

IUCrData

ISSN 2414-3146

Received 3 November 2016 Accepted 7 November 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; 1,3,4-oxadiazole; nitro compound; hydrogen bonding; C—H $\cdots \pi$ interactions.

CCDC reference: 1515447

Structural data: full structural data are available from iucrdata.iucr.org

2-(4-Chloro-2-nitrophenyl)-5-[4-(propyloxy)phenyl]-1,3,4-oxadiazole

Daniel Limbach, Heiner Detert* and Dieter Schollmeyer

University of Mainz, Institut for Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany. *Correspondence e-mail: detert@uni-mainz.de

The title compound, $C_{17}H_{14}ClN_3O_4$, was prepared by the Huisgen reaction of 4-chloro-2-nitrobenzoyl chloride and 5-(4-propyloxyphenyl)tetrazole. The diphenyl-1,3,4-oxadiazole unit is nearly planar. The oxadiazole ring is inclined to the 4-chloro-2-nitrophenyl ring by 7.77 (8)°, and by 7.93 (8)° to the 4-propyloxyphenyl ring. The benzene rings are inclined to one another by 1.32 (7)°. The nitro group is twisted out of the plane of the benzene ring to which it is attached by 73.59 (16)°. The propoxy chain mean plane is inclined to the benzene ring to which it is attached by 4.46 (13)°. In the crystal, $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds connect the molecules, forming ribbons propagating along the *b*-axis direction. The ribbons are linked by $C-H\cdots\pi$ interactions, forming slabs parallel to the *ab* plane.

Structure description

Donor-acceptor substituted π -systems are solvatochromic (Detert *et al.* 2002; Rettig 1986), making these materials interesting for sensing and non-linear optical applications (Schmitt *et al.* 2008; Schönhaber *et al.* 2010; Franco *et al.* 2010). *o*-Nitrobiaryl compounds are starting materials for the Cadogan cyclization (Cadogan 1962; Letessier *et al.* 2013).

Apart from the nitro group, te title compound, Fig. 1, is nearly planar. The oxadiazole ring (O8/N10/N11/C7/C9) is inclined to the benzene ring (C1-C6) by 7.77 (8)° and by 7.93 (8)° to benzene ring (C12-C17). The benzene rings are inclined to one another by 1.32 (7)°. The nitro group is twisted out of the plane of the benzene ring (C1-C6), to which it is attached, by 73.59 (16)%. The propoxy chain mean plane (O18/C19-C21) is inclined to the benzene ring (C12-C17), to which it is attached, by 4.46 (13)°. The torsion angles along the biaryl axes are -7.5 (2)° (C6-C1-C7-N11) and 7.7 (2)° (N10-C9-C12-C17). The bonds connecting the central 1,3,4-oxadiazole ring with the donor- and acceptor-substituted benzene rings, 1.4555 (17) and 1.4527 (17) Å, respectively, are very

Figure 1

A view of the molecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 2

A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1), and H atoms not involved in these interactions have been excluded.

similar. The C4–Cl1 bond length of 1.7270 (14) Å is nearly identical to the bond lengths [1.727, 1.728 Å] found in 1-chloro-3,4-dinitrobenzene (Wilkins & Small, 1985).

Figure 3

A partial view along the *b* axis of the crystal packing of the title compound. The $C-H\cdots\pi$ interactions are illustrated as dashed lines (see Table 1), and H atoms not involved in the intermolecular interactions have been excluded.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

Cg is the centroid of ring C12–C17.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2-H2\cdots O24^{i}$	0.95	2.57	3.4821 (18)	161
$C14-H14\cdots N10^{i}$	0.95	2.41	3.3351 (19)	163
$C20-H20B\cdots Cg^{ii}$	0.99	2.86	3.7524 (17)	151
$C21 - H21B \cdots Cg^{iii}$	0.99	2.84	3.6473 (17)	140

