

IUCrData

ISSN 2414-3146

Received 15 November 2016 Accepted 23 November 2016

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; pyridopyrazine; offset π -stacking.

CCDC reference: 1518915

Structural data: full structural data are available from iucrdata.iucr.org

7-Bromo-2,3-bis[(prop-2-yn-1-yl)sulfanyl]pyrido-[2,3-b]pyrazine

Meriem Sikine,^a* Joel T. Mague,^b Youssef Kandri Rodi,^a El Mokhtar Essassi^c and Younes Ouzidan^a

^aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ^cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco. *Correspondence e-mail: sikine.meriem@gmail.com

In the title compound, $C_{13}H_8BrN_3S_2$, one propynyl substituent lies approximately in the plane of the pyridopyrazine ring system, while the other is twisted away from this plane. In the crystal, offset π - π stacking interactions between the pyridine and pyrazine rings with a centroid-centroid distance of 3.740 (1) Å stack the molecules along the *a*-axis direction. At the conclusion of the initial refinement, a significant residual peak remained in the difference map. This suggested an alternate location for the Br atom but at a very low occupancy. Further refinement with Br disordered over two sites yielded a population ratio for the two Br sites of 97:3. As the refined location of the minor Br site leads to unequal C-C-Br angles, we feel that the results indicate a 'whole molecule' disorder rather than the presence of a minor amount of an isomer. Unfortunately, the very low amount of the second component of the disorder prevented the location of any of its other atoms.

Structure description

Pyrido-pyrazine heterocyclic compounds are important in organic chemistry and are also known to be important biologically (Richter *et al.*, 2006). Their uses include as antimalarial agents (Shekhar *et al.*, 2014), anti-cancer drugs (Gong *et al.*, 2011), as antiinflammatories (Hodgetts *et al.*, 2010) and as HIV-1 integrase inhibitors (Wai *et al.*, 2007). They are also used as inhibitors of anaplastic lymphoma kinase (Milkiewicz *et al.*, 2010). As a continuation of our research in the field of substituted pyrido[2,3-*b*]pyrazine derivatives (Hjouji *et al.*, 2014), we report here the synthesis of a new product by the

Figure 1

The title molecule with the labeling scheme and 50% probability displacement ellipsoids. Only the major disorder component is shown.

reaction of propargyl bromide with an excess of pyrido[2,3b]pyrazine(1H,4H)-2,3-dithiol in dimethyl formamide in the presence of potassium carbonate and a catalytic quantity of tetra-*n*-butylammonium bromide. The structure of another pyrido [2,3-*b*]pyrazine derivative has been reported previously (Fun *et al.*, 2011).

In the title compound (Fig. 1), one propynyl substituent lies approximately in the plane of the pyridopyrazine ring system while the other is twisted away from this plane as shown by the C6-S1-C8-C9 [175.29 (17)°] and C7-S2-C11-C12 [76.78 (19)°] torsion angles. In the crystal, the molecules form stacks along the *a*-axis direction (Fig. 2) through offset π - π stacking interactions between the pyridine and pyrazine rings (Fig. 3) with a centroid-centroid distance of 3.740 (1) Å and an interplanar separation of 3.440 (1) Å.

Experimental details.	
Crystal data	
Chemical formula	$C_{13}H_8BrN_3S_2$
M _r	350.25
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	4.2159 (1), 16.7730 (5), 19.4656 (5)
β (°)	91.149 (1)
$V(Å^3)$	1376.20 (6)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	6.81
Crystal size (mm)	$0.20 \times 0.08 \times 0.04$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.46, 0.77
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	21387, 2726, 2513
R _{int}	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.086, 1.05
No. of reflections	2726
No. of parameters	176
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.50, -0.57

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

Synthesis and crystallization

Table 1

Propargyl bromide (0.16 ml, 1.82 mmol) was added to a solution of 7-bromopyrido[2,3-*b*]pyrazine-2,3-dithiol (0.2 g, 0.73 mmol), K_2CO_3 (0.3 g, 2.19 mmol), tetra-*n*-butyl ammonium bromide (0.03 g, 0.1 mmol) in DMF (10 ml). The mixture was then stirred for 6 h at room temperature. The solvent was

Figure 2 Packing of the title compound projected onto (100).

