ISSN 2414-3146

Received 20 September 2016 Accepted 2 November 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; carbazole; C— H···O hydrogen bond.

CCDC reference: 1439578

Structural data: full structural data are available from iucrdata.iucr.org

9H-Carbazole-9-carbaldehyde

Cong Wang,^{a,b} An-Ran Wang^{a,b} and Sheng-Li Li^{a,b*}

^aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and ^bKey Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China. *Correspondence e-mail: lsl1968@ahu.edu.cn

The title carbazole derivative, $C_{13}H_9NO$, crystallizes with two independent molecules (A and B) in the asymmetric unit. The dihedral angle between the planar carbazole ring system and the aldehyde group (HC=O) is 3.3 (2)° in A and 7.5 (2)° in B, indicating that the molecules are both nearly planar. In the crystal, the A and B molecules are linked by a C-H···O hydrogen bond and stack along the *b*-axis direction. The structure was refined as a two component twin with a refined BASF value of 0.102 (2).

Structure description

Carbazole derivatives are important compounds because of their wide range of biological activities, and also owing to their high electron affinity, hole transport properties and good planarity, which make them appropriate building blocks in the construction of chromophores for non-linear optical materials (Li *et al.* 2013; Jiang *et al.* 2016). Since carbazole derivatives have relatively low toxicity, they have been widely used in the biological area (Fei *et al.* 2015; Wang *et al.* 2016).

The title compound, Fig. 1, crystallized with two independent molecules (A and B) in the asymmetric unit. In molecule A, the aldehyde group (H13–C13=O1) is inclined to the planar carbazole ring system [N1/C1–C12; planar to within 0.019 (2) Å] by 3.3 (2)°. In molecule B, the aldehyde group (H27–C27=O2) is inclined to the planar carbazole ring system [N2/C15–C26; planar to within 0.014 (2) Å] by 7.5 (2)°. Hence, the two molecules are both almost planar. The geometrical parameters of the title compound are similar to those observed for 9-benzoylcarbazole (Claramunt *et al.*, 2002).

In the crystal, the A and B molecules are linked by a C-H···O hydrogen bond and stack along the *b*-axis direction (Table 1 and Fig. 2).

Figure 1

The molecular structure of the two independent molecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

The title compound was synthesized following a published procedure (Bose *et al.*, 2006). A mixture of 1.67 g (10.0 mmol) of carbazole and 1.0–1.2 equiv. of aqueous 80% formic acid in toluene was reacted for 10 min under microwave irradiation (320 W). The reaction was monitored by TLC, and after starting material had disappeared, the mixture was evaporated to give the crude title compound. Further purification by flash chromatography on silica gel, using petroleum ether/ethyl acetate (1:10 ν/ν) as eluent, gave a pale-yellow solid (yield 75%). The solid was then dissolved in 10 ml absolute ethanol, filtered, and the filtrate evaporated slowly for a week, yielding yellow rod-like crystals of the title compound. ¹H NMR (300 MHz, DMSO) δ 11.24 (*s*, 1H), 8.11 (*d*, *J* = 7.8 Hz, 2H), 7.48 (*d*, *J* = 8.1 Hz, 2H), 7.38 (*t*, *J* = 7.6 Hz, 2H), 7.15 (*t*, *J* = 7.4 Hz, 2H).

Figure 2

A view along the *b* axis of the crystal packing of the title compound. The *A* (blue) and *B* (red) molecules are linked by a $C-H\cdots O$ hydrogen bond and stack along the *b*-axis direction (see Table 1).

