ISSN 2414-3146

Received 8 November 2016 Accepted 24 November 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; copper(III) dithiolate; coordination compound; ammonium; hydrogen bonding.

CCDC reference: 1519093

Structural data: full structural data are available from iucrdata.iucr.org

Diisopropylammonium (3,6-dichlorobenzene-1,2dithiolato)cuprato(III) tetrahydrofuran monosolvate

Jesús Barrio,^a Esther Delgado,^a Diego Hernández,^a Elisa Hernández,^a Josefina Perles^b* and Félix Zamora^a

^aDepartamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain, and ^bLaboratorio de Difracción de Rayos X de Monocristal, SIdI, Universidad Autónoma de Madrid, 28049 Madrid, Spain. *Correspondence e-mail: josefina.perles@uam.es

The asymmetric unit of the title compound, $(C_6H_{16}N)[Cu(C_6H_2Cl_2S_2)_2]\cdot C_4H_8O$, comprises a $[Cu(SC_6H_2Cl_2S)_2]^-$ anion, an $[{}^{i}Pr_2NH_2]^+$ cation and a solvent tetrahydrofuran molecule. The Cu^{III} atom has an almost square-planar CuS₄ coordination environment. In the crystal, the anion and the solvent molecule are linked *via* N-H···O and N-H···S hydrogen bonds involving the diisopropylammonium cation. There are no other significant intermolecular interactions present.

Structure description

In the title compound, Fig. 1, the anion presents a planar geometry with the copper(III) atom located at its center in a almost square planar CuS_4 coordination environment. The S-Cu-S bond angles [S4-Cu1-S2 = 87.85 (3), S4-Cu1-S3 = 92.26 (3), S2-Cu1-S1 = 92.14 (4)° and S3-Cu1-S1 = 88.45 (3)°] slightly deviate from 90°, and the Cu-S bond lengths vary from 2.1722 (9) to 2.1776 (9) Å. These geometrical parameters agree well with those observed in a similar compound containing the same anion but with the methyltriphenylphosphonium cation (Herich *et al.*, 2015).

In the crystal, the anion and the solvent molecule are linked *via* $N-H\cdots O$ and $N-H\cdots S$ hydrogen bonds involving the cation (Fig. 2 and Table 1). There are no other significant intermolecular interactions present.

Synthesis and crystallization

To a solution of 1,2-HSC₆H₂Cl₂SH (74 mg, 0.35 mmol) in CH₃CN (3 ml) was added i Pr₂NH (99 µl, 0.70 mmol). After stirring for 5 min, Cu(ClO₄)₂·6H₂O (64 mg, 0.18 mmol)

data reports

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1A\cdots S1$	0.89	2.59	3.417 (3)	156
$N1-H1B\cdots O1^{i}$	0.89	1.93	2.805 (4)	170

Symmetry code: (i) x, y + 1, z.

Figure 1

The molecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Figure 2

A view along the *b* axis of the crystal packing of the title compound, with the $N-H\cdots O$ and $N-H\cdots S$ hydrogen bonds shown as dashed lines (see Table 1).

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$(C_6H_{16}N)[Cu(C_6H_2Cl_2S_2)_2]\cdot C_4H_8O$
M _r	656.03
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	17.6487 (8), 8.8259 (3), 18.9730 (8)
β (°)	93.616 (2)
$V(Å^3)$	2949.5 (2)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.40
Crystal size (mm)	$0.08\times0.06\times0.01$
Data collection	
Diffractometer	Bruker Kappa APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2008)
Tmin. Tmax	0.90, 0.99
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	35036, 5305, 3766
R _{int}	0.046
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.096, 1.01
No. of reflections	5305
No. of parameters	302
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.30, -0.29
·	

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

was added, and the reaction mixture was left for 2 h in an open atmosphere. Then the solvent was removed in vacuum, yielding a green solid. Recrystallization of this solid in THF/*n*-heptane (1:1) at room temperature produced green plate-like crystals of the title compound (yield 110 mg, 93%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Herich, P., Fronc, M. & Kožíšek, J. (2015). Acta Cryst. C71, 159-164.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. &
- Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2016). 1, x161883 [https://doi.org/10.1107/S2414314616018836]