Figure 3 Details of the offset- π - π stacking. [Symmetry codes: (i) -1 + x, y, z; (ii) 1 + x, y, z.]

evaporated under reduced pressure and the product isolated by chromatography on a silica gel column with ethyl acetate/ hexane (1/3) as eluent. The compound forms pale yellow columnar crystals in 20% yield and was recrystallized from a solvent mixture (dichloromethane-hexane: 1/2).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. At the conclusion of the initial refinement, a significant residual peak remained in the difference map at *ca* 1.85 Å from C4. This suggested an alternate location for Br1 but at a very low occupancy. Further refinement with Br1 disordered over two sites yielded a population ratio for the two Br sites of 97:3. As the refined location of the minor Br site leads to unequal C-C-Brangles, we feel that the results indicate a 'whole molecule' disorder rather than the presence of a minor amount of an isomer. Unfortunately, the very low amount of the second component of the disorder prevented the location of any of its other atoms.

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Hemamalini, M., Hazra, A. & Goswami, S. (2011). Acta Cryst. E67, 03120.
- Gong, Y. D., Dong, M. S., Lee, S. B., Kim, N., Bae, M. S. & Kang, N. S. (2011). Bioorg. Med. Chem. 19, 5639–5647.
- Hjouji, M. Y., Kandri Rodi, Y., Misbahi, K., Chahdi, O., Akhazzane, F. M. & Essassi, E. M. (2014). J. Mar. Chim. Hétérocycl. 13, 65–71.
- Hodgetts, K. J., Blum, C. A., Caldwell, T., Bakthavatchalam, R., Zheng, X., Capitosti, S., Krause, J. E., Cortright, D., Crandall, M., Murphy, B. A., Boyce, S., Jones, A. B. & Chenard, B. L. (2010). *Bioorg. Med. Chem. Lett.* **20**, 4359–4363.
- Milkiewicz, K. L., Weinberg, L. R., Albom, M. S., Angeles, T. S., Cheng, M., Ghose, A. K., Roemmele, R. C., Theroff, J. P., Underiner, T. L., Zificsak, C. A. & Dorsey, B. D. (2010). *Bioorg. Med. Chem.* 18, 4351–4362.
- Richter, H. G. F., Adams, D. R., Benardeau, A., Bickerdike, M. J., Bentley, J. M., Blench, T. J., Cliffe, I. A., Dourish, C., Hebeisen, P., Kennett, G. A., Knight, A. R., Malcolm, C. S., Mattei, P., Misra, A., Mizrahi, J., Monck, N. J. T., Plancher, J.-M., Roever, S., Roffey, J. R. A., Taylor, S. & Vickers, S. P. (2006). *Bioorg. Med. Chem. Lett.* 16, 1207–1211.
- Shekhar, A. C., Rao, P. S., Narsaiah, B., Allanki, A. D. & Sijwali, P. S. (2014). Med. Chem. 77, 280–287.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wai, J. S., Kim, B., Fisher, T. E., Zhuang, L., Embrey, M. W., Williams, P. D., Staas, D. D., Culberson, C., Lyle, T. A., Vacca, J. P., Hazuda, D. J., Felock, P. J., Schleif, W. A., Gabryelski, L. J., Jin, L., Chen, I. W., Ellis, J. D., Mallai, R. & Young, S. D. (2007). *Bioorg. Med. Chem. Lett.* 17, 5595–5599.

full crystallographic data

IUCrData (2016). **1**, x161881 [https://doi.org/10.1107/S2414314616018812]

7-Bromo-2,3-bis[(prop-2-yn-1-yl)sulfanyl]pyrido[2,3-b]pyrazine

Meriem Sikine, Joel T. Mague, Youssef Kandri Rodi, El Mokhtar Essassi and Younes Ouzidan

F(000) = 696

 $\theta = 3.5 - 72.4^{\circ}$ $\mu = 6.81 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.035$

 $h = -5 \rightarrow 5$

 $k = -20 \rightarrow 20$ $l = -24 \rightarrow 24$

 $D_{\rm x} = 1.690 {\rm Mg} {\rm m}^{-3}$

Column, pale yellow

 $0.20\times0.08\times0.04~mm$

 $T_{\rm min} = 0.46, \ T_{\rm max} = 0.77$

 $\theta_{\rm max} = 72.4^\circ, \ \theta_{\rm min} = 3.5^\circ$

21387 measured reflections

2726 independent reflections

2513 reflections with $I > 2\sigma(I)$

Cu Ka radiation, $\lambda = 1.54178$ Å

Cell parameters from 9904 reflections

7-Bromo-2,3-bis[(prop-2-yn-1-yl)sulfanyl]pyrido[2,3-b]pyrazine

Crystal data

C₁₃H₈BrN₃S₂ $M_r = 350.25$ Monoclinic, $P2_1/c$ a = 4.2159 (1) Å b = 16.7730 (5) Å c = 19.4656 (5) Å $\beta = 91.149$ (1)° V = 1376.20 (6) Å³ Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer Radiation source: INCOATEC I μ S micro-focus source Mirror monochromator Detector resolution: 10.4167 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2016)