Table 1Hydrogen-bond ge	ometry (Å, °)).		
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C27-H27\cdots O1^{i}$	0.93	2.47	3.378 (3)	166
Symmetry code: (i) $-x$	$y, y - \frac{3}{2}, -z + 1.$			
Table 2Experimental detail	ils.			
Crystal data				
Chemical formula		C ₁₃ F	I₀NO	
Mr		195.2	21	
Crystal system, spac	e group	Mon	ioclinic, $P2_1$	
Temperature (K)		296	57 (2) 5 2621 (1	(1) 14 440 (2)
a, b, c (A) β (°)		12.9	57(2), 5.5021(1)	0), 14.440 (3)
$V(\dot{A}^3)$		945	4(3)	
Z		4	+ (J)	
Radiation type		Mo	Κα	
$\mu \text{ (mm}^{-1})$		0.09		
Crystal size (mm)		0.30	\times 0.20 \times 0.20	
Data collection				
Diffractometer		Brul de	ker SMART CC	D area
Absorption correction	on	Mul 20	ti-scan (SADAE 007)	S; Bruker,
T_{\min}, T_{\max}		0.97	4, 0.983	
No. of measured, in observed $[I > 2\sigma($	dependent and I)] reflections	3577	, 3577, 3457	
R _{int}		0.013	8	
$(\sin \theta / \lambda)_{\max} (A^{-1})$		0.64	4	
Refinement				
$R[F^2 > 2\sigma(F^2)], wR$	$(F^{2}), S$	0.02	9, 0.076, 1.07	
No. of reflections		3577	1	
No. of parameters		273		
No. of restraints		1		aanatuaina J
$\Delta \rho_{\rm max}$, $\Delta \rho_{\rm min}$ (e Å ⁻	· ³)	H-at 0.20	-0.16	constrained

Computer programs: *SMART* and *SAINT* (Bruker, 2007), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *Mercury* (Macrae *et al.*, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010)'.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The structure was refined as a twocomponent twin with a refined BASF value of 0.102 (2).

Acknowledgements

This work was supported by Anhui Provincial Natural Science Foundation (1308085MB24) and the Educational Commission of Anhui Province of China (KJ2012A025).

References

- Bose, A. K., Ganguly, S. N., Manhas, M. S., Guha, A. & Pombo-Villars, E. (2006). *Tetrahedron Lett.* 47, 4605–4607.
- Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Claramunt, R. M., Cornago, P., Sanz, D., Santa-Mar\?ía, M. D., Foces-Foces, C., Alkorta, I. & Elguero, J. (2002). J. Mol. Struct. 605, 199– 212.
- Fei, X. N., Li, R., Lin, D. Y., Gu, Y. C. & Yu, L. (2015). J. Fluoresc. 25, 1251–1258.

- Jiang, D., Chen, S. C., Xue, Z., Li, Y. L., Liu, H. B., Yang, W. S. & Li, Y. L. (2016). Dyes Pigments, **125**, 100–105. Li, S. L., Gao, C., Liu, F. & Wei, W. (2013). React. Funct. Polym. **73**,
- 828-832.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, G., Chen, H., Chen, X. & Xie, Y. (2016). RSC Adv. 6, 18662-18666.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2016). 1, x161757 [https://doi.org/10.1107/S2414314616017570]

9H-Carbazole-9-carbaldehyde

Cong Wang, An-Ran Wang and Sheng-Li Li

9H-Carbazole-9-carbaldehyde

Crystal data

C₁₃H₉NO $M_r = 195.21$ Monoclinic, P2₁ a = 12.957 (2) Å b = 5.3621 (10) Å c = 14.440 (3) Å $\beta = 109.548$ (2)° V = 945.4 (3) Å³ Z = 4

Data collection

Bruker SMART CCD area detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\min} = 0.974, T_{\max} = 0.983$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.076$ S = 1.073577 reflections 273 parameters 1 restraint Hydrogen site location: inferred from neighbouring sites F(000) = 408 $D_x = 1.371 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5371 reflections $\theta = 2.6-27.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KRod, yellow $0.30 \times 0.20 \times 0.20 \text{ mm}$

3577 measured reflections 3577 independent reflections 3457 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 27.2^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -16 \rightarrow 16$ $k = -6 \rightarrow 6$ $l = -15 \rightarrow 18$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0405P)^2 + 0.1094P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.011 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