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y, -z; (iii) -x, -y, -z.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	C ₁₇ H ₁₄ ClN ₃ O ₄
M _r	359.76
Crystal system, space group	Triclinic, P1
Temperature (K)	193
a, b, c (Å)	7.5691 (5), 7.7907 (5), 14.904 (1)
α, β, γ (°)	101.911 (5), 91.311 (5), 107.224 (5)
$V(Å^3)$	818.06 (10)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.26
Crystal size (mm)	$0.44\times0.28\times0.08$
Data collection	
Diffractometer	STOE IPDS 2T
Absorption correction	_
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7659, 3942, 3221
R _{int}	0.018
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.662
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.098, 1.04
No. of reflections	3942
No. of parameters	227
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.35, -0.38

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 1996), SHELXT2014 (Sheldrick, 2015a), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and SHELXL2014 (Sheldrick, 2015b).

In the crystal, molecules are connected *via* C–H···O and C–H···N hydrogen bonds, involving the aromatic rings to the the nitro and oxadiazole groups, respectively, forming ribbons that propagate along the *b*-axis direction (Table 1 and Fig. 2). The ribbons are linked by C–H··· π interactions, forming slabs parallel to the *ab* plane (Table 1 and Fig. 3).

Synthesis and crystallization

4-Chloro-2-nitrobenzoic acid (640 mg, 3.18 mmol) was refluxed for 12 h in thionyl chloride (6 ml, 82.7 mmol), excess thionyl chloride was distilled off *in vacuo* and the crude benzoyl chloride was dissolved in toluene (15 ml), then 5-(4-propyloxyphenyl)tetrazole (466 mg, 2.28 mmol) and 2,4,6-collidine (0.6 ml, 4.53 mmol) were added. After refluxing for 72 h, the mixture was cooled and 2N HCl_(aq) (25 ml) was added. The aqueous phase was extracted with chloroform (3 × 20 ml). The combined organic phase was dried with MgSO₄ followed by evaporation and column chromatography (silica

gel, toluene: ethyl acetate = 40:1) to afforded 723 mg of the title compound (yield 88%). ¹H NMR (CDCl₃) δ 8.07 (*d*, *J* = 8.4 Hz, 1H), 7.98–7.95 (*m*, 3H), 7.75 (*dd*, *J* = 8.4, 2.1 Hz, 1H), 7.02 – 6.99 (*m*, 2H), 4.00 (*t*, *J* = 6.5 Hz, 2H), 1.89–1.80 (*m*, 2H), 1.06 (*t*, *J* = 7.4 Hz, 3H). ¹³C NMR (CDCl₃) δ 166.1, 162.6, 160.0, 138.6, 133.2, 132.5, 129.1, 125.0, 117.1, 115.4, 115.3, 8.16, 69.9, 22.6, 10.6. The title compound was crystallized from a dichloromethane solution giving colourless plate-like crystals (m.p. 419–411 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

Cadogan, J. I. G. (1962). Q. Rev. Chem. Soc. 16, 208-239.

- Detert, H., Sugiono, E. & Kruse, G. (2002). J. Phys. Org. Chem. 15, 638–641.
- Franco, A., Brusatin, G., Guglielmi, M., Stracci, G., De Matteis, F., Casalboni, M., Detert, H., Grimm, B. & Schrader, S. (2010). J. Non-Cryst. Solids, 356, 1689–1695.
- Letessier, J., Geffe, M., Schollmeyer, D. & Detert, H. (2013). *Synthesis*, **45**, 3173–3178.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Rettig, W. (1986). Angew. Chem. Int. Ed. Engl. 25, 971-988.
- Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sen Lett, 6, 524–530.
- Schönhaber, J., Frank, W. & Müller, T. J. J. (2010). Org. Lett. 12, 4122–4125.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stoe & Cie (1996). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
- Wilkins, A. & Small, R. W. H. (1985). Acta Cryst. C41, 1509-1512.

full crystallographic data

IUCrData (2016). 1, x161782 [https://doi.org/10.1107/S241431461601782X]