Diisopropylammonium (3,6-dichlorobenzene-1,2-dithiolato)cuprato(III) tetrahydrofuran monosolvate

Jesús Barrio, Esther Delgado, Diego Hernández, Elisa Hernández, Josefina Perles and Félix Zamora

Diisopropylammonium (3,6-dichlorobenzene-1,2-dithiolato)cuprato(III) tetrahydrofuran monosolvate

Crystal data

 $(C_{6}H_{16}N)[Cu(C_{6}H_{2}Cl_{2}S_{2})_{2}] \cdot C_{4}H_{8}O$ $M_{r} = 656.03$ Monoclinic, $P2_{1}/c$ a = 17.6487 (8) Å b = 8.8259 (3) Å c = 18.9730 (8) Å $\beta = 93.616$ (2)° V = 2949.5 (2) Å³ Z = 4

Data collection

Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.90, T_{\max} = 0.99$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.096$ S = 1.015305 reflections 302 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1344 $D_x = 1.477 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7896 reflections $\theta = 2.6-22.7^{\circ}$ $\mu = 1.40 \text{ mm}^{-1}$ T = 296 KPlate, green $0.08 \times 0.06 \times 0.01 \text{ mm}$

35036 measured reflections 5305 independent reflections 3766 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 25.3^\circ, \theta_{min} = 2.6^\circ$ $h = -18 \rightarrow 21$ $k = -10 \rightarrow 10$ $l = -22 \rightarrow 22$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 1.2611P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30$ e Å⁻³ $\Delta\rho_{min} = -0.29$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.89102 (17)	0.7458 (3)	0.7206 (2)	0.0564 (9)	
C2	0.9492 (2)	0.8280 (4)	0.6920 (2)	0.0753 (11)	
C3	1.0060 (2)	0.8945 (5)	0.7352 (3)	0.0984 (16)	
Н3	1.0448	0.9482	0.7155	0.118*	
C4	1.0048 (3)	0.8807 (5)	0.8072 (3)	0.0986 (15)	
H4	1.0431	0.9247	0.8363	0.118*	
C5	0.9480 (2)	0.8031 (4)	0.8363 (2)	0.0750 (11)	
C6	0.88941 (18)	0.7351 (4)	0.7939 (2)	0.0589 (9)	
C7	0.59589 (16)	0.3943 (3)	0.68861 (15)	0.0420 (7)	
C8	0.53460 (19)	0.3371 (3)	0.64767 (16)	0.0502 (8)	
C9	0.4777 (2)	0.2576 (4)	0.67669 (19)	0.0642 (9)	
H9	0.4372	0.2201	0.6481	0.077*	
C10	0.4808 (2)	0.2336 (4)	0.74827 (19)	0.0621 (9)	
H10	0.4422	0.1804	0.7685	0.074*	
C11	0.54128 (18)	0.2887 (3)	0.78993 (16)	0.0510 (8)	
C12	0.59981 (17)	0.3693 (3)	0.76139 (15)	0.0423 (7)	
C13	0.8609 (2)	0.1804 (6)	0.4692 (3)	0.1000 (15)	
H13A	0.8667	0.0854	0.4445	0.12*	
H13B	0.9031	0.192	0.5041	0.12*	
C14	0.8583 (4)	0.3070 (7)	0.4197 (4)	0.157 (3)	
H14A	0.8526	0.2701	0.3715	0.188*	
H14B	0.9048	0.3656	0.4252	0.188*	
C15	0.7938 (4)	0.4001 (7)	0.4353 (4)	0.155 (3)	
H15A	0.8108	0.4976	0.4539	0.186*	
H15B	0.7613	0.4169	0.3929	0.186*	
C16	0.7545 (3)	0.3222 (7)	0.4853 (3)	0.132 (2)	
H16A	0.7029	0.3029	0.4669	0.158*	
H16B	0.7524	0.3832	0.5277	0.158*	
C18	0.7984 (3)	1.1396 (5)	0.6879 (3)	0.1110 (17)	
H18A	0.7897	1.2171	0.7219	0.167*	
H18B	0.8244	1.1822	0.6496	0.167*	
H18C	0.8289	1.0606	0.7099	0.167*	
C17	0.7231 (3)	1.0744 (4)	0.6598 (2)	0.0843 (13)	