	x	v	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
01	-0.07452 (11)	1.2319 (3)	0.34069 (11)	0.0349 (4)
N1	0.04534 (12)	1.0956 (3)	0.26573 (11)	0.0241 (3)
C1	0.08756 (14)	1.1098 (4)	0.18707 (13)	0.0238 (4)
C2	0.06519 (16)	1.2822 (4)	0.11060 (14)	0.0290 (4)
H2	0.0155	1 4113	0 1048	0.035*
C3	0.11964 (17)	1.2538 (4)	0.04364 (14)	0.0321 (5)
H3	0 1060	1 3655	-0.0084	0.038*
C4	0 19488 (16)	1.0603 (5)	0.05256 (14)	0.0319 (5)
H4	0.2305	1.0458	0.0066	0.038*
C5	0.21699 (15)	0.8901 (4)	0 12896 (14)	0.0283 (4)
Н5	0.2670	0.7617	0.1346	0.034*
C6	0.16291 (15)	0 9149 (4)	0 19725 (14)	0.0236 (4)
C7	0.16787 (14)	0.7763(4)	0.19720(11) 0.28531(13)	0.0223(4)
C8	0.22834(15)	0.5698 (4)	0.33153(14)	0.0223(1)
H8	0.2263 (13)	0.4913	0.3051	0.033*
C9	0.21617 (16)	0.4829 (4)	0.3031 0.41779(15)	0.0308 (5)
H9	0.2561	0.3450	0 4494	0.037*
C10	0 14431 (16)	0.6008 (5)	0 45775 (14)	0.0313 (5)
H10	0.1377	0.5400	0.5158	0.038*
C11	0.08271 (15)	0.8061 (4)	0 41284 (14)	0.0281 (4)
H11	0.0349	0.8836	0.4396	0.034*
C12	0.09520 (15)	0.8919 (4)	0.32609 (14)	0.0236 (4)
C13	-0.03400(16)	1.2500 (4)	0.27651 (15)	0.0296 (4)
H13	-0.0587	1.3785	0.2312	0.036*
02	0.16975 (11)	0.3158 (3)	0.83309 (10)	0.0329 (4)
N2	0.29786 (12)	0.3523 (3)	0.75651 (11)	0.0226 (4)
C15	0.34916 (14)	0.2512 (4)	0.69175 (12)	0.0212 (4)
C16	0.31665 (15)	0.0519 (4)	0.62757 (13)	0.0241 (4)
H16	0.2526	-0.0358	0.6206	0.029*
C17	0.38418 (16)	-0.0113(4)	0.57397 (14)	0.0262 (4)
H17	0.3648	-0.1440	0.5301	0.031*
C18	0.48043 (15)	0.1204 (4)	0.58462 (14)	0.0268 (4)
H18	0.5244	0.0732	0.5482	0.032*
C19	0.51149 (15)	0.3209 (4)	0.64885 (14)	0.0257 (4)
H19	0.5753	0.4092	0.6553	0.031*
C20	0.44523 (14)	0.3873 (4)	0.70346 (13)	0.0216 (4)
C21	0.45419 (14)	0.5768 (4)	0.77753 (13)	0.0225 (4)
C22	0.53065 (15)	0.7648 (4)	0.81761 (13)	0.0258 (4)
H22	0.5916	0.7835	0.7979	0.031*
C23	0.51438 (17)	0.9228 (4)	0.88710 (14)	0.0300 (4)
H23	0.5648	1.0488	0.9142	0.036*
C24	0.42294 (17)	0.8954 (4)	0.91706 (14)	0.0295 (4)
H24	0.4138	1.0039	0.9640	0.035*
C25	0.34560 (16)	0.7107 (4)	0.87868 (14)	0.0266 (4)
1125	0.2848	0 6934	0 8987	0.032*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