2-(4-Chloro-2-nitrophenyl)-5-[4-(propyloxy)phenyl]-1,3,4-oxadiazole

Daniel Limbach, Heiner Detert and Dieter Schollmeyer

2-(4-Chloro-2-nitrophenyl)-5-[4-(propyloxy)phenyl]-1,3,4-oxadiazole

Crystal data	
$C_{17}H_{14}ClN_{3}O_{4}$ $M_{r} = 359.76$ Triclinic, $P\overline{1}$ $a = 7.5691 (5) \text{ Å}$ $b = 7.7907 (5) \text{ Å}$ $c = 14.904 (1) \text{ Å}$ $a = 101.911 (5)^{\circ}$ $\beta = 91.311 (5)^{\circ}$ $\gamma = 107.224 (5)^{\circ}$ $V = 818.06 (10) \text{ Å}^{3}$	Z = 2 F(000) = 372 $D_x = 1.461 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 8906 reflections $\theta = 2.8-28.2^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 193 K Plate, colourless $0.44 \times 0.28 \times 0.08 \text{ mm}$
Data collection STOE IPDS 2T differentemeter	3221 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹ rotation method scans 7659 measured reflections 3942 independent reflections	$\begin{aligned} &R_{\text{int}} = 0.018\\ &\theta_{\text{max}} = 28.1^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}\\ &h = -8 \rightarrow 10\\ &k = -10 \rightarrow 10\\ &l = -19 \rightarrow 19 \end{aligned}$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.098$ S = 1.04 3942 reflections 227 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 0.2041P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.35$ e Å ⁻³ $\Delta\rho_{min} = -0.38$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.99714 (6)	1.19481 (5)	0.78094 (3)	0.04350 (12)	
C1	0.74265 (17)	0.98285 (17)	0.48656 (9)	0.0236 (2)	
C2	0.76872 (19)	0.86300 (17)	0.53984 (9)	0.0266 (3)	
H2	0.7314	0.7343	0.5137	0.032*	
C3	0.84763 (19)	0.92731 (19)	0.62969 (9)	0.0290 (3)	
Н3	0.8658	0.8438	0.6646	0.035*	
C4	0.90006 (19)	1.11479 (19)	0.66840 (9)	0.0284 (3)	
C5	0.87652 (19)	1.23889 (18)	0.61822 (9)	0.0293 (3)	
Н5	0.9124	1.3673	0.6449	0.035*	
C6	0.79957 (18)	1.17076 (17)	0.52846 (9)	0.0251 (3)	
C7	0.65423 (18)	0.91012 (17)	0.39304 (9)	0.0244 (3)	
08	0.61819 (13)	0.72641 (12)	0.35657 (6)	0.0254 (2)	
С9	0.53202 (18)	0.70529 (17)	0.27188 (9)	0.0247 (3)	
N10	0.51751 (18)	0.85882 (16)	0.25766 (8)	0.0330 (3)	
N11	0.59744 (18)	0.99363 (16)	0.33768 (8)	0.0328 (3)	
C12	0.46798 (18)	0.52310 (17)	0.21119 (9)	0.0249 (3)	
C13	0.47390 (18)	0.36665 (18)	0.24229 (9)	0.0261 (3)	
H13	0.5218	0.3791	0.3036	0.031*	
C14	0.41008 (19)	0.19464 (18)	0.18386 (9)	0.0272 (3)	
H14	0.4129	0.0887	0.2053	0.033*	
C15	0.34137 (19)	0.17554 (18)	0.09339 (9)	0.0264 (3)	
C16	0.33658 (19)	0.33078 (18)	0.06153 (9)	0.0281 (3)	
H16	0.2917	0.3185	-0.0003	0.034*	
C17	0.39800 (19)	0.50300 (18)	0.12099 (9)	0.0284 (3)	
H17	0.3923	0.6086	0.1000	0.034*	
018	0.28345 (15)	0.00031 (13)	0.04241 (7)	0.0329 (2)	
C19	0.2206 (2)	-0.03094 (19)	-0.05283 (9)	0.0302 (3)	
H19A	0.3227	0.0304	-0.0868	0.036*	
H19B	0.1163	0.0193	-0.0590	0.036*	
C20	0.1582 (2)	-0.23635 (19)	-0.09084(10)	0.0306 (3)	
H20A	0.0605	-0.2966	-0.0544	0.037*	
H20B	0.2643	-0.2845	-0.0855	0.037*	
C21	0.0825 (2)	-0.2826 (2)	-0.19156 (10)	0.0399 (4)	
H21A	0.1759	-0.2153	-0.2267	0.060*	
H21B	-0.0304	-0.2466	-0.1961	0.060*	
H21C	0.0534	-0.4154	-0.2166	0.060*	
N22	0.78583 (16)	1.30994 (15)	0.47701 (8)	0.0285 (2)	
O23	0.89671 (16)	1.34446 (14)	0.42036 (7)	0.0382 (3)	
O24	0.66822 (17)	1.38593 (16)	0.49721 (9)	0.0472 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0577 (3)	0.0393 (2)	0.02601 (18)	0.00562 (17)	-0.01008 (15)	0.00578 (14)
C1	0.0236 (6)	0.0223 (6)	0.0239 (6)	0.0054 (5)	0.0023 (5)	0.0054 (5)