H17	0.6909	1.1586	0.6423	0.101*	
C20	0.6724 (2)	0.8859 (4)	0.5608 (2)	0.0758 (11)	
H20	0.6518	0.8159	0.5949	0.091*	
C21	0.7039 (3)	0.7943 (6)	0.5022 (2)	0.1007 (14)	
H21A	0.6656	0.7257	0.4831	0.151*	
H21B	0.7472	0.7377	0.5205	0.151*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H21C	0.7187	0.8612	0.4656	0.151*
C22	0.6102 (3)	0.9937 (6)	0.5353 (3)	0.124 (2)
H22A	0.6308	1.069	0.5053	0.186*
H22B	0.5895	1.0422	0.575	0.186*
H22C	0.5709	0.9385	0.5091	0.186*
C19	0.6817 (4)	0.9914 (5)	0.7149 (3)	0.126 (2)
H19A	0.711	0.9052	0.7311	0.188*
H19B	0.6332	0.9582	0.6948	0.188*
H19C	0.6744	1.0579	0.7539	0.188*
C11	0.94808 (7)	0.85050 (15)	0.60108 (7)	0.1084 (4)
C12	0.94720 (7)	0.78663 (15)	0.92707 (7)	0.1069 (4)
C13	0.52868 (6)	0.36943 (11)	0.55714 (4)	0.0730 (3)
Cl4	0.54440 (6)	0.25575 (13)	0.88029 (5)	0.0835 (3)
Cu1	0.74529 (2)	0.55730 (4)	0.74061 (2)	0.04436 (13)
01	0.79163 (18)	0.1828 (4)	0.50199 (17)	0.0995 (9)
N1	0.73755 (17)	0.9730 (3)	0.59786 (16)	0.0690 (8)
H1A	0.7725	0.9057	0.6127	0.083*
H1B	0.7581	1.0301	0.5655	0.083*
S1	0.82175 (5)	0.65214 (10)	0.66643 (5)	0.0550 (2)
S2	0.81555 (5)	0.63846 (11)	0.83102 (5)	0.0665 (3)
S3	0.66744 (5)	0.49927 (9)	0.65116 (4)	0.0492 (2)
S4	0.67634 (5)	0.44055 (10)	0.81442 (4)	0.0532 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0364 (18)	0.0413 (17)	0.092 (3)	0.0076 (15)	0.0108 (18)	0.0084 (17)
C2	0.048 (2)	0.061 (2)	0.119 (3)	-0.0013 (19)	0.021 (2)	0.018 (2)
C3	0.050 (3)	0.066 (3)	0.180 (5)	-0.019 (2)	0.017 (3)	0.010 (3)
C4	0.062 (3)	0.073 (3)	0.157 (5)	-0.019 (2)	-0.016 (3)	0.000 (3)
C5	0.055 (2)	0.058 (2)	0.110 (3)	-0.0029 (19)	-0.015 (2)	-0.002 (2)
C6	0.0426 (19)	0.0451 (18)	0.088 (3)	0.0062 (15)	-0.0024 (18)	0.0076 (18)
C7	0.0436 (18)	0.0339 (15)	0.0491 (17)	0.0028 (13)	0.0078 (14)	0.0006 (13)
C8	0.059 (2)	0.0433 (17)	0.0477 (18)	-0.0022 (16)	-0.0002 (16)	0.0007 (14)
C9	0.061 (2)	0.061 (2)	0.069 (2)	-0.0160 (19)	-0.0061 (19)	-0.0033 (18)
C10	0.060 (2)	0.057 (2)	0.070 (2)	-0.0204 (18)	0.0080 (19)	0.0032 (17)
C11	0.056 (2)	0.0490 (18)	0.0484 (18)	-0.0068 (16)	0.0085 (16)	0.0020 (14)
C12	0.0450 (18)	0.0367 (15)	0.0457 (17)	-0.0003 (14)	0.0070 (14)	0.0033 (13)
C13	0.063 (3)	0.105 (4)	0.134 (4)	-0.004 (3)	0.020 (3)	-0.003 (3)
C14	0.149 (6)	0.119 (5)	0.214 (7)	0.022 (4)	0.099 (5)	0.051 (5)
C15	0.146 (6)	0.099 (4)	0.231 (8)	0.024 (4)	0.094 (6)	0.049 (5)
C16	0.142 (5)	0.113 (4)	0.148 (5)	0.040 (4)	0.073 (4)	0.031 (4)
C18	0.135 (5)	0.084 (3)	0.112 (4)	0.030 (3)	-0.009 (3)	-0.019 (3)
C17	0.100 (3)	0.053 (2)	0.101 (3)	0.028 (2)	0.018 (3)	0.004 (2)
C20	0.069 (3)	0.064 (2)	0.094 (3)	0.005 (2)	0.002 (2)	0.024 (2)
C21	0.113 (4)	0.111 (4)	0.077 (3)	0.010 (3)	-0.008 (3)	-0.005 (3)
C22	0.076 (3)	0.106 (4)	0.187 (6)	0.011 (3)	-0.017 (3)	0.054 (4)
C19	0.187 (6)	0.080 (3)	0.118 (4)	0.036 (4)	0.079 (4)	0.011 (3)