C26	0.36272 (15)	0.5518 (4)	0.80878 (13)	0.0218 (4)
C27	0.20807 (15)	0.2484 (4)	0.77125 (14)	0.0264 (4)
H27	0.1739	0.1164	0.7308	0.032*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0335 (7)	0.0374 (9)	0.0392 (8)	0.0030 (7)	0.0195 (6)	-0.0046 (7)
N1	0.0228 (7)	0.0241 (9)	0.0265 (8)	-0.0001 (7)	0.0097 (6)	-0.0009 (7)
C1	0.0213 (8)	0.0260 (10)	0.0237 (9)	-0.0040 (8)	0.0072 (7)	-0.0048 (8)
C2	0.0304 (10)	0.0264 (11)	0.0283 (10)	-0.0004 (9)	0.0071 (8)	-0.0005 (9)
C3	0.0385 (11)	0.0324 (12)	0.0229 (10)	-0.0069 (10)	0.0071 (8)	0.0030 (9)
C4	0.0333 (10)	0.0398 (13)	0.0252 (10)	-0.0057 (10)	0.0131 (8)	-0.0043 (9)
C5	0.0267 (10)	0.0316 (11)	0.0284 (10)	0.0009 (9)	0.0116 (8)	-0.0032 (9)
C6	0.0213 (9)	0.0227 (10)	0.0251 (9)	-0.0025 (7)	0.0055 (7)	-0.0028 (8)
C7	0.0205 (8)	0.0234 (10)	0.0233 (9)	-0.0034 (8)	0.0078 (7)	-0.0038 (8)
C8	0.0242 (9)	0.0257 (11)	0.0310 (10)	0.0008 (8)	0.0073 (8)	-0.0004 (9)
C9	0.0287 (10)	0.0276 (11)	0.0316 (10)	-0.0002 (8)	0.0041 (8)	0.0053 (9)
C10	0.0315 (10)	0.0371 (12)	0.0243 (9)	-0.0084 (10)	0.0079 (8)	0.0032 (9)
C11	0.0268 (9)	0.0333 (11)	0.0259 (9)	-0.0052 (9)	0.0109 (8)	-0.0031 (8)
C12	0.0210 (8)	0.0238 (10)	0.0249 (9)	-0.0042 (8)	0.0062 (7)	-0.0029 (8)
C13	0.0271 (9)	0.0267 (11)	0.0347 (11)	0.0029 (8)	0.0100 (8)	-0.0027 (9)
O2	0.0333 (7)	0.0396 (10)	0.0322 (7)	0.0029 (7)	0.0194 (6)	0.0050 (7)
N2	0.0239 (8)	0.0236 (9)	0.0222 (8)	0.0019 (6)	0.0103 (6)	0.0011 (6)
C15	0.0233 (8)	0.0219 (10)	0.0195 (8)	0.0043 (8)	0.0087 (7)	0.0049 (8)
C16	0.0249 (9)	0.0228 (10)	0.0240 (9)	-0.0013 (8)	0.0073 (7)	0.0026 (8)
C17	0.0340 (10)	0.0233 (10)	0.0204 (9)	0.0020 (8)	0.0080 (8)	-0.0015 (8)
C18	0.0298 (9)	0.0305 (11)	0.0238 (9)	0.0036 (8)	0.0139 (8)	0.0014 (8)
C19	0.0240 (9)	0.0298 (11)	0.0256 (9)	-0.0001 (8)	0.0112 (8)	0.0030 (8)
C20	0.0249 (9)	0.0190 (9)	0.0206 (9)	0.0010 (7)	0.0071 (7)	0.0039 (8)
C21	0.0254 (9)	0.0216 (10)	0.0201 (8)	0.0031 (8)	0.0071 (7)	0.0045 (8)
C22	0.0278 (9)	0.0257 (11)	0.0233 (9)	-0.0016 (8)	0.0076 (7)	0.0035 (8)
C23	0.0353 (11)	0.0253 (11)	0.0260 (10)	-0.0018 (9)	0.0059 (8)	0.0009 (8)
C24	0.0398 (11)	0.0260 (11)	0.0209 (9)	0.0051 (9)	0.0079 (8)	-0.0012 (8)
C25	0.0299 (9)	0.0273 (11)	0.0239 (9)	0.0063 (8)	0.0109 (8)	0.0032 (8)
C26	0.0246 (9)	0.0207 (10)	0.0194 (8)	0.0031 (7)	0.0063 (7)	0.0043 (7)
C27	0.0246 (9)	0.0282 (11)	0.0278 (9)	0.0007 (8)	0.0106 (8)	0.0070 (8)

Geometric parameters (Å, °)

01—C13	1.212 (2)	O2—C27	1.213 (2)
N1-C13	1.369 (3)	N2—C27	1.369 (2)
N1-C12	1.412 (3)	N2—C26	1.413 (2)
N1-C1	1.418 (2)	N2—C15	1.423 (2)
C1—C2	1.394 (3)	C15—C16	1.385 (3)
C1—C6	1.404 (3)	C15—C20	1.403 (3)
C2—C3	1.383 (3)	C16—C17	1.390 (3)
С2—Н2	0.9300	C16—H16	0.9300