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.033$ Hydrogen site location: mixed $wR(F^2) = 0.086$ H-atom parameters constrained S = 1.05 $w = 1/[\sigma^2(F_o^2) + (0.0425P)^2 + 1.2838P]$ 2726 reflections where $P = (F_0^2 + 2F_c^2)/3$ 176 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$ 1 restraint $\Delta \rho_{\rm min} = -0.57 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. At the conclusion of the initial refinement, a significant residual peak remained the difference map at ca. 1.85 Å from C4. This suggested an alternate location for Br1 but at a very low occupancy. Further refinement with Br1 disordered over two sites yielded a population ratio for the two Br sites of 97:3. Because the refined location of the minor Br site leads to unequal C–C–Br angles, we feel that the results indicate a "whole molecule" disorder rather than the presence of a minor amount of an isomer. Unfortunately, the very low amount of the second component of the disorder prevented location of any of its other atoms.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	1.33510 (8)	0.89445 (2)	0.98676 (2)	0.05325 (13)	0.9711 (8)
C3	1.0987 (6)	0.87110 (17)	0.90621 (13)	0.0414 (6)	0.9711 (8)
C4	0.9795 (7)	0.93338 (16)	0.86557 (14)	0.0438 (6)	0.9711 (8)
H4	1.0330	0.9864	0.8784	0.053*	0.9711 (8)
Br1A	1.186 (3)	1.0075 (6)	0.9223 (5)	0.05325 (13)	0.0289 (8)
C3A	1.0987 (6)	0.87110 (17)	0.90621 (13)	0.0414 (6)	0.0289 (8)
H3A	1.2202	0.8812	0.9483	0.050*	0.0289 (8)
C4A	0.9795 (7)	0.93338 (16)	0.86557 (14)	0.0438 (6)	0.0289 (8)
S1	0.21077 (15)	0.74574 (3)	0.64709 (3)	0.03557 (15)	
S2	0.46504 (15)	0.60113 (3)	0.72597 (3)	0.03503 (15)	
N1	0.5283 (5)	0.83752 (11)	0.73672 (10)	0.0324 (4)	
N2	0.7585 (5)	0.70372 (12)	0.81113 (10)	0.0337 (4)	
N3	0.7976 (6)	0.92284 (12)	0.81063 (11)	0.0400 (5)	
C1	0.8373 (6)	0.78020 (14)	0.83001 (12)	0.0330 (5)	
C2	1.0335 (6)	0.79318 (16)	0.88808 (13)	0.0385 (5)	
H2	1.1184	0.7499	0.9140	0.046*	
C5	0.7232 (6)	0.84662 (14)	0.79321 (12)	0.0331 (5)	
C6	0.4557 (6)	0.76449 (14)	0.71894 (12)	0.0313 (5)	
C7	0.5753 (5)	0.69566 (13)	0.75688 (12)	0.0313 (5)	
C8	0.1351 (6)	0.84778 (14)	0.61874 (12)	0.0355 (5)	
H8A	0.0153	0.8770	0.6540	0.043*	
H8B	0.3383	0.8759	0.6117	0.043*	
C9	-0.0480 (6)	0.84493 (15)	0.55455 (13)	0.0378 (5)	
C10	-0.1994 (7)	0.84327 (18)	0.50324 (14)	0.0484 (7)	
H10	-0.3217	0.8419	0.4617	0.058*	
C11	0.6516 (6)	0.53851 (14)	0.79116 (12)	0.0343 (5)	
H11A	0.6691	0.4835	0.7731	0.041*	
H11B	0.8691	0.5583	0.8008	0.041*	