Cl1	0.0833 (8)	0.1147 (10)	0.1327 (10)	-0.0095 (7)	0.0513 (7)	0.0343 (8)
Cl2	0.0963 (8)	0.1068 (9)	0.1116 (9)	-0.0110 (7)	-0.0393 (7)	-0.0080(7)
C13	0.0935 (7)	0.0751 (6)	0.0486 (5)	-0.0089 (5)	-0.0093 (5)	0.0011 (4)
Cl4	0.0905 (7)	0.1071 (8)	0.0540 (5)	-0.0341 (6)	0.0134 (5)	0.0160 (5)
Cu1	0.0377 (2)	0.0421 (2)	0.0538 (2)	0.00205 (16)	0.00665 (17)	0.00594 (17)
01	0.092 (2)	0.095 (2)	0.115 (2)	0.0046 (18)	0.0376 (19)	0.0226 (19)
N1	0.068 (2)	0.0602 (18)	0.080(2)	0.0217 (16)	0.0127 (17)	0.0166 (16)
S 1	0.0422 (5)	0.0579 (5)	0.0659 (5)	0.0026 (4)	0.0123 (4)	0.0120 (4)
S2	0.0565 (6)	0.0795 (7)	0.0627 (5)	-0.0151 (5)	-0.0021 (4)	0.0062 (5)
S3	0.0528 (5)	0.0506 (4)	0.0449 (4)	-0.0043 (4)	0.0097 (4)	0.0058 (4)
S4	0.0493 (5)	0.0640(5)	0.0460 (4)	-0.0095(4)	0.0012 (4)	0.0089(4)

Geometric parameters (Å, °)