C3 - C4	1 400 (3)	C17—C18	1 396 (3)
С3—Н3	0.9300	C17—H17	0.9300
C4-C5	1 386 (3)	C18-C19	1 389 (3)
$C_4 = C_5$	0.0300	C18 H18	0.9300
C_{4}	1.304(3)	C_{10} C_{20}	1.302(3)
C5 H5	0.0200	$C_{19} - C_{20}$	1.392(3)
C5—H5	0.9300	C19 $H19$ $C20$ $C21$	0.9300
C0C7	1.430(3)	C_{20} C_{21}	1.432(3)
C/-C8	1.391 (3)	C_{21}	1.396 (3)
C/C12	1.410 (2)	C21—C26	1.409 (2)
C8—C9	1.387 (3)	C22—C23	1.382 (3)
С8—Н8	0.9300	C22—H22	0.9300
C9—C10	1.400 (3)	C23—C24	1.398 (3)
С9—Н9	0.9300	C23—H23	0.9300
C10—C11	1.387 (3)	C24—C25	1.386 (3)
C10—H10	0.9300	C24—H24	0.9300
C11—C12	1.394 (3)	C25—C26	1.394 (3)
C11—H11	0.9300	C25—H25	0.9300
C13—H13	0.9300	C27—H27	0.9300
C13—N1—C12	127.14 (16)	C27—N2—C26	127.54 (16)
C13—N1—C1	124.34 (17)	$C_{27} - N_{2} - C_{15}$	123.73 (18)
C12 - N1 - C1	108 47 (15)	$C_{26} - N_{2} - C_{15}$	108 31 (15)
C_{2} C_{1} C_{6}	121.97 (17)	C16-C15-C20	122 73 (16)
$C_2 = C_1 = N_1$	129.53 (18)	C16 - C15 - N2	122.75 (10)
$C_2 = C_1 = N_1$	129.33(10) 108.48(17)	$C_{10} - C_{15} - N_2$	120.39(17) 108.27(16)
$C_{1} = C_{1}$	103.48(17) 117.48(10)	$C_{20} - C_{13} - N_{2}$	106.27(10) 116.06(17)
$C_3 = C_2 = C_1$	117.40 (19)	C15 - C10 - C17	110.90 (17)
$C_3 = C_2 = H_2$	121.3	C13 - C10 - H10	121.5
CI = C2 = H2	121.3	C1/C16H16	121.5
$C_2 - C_3 - C_4$	121.31 (19)	C16—C17—C18	121.40 (18)
C2—C3—H3	119.3	C16—C17—H17	119.3
C4—C3—H3	119.3	C18—C17—H17	119.3
C5—C4—C3	120.90 (18)	C19—C18—C17	120.91 (17)
C5—C4—H4	119.6	C19—C18—H18	119.5
C3—C4—H4	119.6	C17—C18—H18	119.5
C4—C5—C6	118.78 (19)	C18—C19—C20	118.70 (18)
C4—C5—H5	120.6	C18—C19—H19	120.6
С6—С5—Н5	120.6	C20—C19—H19	120.6
C5-C6-C1	119.56 (18)	C19—C20—C15	119.29 (18)
C5—C6—C7	133.13 (19)	C19—C20—C21	133.13 (18)
C1—C6—C7	107.31 (16)	C15—C20—C21	107.56 (15)
C8—C7—C12	119.81 (18)	C22—C21—C26	119.50 (17)
C8—C7—C6	132.74 (17)	C22—C21—C20	132.98 (16)
$C_{12} - C_{7} - C_{6}$	10744(17)	$C^{26} - C^{21} - C^{20}$	107 51 (16)
C9 - C8 - C7	118 89 (18)	C_{23} C_{22} C_{21} C_{20}	118 95 (17)
С9—С8—Н8	120.6	C_{23} C_{22} C_{21} H_{22}	120.5
C7-C8-H8	120.0	$C_{23} = C_{22} = H_{22}$	120.5
$C_{1} = C_{1} = C_{1}$	120.0	$C_{21} = C_{22} = 1122$	120.3 120.72(10)
$C_0 = C_2 = C_1 U$	120.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.72 (19)
U0-U7-U7	117./	$U22 - U23 - \Pi23$	119.0