C12	0.4780 (6)	0.53656 (14)	0.85501 (13)	0.0355 (5)	
C13	0.3346 (7)	0.53361 (17)	0.90614 (15)	0.0467 (6)	
H13	0.2188	0.5312	0.9475	0.056*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0562 (2)	0.0577 (2)	0.04545 (19)	-0.01377 (14)	-0.01003 (14)	-0.00496 (13)
C3	0.0422 (14)	0.0438 (14)	0.0383 (13)	-0.0088 (11)	0.0013 (11)	-0.0023 (11)
C4	0.0508 (15)	0.0350 (13)	0.0456 (15)	-0.0115 (11)	0.0034 (12)	-0.0030 (11)
Br1A	0.0562 (2)	0.0577 (2)	0.04545 (19)	-0.01377 (14)	-0.01003 (14)	-0.00496 (13)
C3A	0.0422 (14)	0.0438 (14)	0.0383 (13)	-0.0088 (11)	0.0013 (11)	-0.0023 (11)
C4A	0.0508 (15)	0.0350 (13)	0.0456 (15)	-0.0115 (11)	0.0034 (12)	-0.0030 (11)
S 1	0.0424 (3)	0.0295 (3)	0.0345 (3)	0.0006 (2)	-0.0039 (2)	0.0022 (2)
S2	0.0422 (3)	0.0260 (3)	0.0367 (3)	-0.0005 (2)	-0.0040 (2)	0.0007 (2)
N1	0.0370 (10)	0.0273 (9)	0.0330 (10)	0.0003 (8)	0.0024 (8)	0.0015 (8)
N2	0.0363 (10)	0.0287 (9)	0.0360 (10)	-0.0014 (8)	0.0004 (8)	0.0038 (8)
N3	0.0496 (12)	0.0284 (10)	0.0420 (12)	-0.0048 (9)	0.0006 (9)	0.0001 (9)
C1	0.0354 (12)	0.0307 (11)	0.0328 (11)	-0.0044 (9)	0.0026 (9)	0.0020 (9)
C2	0.0388 (13)	0.0399 (13)	0.0366 (13)	-0.0049 (10)	-0.0018 (10)	0.0063 (10)
C5	0.0381 (12)	0.0281 (11)	0.0333 (11)	-0.0024 (9)	0.0040 (9)	0.0022 (9)
C6	0.0330 (11)	0.0302 (11)	0.0310 (11)	0.0008 (9)	0.0037 (9)	0.0024 (9)
C7	0.0321 (11)	0.0279 (11)	0.0342 (11)	0.0007 (9)	0.0040 (9)	0.0026 (9)
C8	0.0418 (13)	0.0316 (12)	0.0332 (12)	0.0028 (10)	0.0010 (10)	0.0029 (9)
C9	0.0415 (13)	0.0353 (12)	0.0367 (13)	0.0063 (10)	0.0043 (10)	0.0035 (10)
C10	0.0532 (16)	0.0515 (16)	0.0401 (14)	0.0140 (13)	-0.0056 (12)	-0.0024 (12)
C11	0.0376 (12)	0.0255 (10)	0.0397 (12)	0.0013 (9)	-0.0025 (10)	0.0013 (9)
C12	0.0365 (12)	0.0272 (11)	0.0424 (13)	-0.0034 (9)	-0.0080 (10)	0.0009 (10)
C13	0.0525 (16)	0.0452 (15)	0.0423 (15)	-0.0083 (12)	0.0004 (12)	-0.0001 (12)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C3	1.882 (3)	N2—C1	1.373 (3)	
C3—C2	1.380 (4)	N3—C5	1.358 (3)	
C3—C4	1.398 (4)	C1—C2	1.404 (3)	
C4—N3	1.315 (4)	C1—C5	1.404 (3)	
C4—H4	0.9500	C2—H2	0.9500	
Br1A—C4A	1.866 (4)	C6—C7	1.455 (3)	
C3A—C2	1.380 (4)	C8—C9	1.456 (3)	
C3A—C4A	1.398 (4)	C8—H8A	0.9900	
СЗА—НЗА	0.9729	C8—H8B	0.9900	
C4A—N3	1.315 (4)	C9—C10	1.175 (4)	
S1—C6	1.750 (2)	C10—H10	0.9500	
S1—C8	1.824 (2)	C11—C12	1.455 (4)	
S2—C7	1.755 (2)	C11—H11A	0.9900	
S2—C11	1.814 (2)	C11—H11B	0.9900	
N1—C6	1.307 (3)	C12—C13	1.176 (4)	
N1—C5	1.368 (3)	C13—H13	0.9500	
N2—C7	1.303 (3)			
C2—C3—C4	119.7 (2)	N3—C5—N1	116.0 (2)	
C2—C3—Br1	120.6 (2)	N3—C5—C1	123.0 (2)	

