—H13C	109.5
С2—С3—НЗА	119.3	H13A—C13—H13C	109.5
C3—C4—C5	119.16 (16)	H13B—C13—H13C	109.5
C3—C4—H4A	120.4	C11A—O2A—C12A	107.1 (15)
C5—C4—H4A	120.4	C12A—C9A—C10A	105.2 (13)
C4—C5—C6	120.62 (17)	C12A—C9A—C8	111.3 (11)
С4—С5—Н5А	119.7	C10A—C9A—C8	142.6 (12)
С6—С5—Н5А	119.7	C11A—C10A—C9A	109.1 (14)
C5—C6—C1	120.18 (17)	C11A—C10A—H10B	125.4
С5—С6—Н6А	119.9	C9A—C10A—H10B	125.4
С1—С6—Н6А	119.9	C10A—C11A—O2A	107.7 (14)
N2—C7—N1	125.19 (14)	C10A—C11A—H11B	126.2
N2-C7-O1	112.65 (13)	O2A—C11A—H11B	126.2
N1	122.14 (13)	C9A—C12A—O2A	108.2 (13)
N3—C8—O1	112.66 (14)	C9A—C12A—C13A	135.1 (16)
N3—C8—C9	126.35 (15)	02A—C12A—C13A	116.3 (16)
01	120.97 (14)	C12A - C13A - H13D	109.5
N3-C8-C9A	156.6 (5)	C12A— $C13A$ — $H13E$	109.5
O1-C8-C9A	90.7 (5)	H13D— $C13A$ — $H13E$	109.5
$C_{11} = 02 = C_{12}$	107.00 (19)	C12A—C13A—H13F	109.5
C_{12} C_{2} C_{12} $C_$	106.85 (16)	H13D—C13A—H13F	109.5
$C_{12} - C_{9} - C_{8}$	128 78 (16)	H13E— $C13A$ — $H13F$	109.5
012 07 00	120.70 (10)		109.0
C7—N2—N3—C8	0.33(17)	01-68-69-610	178 34 (18)
C7 - N1 - C1 - C2	0.8(3)	C12 - C9 - C10 - C11	-0.2(2)
C7 - N1 - C1 - C6	-17843(16)	C8 - C9 - C10 - C11	179 94 (18)
C_{6} C_{1} C_{2} C_{3}	-0.5(3)	C9-C10-C11-O2	0.1(3)
N1 - C1 - C2 - C3	-179.69(18)	$C_{12} = 02 = C_{11} = C_{10}$	0.1(3)
$C_1 - C_2 - C_3 - C_4$	0.4(3)	C10-C9-C12-O2	0.1(3) 0.3(2)
$C_{2} = C_{3} = C_{4} = C_{5}$	0.7(3)	C_{8} C_{9} C_{12} C_{2}	-1799(2)
$C_2 = C_3 = C_4 = C_5 = C_6$	-0.8(3)	C_{10} C_{9} C_{12} C_{12} C_{13}	-179.8(2)
$C_{4} - C_{5} - C_{6} - C_{1}$	0.7(3)	C8 - C9 - C12 - C13	0.0(4)
$C^{2}-C^{1}-C^{6}-C^{5}$	0.7(3)	$C_{11} = 0^2 = C_{12} = C_{13}$	-0.2(3)
$N_1 - C_1 - C_6 - C_5$	170 21 (16)	C11 = 02 = C12 = C3	1700(2)
111 - 01 - 00 - 00	1/2.41(10)	011 - 02 - 012 - 013	1//.7(4)

N3—N2—C7—N1	177.98 (15)	N3—C8—C9A—C12A	4 (2)
N3—N2—C7—O1	-0.07 (17)	O1—C8—C9A—C12A	179.1 (12)
C1—N1—C7—N2	170.37 (16)	N3—C8—C9A—C10A	171 (2)
C1-N1-C7-O1	-11.8(3)	01—C8—C9A—C10A	-14(3)
C8-O1-C7-N2	-0.19(16)	C12A—C9A—C10A—C11A	-16(3)
C8-01-C7-N1	-178.30(14)	C8—C9A—C10A—C11A	176.6 (18)
N2-N3-C8-01	-0.47(17)	C9A—C10A—C11A—O2A	10 (3)
N2—N3—C8—C9	177.97 (15)	C12A—O2A—C11A—C10A	0(4)
N2—N3—C8—C9	173.9 (14)	C10A—C9A—C12A—O2A	16(3)
C7-O1-C8-N3	0.41(17)	C8—C9A—C12A—O2A	-173(2)
	-178 11 (14)	C10A—C9A—C12A—C13A	-172(3)
C7-01-C8-C9A	-177.3(6)	C10A - C7A - C12A - C13A $C8 - C9A - C12A - C13A$ $C114 - C2A - C12A - C13A$	-1(3)
N3-C8-C9-C12 O1-C8-C9-C12 N3-C8-C9-C10	-1/9.81(17) -1.5(3) 0.0(3)	C11A—02A—C12A—C9A C11A—02A—C12A—C13A	-10 (3) 176 (3)
1.0 00 07 010	0.0 (0)		

Hydrogen-bond geometry (Å, °)

Cg3, Cg2 are the centroid of benzene (C1–C6) and furan (O2/C9–C12) rings, respectively.

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1 <i>N</i> ····N2 ⁱ	0.92 (2)	1.97 (2)	2.885 (2)	171 (2)
C2—H2A…O1	0.95	2.31	2.930 (2)	122
C13—H13A…O1	0.98	2.46	3.151 (3)	127
C13A—H13D…N3	0.98	2.65	3.41 (3)	134
С5—Н5А…Сд3іі	0.95	2.89	3.655 (4)	138
C13 <i>A</i> —H13 <i>F</i> … <i>Cg</i> 2 ⁱⁱⁱ	0.98	2.80	3.612 (8)	141

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*-1, -*y*-1, *z*-1/2; (iii) -*x*+1/2, -*y*+1/2, -*z*+1.