C2	0.0300 (6)	0.0216 (6)	0.0277 (6)	0.0069 (5)	0.0025 (5)	0.0059 (5)
C3	0.0327 (7)	0.0289 (6)	0.0271 (6)	0.0090 (5)	0.0029 (5)	0.0110 (5)
C4	0.0314 (7)	0.0295 (7)	0.0212 (6)	0.0056 (5)	-0.0001 (5)	0.0044 (5)
C5	0.0342 (7)	0.0227 (6)	0.0264 (6)	0.0036 (5)	0.0006 (5)	0.0035 (5)
C6	0.0267 (6)	0.0220 (6)	0.0259 (6)	0.0052 (5)	0.0026 (5)	0.0075 (5)
C7	0.0256 (6)	0.0196 (5)	0.0264 (6)	0.0052 (5)	0.0022 (5)	0.0044 (5)
08	0.0323 (5)	0.0207 (4)	0.0219 (4)	0.0071 (3)	-0.0015 (4)	0.0037 (3)
C9	0.0257 (6)	0.0259 (6)	0.0216 (6)	0.0065 (5)	-0.0009 (5)	0.0059 (5)
N10	0.0424 (7)	0.0242 (5)	0.0299 (6)	0.0090 (5)	-0.0093 (5)	0.0036 (4)
N11	0.0410 (7)	0.0243 (5)	0.0306 (6)	0.0086 (5)	-0.0076 (5)	0.0037 (5)
C12	0.0261 (6)	0.0241 (6)	0.0231 (6)	0.0060 (5)	0.0007 (5)	0.0051 (5)
C13	0.0303 (6)	0.0272 (6)	0.0206 (6)	0.0086 (5)	-0.0024 (5)	0.0055 (5)
C14	0.0327 (7)	0.0251 (6)	0.0247 (6)	0.0096 (5)	-0.0004 (5)	0.0069 (5)
C15	0.0281 (6)	0.0264 (6)	0.0228 (6)	0.0073 (5)	0.0009 (5)	0.0034 (5)
C16	0.0324 (7)	0.0309 (7)	0.0196 (6)	0.0073 (5)	-0.0020 (5)	0.0068 (5)
C17	0.0331 (7)	0.0266 (6)	0.0256 (6)	0.0070 (5)	-0.0003 (5)	0.0097 (5)
O18	0.0459 (6)	0.0260 (5)	0.0229 (5)	0.0082 (4)	-0.0053 (4)	0.0018 (4)
C19	0.0355 (7)	0.0306 (7)	0.0218 (6)	0.0083 (5)	-0.0010 (5)	0.0028 (5)
C20	0.0320 (7)	0.0288 (6)	0.0268 (6)	0.0065 (5)	-0.0024 (5)	0.0018 (5)
C21	0.0479 (9)	0.0358 (8)	0.0290 (7)	0.0100 (7)	-0.0071 (6)	-0.0029 (6)
N22	0.0340 (6)	0.0206 (5)	0.0279 (6)	0.0041 (4)	-0.0025 (5)	0.0056 (4)
O23	0.0511 (6)	0.0310 (5)	0.0313 (5)	0.0067 (5)	0.0074 (5)	0.0125 (4)
O24	0.0483 (7)	0.0397 (6)	0.0648 (8)	0.0234 (5)	0.0108 (6)	0.0214 (6)