С10—С9—Н9	119.7	C24—C23—H23	119.6
C11—C10—C9	121.61 (19)	C25—C24—C23	121.72 (19)
C11—C10—H10	119.2	C25—C24—H24	119.1
С9—С10—Н10	119.2	C23—C24—H24	119.1
C10—C11—C12	117.41 (19)	C24—C25—C26	117.21 (18)
C10—C11—H11	121.3	С24—С25—Н25	121.4
C12—C11—H11	121.3	С26—С25—Н25	121.4
C11—C12—C7	121.65 (19)	C25—C26—C21	121.91 (18)
C11—C12—N1	130.04 (18)	C25—C26—N2	129.73 (17)
C7—C12—N1	108.30 (16)	C21—C26—N2	108.35 (15)
01—C13—N1	124.9 (2)	02-C27-N2	124.9 (2)
01—C13—H13	117.6	O2—C27—H27	117.6
N1—C13—H13	117.6	N2—C27—H27	117.6
	117.0		11,10
C13—N1—C1—C2	4.3 (3)	C27—N2—C15—C16	5.7 (3)
C12—N1—C1—C2	-178.30 (19)	C26—N2—C15—C16	178.78 (18)
C13—N1—C1—C6	-176.87 (18)	C27—N2—C15—C20	-173.23 (16)
C12—N1—C1—C6	0.5 (2)	C26—N2—C15—C20	-0.1 (2)
C6—C1—C2—C3	0.5 (3)	C20-C15-C16-C17	0.2 (3)
N1—C1—C2—C3	179.17 (19)	N2-C15-C16-C17	-178.55 (18)
C1—C2—C3—C4	-0.4 (3)	C15—C16—C17—C18	0.1 (3)
C2—C3—C4—C5	0.2 (3)	C16—C17—C18—C19	-0.5 (3)
C3—C4—C5—C6	-0.1 (3)	C17—C18—C19—C20	0.6 (3)
C4—C5—C6—C1	0.2 (3)	C18—C19—C20—C15	-0.3 (3)
C4—C5—C6—C7	-178.6 (2)	C18—C19—C20—C21	177.9 (2)
C2-C1-C6-C5	-0.4 (3)	C16—C15—C20—C19	-0.1 (3)
N1-C1-C6-C5	-179.32 (17)	N2-C15-C20-C19	178.90 (16)
C2-C1-C6-C7	178.65 (17)	C16-C15-C20-C21	-178.76 (17)
N1—C1—C6—C7	-0.3 (2)	N2-C15-C20-C21	0.2 (2)
C5—C6—C7—C8	-0.3 (4)	C19—C20—C21—C22	2.6 (4)
C1—C6—C7—C8	-179.1 (2)	C15—C20—C21—C22	-179.0(2)
C5—C6—C7—C12	178.8 (2)	C19—C20—C21—C26	-178.7 (2)
C1—C6—C7—C12	-0.1 (2)	C15—C20—C21—C26	-0.2 (2)
C12—C7—C8—C9	-0.5 (3)	C26—C21—C22—C23	-0.2 (3)
C6—C7—C8—C9	178.5 (2)	C20—C21—C22—C23	178.5 (2)
C7—C8—C9—C10	0.0 (3)	C21—C22—C23—C24	0.0 (3)
C8—C9—C10—C11	0.4 (3)	C22—C23—C24—C25	-0.1(3)
C9—C10—C11—C12	-0.2 (3)	C23—C24—C25—C26	0.2 (3)
C10—C11—C12—C7	-0.3 (3)	C24—C25—C26—C21	-0.3 (3)
C10-C11-C12-N1	-179.03 (19)	C24—C25—C26—N2	-178.85 (18)
C8—C7—C12—C11	0.6 (3)	C22—C21—C26—C25	0.3 (3)
C6—C7—C12—C11	-178.60 (18)	C20—C21—C26—C25	-178.64 (17)
C8—C7—C12—N1	179.61 (16)	C22—C21—C26—N2	179.13 (16)
C6—C7—C12—N1	0.4 (2)	C20—C21—C26—N2	0.2 (2)
C13—N1—C12—C11	-4.4 (3)	C27—N2—C26—C25	-8.6 (3)
C1—N1—C12—C11	178.3 (2)	C15—N2—C26—C25	178.65 (18)
C13—N1—C12—C7	176.75 (18)	C27—N2—C26—C21	172.73 (18)
C1—N1—C12—C7	-0.6 (2)	C15—N2—C26—C21	0.0 (2)
	× /		× /

data reports

C12—N1—C13—O1	-0.7 (3)	C26—N2—C27—O2	0.3 (3)
C1—N1—C13—O1	176.17 (19)	C15—N2—C27—O2	172.09 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C27—H27…O1 ⁱ	0.93	2.47	3.378 (3)	166

Symmetry code: (i) -x, y-3/2, -z+1.