C4—C3—Br1	119.6 (2)	N1—C5—C1	121.0 (2)
N3—C4—C3	123.8 (2)	N1—C6—C7	122.2 (2)
N3—C4—H4	118.1	N1-C6-S1	120.73 (18)
C3—C4—H4	118.1	C7—C6—S1	117.11 (17)
C2—C3A—C4A	119.7 (2)	N2C7C6	121.5 (2)
С2—С3А—НЗА	118.6	N2—C7—S2	121.34 (18)
С4А—С3А—НЗА	121.6	C6—C7—S2	117.14 (17)
N3—C4A—C3A	123.8 (2)	C9—C8—S1	108.37 (17)
N3—C4A—Br1A	145.9 (4)	C9—C8—H8A	110.0
C3A—C4A—Br1A	90.3 (4)	S1—C8—H8A	110.0
C6—S1—C8	99.78 (11)	C9—C8—H8B	110.0
C7—S2—C11	100.09 (11)	S1—C8—H8B	110.0
C6—N1—C5	116.8 (2)	H8A—C8—H8B	108.4
C7—N2—C1	116.8 (2)	C10-C9-C8	179.0 (3)
C4A—N3—C5	117.2 (2)	C9—C10—H10	180.0
C4—N3—C5	117.2 (2)	C12—C11—S2	113.08 (17)
N2—C1—C2	119.7 (2)	C12—C11—H11A	109.0
N2—C1—C5	121.7 (2)	S2—C11—H11A	109.0
C2—C1—C5	118.5 (2)	C12—C11—H11B	109.0
C3A—C2—C1	117.6 (2)	S2—C11—H11B	109.0
C3—C2—C1	117.6 (2)	H11A—C11—H11B	107.8
C3—C2—H2	121.2	C13—C12—C11	178.6 (3)
C1—C2—H2	121.2	C12—C13—H13	180.0
C2—C3—C4—N3	1.9 (4)	C4—N3—C5—C1	-1.5 (4)
Br1—C3—C4—N3	-176.1 (2)	C6—N1—C5—N3	179.6 (2)
C2—C3A—C4A—N3	1.9 (4)	C6—N1—C5—C1	-0.2(3)
Br1A—C3A—C4A—N3	179.5 (5)	N2-C1-C5-N3	-179.9 (2)
C2—C3A—C4A—Br1A	-177.6 (4)	C2-C1-C5-N3	1.0 (4)
C3A—Br1A—C4A—N3	-179.2 (7)	N2-C1-C5-N1	-0.1 (4)
C3A—C4A—N3—C5	0.1 (4)	C2-C1-C5-N1	-179.2 (2)
Br1A—C4A—N3—C5	179.2 (7)	C5—N1—C6—C7	-0.1 (3)
C3—C4—N3—C5	0.1 (4)	C5—N1—C6—S1	-179.46 (17)
C7—N2—C1—C2	179.9 (2)	C8—S1—C6—N1	0.2 (2)
C7—N2—C1—C5	0.7 (3)	C8—S1—C6—C7	-179.20 (18)
C4A—C3A—C2—C1	-2.3 (4)	C1—N2—C7—C6	-1.0 (3)
C4—C3—C2—C1	-2.3 (4)	C1—N2—C7—S2	178.35 (17)
Br1—C3—C2—C1	175.62 (18)	N1-C6-C7-N2	0.8 (4)
N2—C1—C2—C3A	-178.1 (2)	S1—C6—C7—N2	-179.84 (18)
C5-C1-C2-C3A	1.0 (4)	N1—C6—C7—S2	-178.63 (18)
N2—C1—C2—C3	-178.1 (2)	S1—C6—C7—S2	0.7 (2)
C5-C1-C2-C3	1.0 (4)	C11—S2—C7—N2	3.2 (2)
C4A—N3—C5—N1	178.7 (2)	C11—S2—C7—C6	-177.38 (18)
C4—N3—C5—N1	178.7 (2)	C6—S1—C8—C9	175.29 (17)
C4A—N3—C5—C1	-1.5 (4)	C7—S2—C11—C12	76.78 (19)