Geometric parameters (Å, °)

Cl1—C4	1.7270 (14)	С13—Н13	0.9500
C1—C2	1.3961 (18)	C14—C15	1.3964 (18)
C1—C6	1.3984 (17)	C14—H14	0.9500
C1—C7	1.4555 (17)	C15—O18	1.3548 (16)
C2—C3	1.3822 (19)	C15—C16	1.3970 (19)
C2—H2	0.9500	C16—C17	1.3867 (18)
C3—C4	1.3864 (19)	C16—H16	0.9500
С3—Н3	0.9500	C17—H17	0.9500
C4—C5	1.3857 (19)	O18—C19	1.4346 (16)
C5—C6	1.3779 (18)	C19—C20	1.5069 (18)
С5—Н5	0.9500	C19—H19A	0.9900
C6—N22	1.4768 (16)	C19—H19B	0.9900
C7—N11	1.2883 (17)	C20—C21	1.5253 (19)
С7—О8	1.3635 (14)	C20—H20A	0.9900
O8—C9	1.3633 (15)	C20—H20B	0.9900
C9—N10	1.2920 (17)	C21—H21A	0.9800
C9—C12	1.4527 (17)	C21—H21B	0.9800
N10—N11	1.4019 (16)	C21—H21C	0.9800
C12—C17	1.3941 (18)	N22—O23	1.2173 (16)
C12—C13	1.4026 (17)	N22—O24	1.2183 (17)
C13—C14	1.3796 (18)		

C2—C1—C6	116.88 (12)	C13—C14—H14	119.8
C2—C1—C7	120.09 (11)	C15—C14—H14	119.8
C6—C1—C7	123.00 (11)	O18—C15—C14	115.03 (12)
$C_{3}-C_{2}-C_{1}$	121 50 (12)	Q18—C15—C16	124 85 (12)
C_{3} C_{2} H_{2}	119.2	C14-C15-C16	12013(12)
$C_1 C_2 H_2$	110.2	C_{17} C_{16} C_{15}	120.13(12) 110.33(12)
$C_1 - C_2 - C_1$	119.2 110.40(12)	C17 C16 H16	119.55 (12)
$C_2 = C_3 = C_4$	119.40 (12)	$C_{1} = C_{10} = 1110$	120.3
$C_2 = C_3 = H_3$	120.3	C15 - C10 - H10	120.3 120.80(12)
C4 - C3 - H3	120.5	C10-C17-C12	120.80 (12)
C_{3}	121.12(12)		119.6
C_{3}	119.52 (10)		119.6
	119.36 (11)		118.75 (11)
C6—C5—C4	118.10 (12)	018-019-020	107.23 (11)
C6—C5—H5	120.9	O18—C19—H19A	110.3
C4—C5—H5	120.9	C20—C19—H19A	110.3
C5—C6—C1	122.98 (12)	O18—C19—H19B	110.3
C5—C6—N22	115.73 (11)	C20—C19—H19B	110.3
C1—C6—N22	121.25 (11)	H19A—C19—H19B	108.5
N11—C7—O8	112.64 (11)	C19—C20—C21	110.74 (12)
N11—C7—C1	129.40 (12)	C19—C20—H20A	109.5
O8—C7—C1	117.93 (11)	C21—C20—H20A	109.5
C9—O8—C7	102.51 (10)	C19—C20—H20B	109.5
N10-C9-O8	112.22 (11)	C21—C20—H20B	109.5
N10-C9-C12	128.58 (12)	H20A—C20—H20B	108.1
O8—C9—C12	119.19 (11)	C20—C21—H21A	109.5
C9—N10—N11	106.49 (11)	C20—C21—H21B	109.5
C7—N11—N10	106.13 (11)	H21A—C21—H21B	109.5
C17—C12—C13	119.45 (12)	C20—C21—H21C	109.5
C17—C12—C9	119 63 (12)	$H_{21}A - C_{21} - H_{21}C$	109 5
C13 - C12 - C9	120.92(11)	H_{21B} C_{21} H_{21C}	109.5
C_{14} C_{13} C_{12} C_{12}	120.92(11) 119.97(12)	023 N22 024	105.5 125.20(12)
$C_{14} = C_{13} = C_{12}$	119.97 (12)	023 N22 C6	125.20(12) 117.67(11)
$C_{12} = C_{13} = H_{13}$	120.0	023 - N22 - C0	117.07(11) 117.08(12)
$C_{12} = C_{13} = 1115$	120.0 120.21(12)	024—1\22—C0	117.08 (12)
013-014-013	120.31 (12)		
C6 C1 C2 C2	0.10(10)	C1 C7 N11 N10	179.06(12)
$C_{0} - C_{1} - C_{2} - C_{3}$	-0.19(19)	CI - C - NII - NI0	-1/8.06(13)
$C_{1} = C_{2} = C_{3}$	-1/8.23(13)	C9—N10—N11—C/	0.37(10)
C1 = C2 = C3 = C4	0.8(2)	N10-C9-C12-C17	1.7 (2)
$C_2 = C_3 = C_4 = C_5$	-0.7(2)	08-09-012-017	-1/3.09 (12)
C2—C3—C4—C11	179.54 (11)	N10-C9-C12-C13	-1/1.6/(14)
C3—C4—C5—C6	-0.1 (2)	U8—C9—C12—C13	7.51 (19)
CII—C4—C5—C6	179.66 (11)	C17—C12—C13—C14	-0.3 (2)
C4—C5—C6—C1	0.8 (2)	C9—C12—C13—C14	179.14 (12)
C4—C5—C6—N22	-177.27 (12)	C12—C13—C14—C15	0.7 (2)
C2—C1—C6—C5	-0.6 (2)	C13—C14—C15—O18	179.73 (12)
C7—C1—C6—C5	177.33 (13)	C13—C14—C15—C16	-0.1 (2)
C2-C1-C6-N22	177.30 (12)	O18—C15—C16—C17	179.22 (13)
C7—C1—C6—N22	-4.7 (2)	C14—C15—C16—C17	-1.0(2)

C2-C1-C7-N11	170.45 (14)	C15—C16—C17—C12	1.4 (2)
C6—C1—C7—N11	-7.5 (2)	C13—C12—C17—C16	-0.8 (2)
C2-C1-C7-08	-7.31 (18)	C9—C12—C17—C16	179.77 (13)
C6—C1—C7—O8	174.78 (11)	C14—C15—O18—C19	-176.50 (12)
N11—C7—O8—C9	-0.04 (15)	C16-C15-O18-C19	3.3 (2)
C1—C7—O8—C9	178.09 (11)	C15-018-C19-C20	-177.75 (12)
C7—O8—C9—N10	0.30 (15)	O18—C19—C20—C21	178.03 (12)
C7—O8—C9—C12	-179.01 (11)	C5-C6-N22-O23	104.46 (14)
O8—C9—N10—N11	-0.42 (16)	C1—C6—N22—O23	-73.63 (16)
C12—C9—N10—N11	178.80 (13)	C5-C6-N22-O24	-72.95 (16)
O8—C7—N11—N10	-0.20 (16)	C1—C6—N22—O24	108.97 (15)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of ring C12–C17.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C2—H2···O24 ⁱ	0.95	2.57	3.4821 (18)	161
C14—H14…N10 ⁱ	0.95	2.41	3.3351 (19)	163
C20—H20B···Cg ⁱⁱ	0.99	2.86	3.7524 (17)	151
C21—H21 <i>B</i> ···Cg ⁱⁱⁱ	0.99	2.84	3.6473 (17)	140

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*+1, –*y*, –*z*; (iii) –*x*, –*y*, –*z*.