C1—C2	1.394 (5)	C15—H15A	0.97	
C1—C6	1.397 (5)	C15—H15B	0.97	
C1—S1	1.753 (4)	C16—O1	1.420 (6)	
C2—C3	1.384 (6)	C16—H16A	0.97	
C2-Cl1	1.736 (4)	C16—H16B	0.97	
C3—C4	1.373 (7)	C18—C17	1.514 (6)	
С3—Н3	0.93	C18—H18A	0.96	
C4—C5	1.360 (6)	C18—H18B	0.96	
C4—H4	0.93	C18—H18C	0.96	
C5—C6	1.404 (5)	C17—C19	1.503 (6)	
C5—Cl2	1.729 (5)	C17—N1	1.512 (5)	
C6—S2	1.743 (3)	C17—H17	0.98	
С7—С8	1.387 (4)	C20—C22	1.509 (5)	
C7—C12	1.396 (4)	C20—C21	1.509 (6)	
C7—S3	1.752 (3)	C20—N1	1.518 (5)	
C8—C9	1.369 (4)	C20—H20	0.98	
C8—Cl3	1.738 (3)	C21—H21A	0.96	
C9—C10	1.372 (5)	C21—H21B	0.96	
С9—Н9	0.93	C21—H21C	0.96	
C10—C11	1.377 (4)	C22—H22A	0.96	
С10—Н10	0.93	C22—H22B	0.96	
C11—C12	1.392 (4)	C22—H22C	0.96	
C11—Cl4	1.736 (3)	C19—H19A	0.96	
C12—S4	1.749 (3)	C19—H19B	0.96	
C13—O1	1.406 (5)	C19—H19C	0.96	
C13—C14	1.459 (7)	Cu1—S4	2.1722 (9)	
C13—H13A	0.97	Cu1—S2	2.1736 (10)	
C13—H13B	0.97	Cu1—S3	2.1763 (9)	
C14—C15	1.450 (7)	Cu1—S1	2.1776 (9)	
C14—H14A	0.97	N1—H1A	0.89	
C14—H14B	0.97	N1—H1B	0.89	
C15—C16	1.391 (7)			
C2—C1—C6	118.9 (3)	C15—C16—H16B	109.7	

C2—C1—S1	121.4 (3)	O1—C16—H16B	109.7
C6—C1—S1	119.6 (2)	H16A—C16—H16B	108.2
C3—C2—C1	121.0 (4)	C17—C18—H18A	109.5
C3—C2—Cl1	120.1 (3)	C17—C18—H18B	109.5
C1—C2—Cl1	118.9 (3)	H18A—C18—H18B	109.5
C2—C3—C4	119.6 (4)	C17—C18—H18C	109.5
С2—С3—Н3	120.2	H18A—C18—H18C	109.5
C4—C3—H3	120.2	H18B—C18—H18C	109.5
$C_{5}-C_{4}-C_{3}$	120.5 (4)	C19—C17—N1	111.4 (3)
C5-C4-H4	119.8	$C_{19} - C_{17} - C_{18}$	1133(5)
$C_3 - C_4 - H_4$	119.8	N1 - C17 - C18	108.1(3)
C4-C5-C6	121 2 (4)	C_{19} C_{17} H_{17}	108.0
$C_{4} = C_{5} = C_{12}$	121.2(4) 1200(4)	N1 C17 H17	108.0
$C_{4} = C_{5} = C_{12}$	120.0(4) 118.0(3)	$N_{1} = C_{17} = H_{17}$	108.0
$C_0 = C_1 = C_1$	110.9(3)	$C_{18} = C_{17} = H_{17}$	100.0
$C_{5} = C_{6} = C_{1}$	110.0(3)	$C_{22} = C_{20} = C_{21}$	113.2(4)
$C_{3} = C_{0} = S_{2}$	121.3 (3)	C22—C20—N1	110.1(3)
C1 - C6 - S2	119.9 (3)	C21—C20—N1	108.0 (3)
C8—C7—C12	119.0 (3)	C22—C20—H20	108.5
C8—C7—S3	121.5 (2)	С21—С20—Н20	108.5
C12—C7—S3	119.5 (2)	N1—C20—H20	108.5
C9—C8—C7	121.9 (3)	C20—C21—H21A	109.5
C9—C8—Cl3	118.8 (3)	C20—C21—H21B	109.5
C7—C8—Cl3	119.3 (2)	H21A—C21—H21B	109.5
C8—C9—C10	119.5 (3)	C20—C21—H21C	109.5
С8—С9—Н9	120.2	H21A—C21—H21C	109.5
С10—С9—Н9	120.2	H21B—C21—H21C	109.5
C9—C10—C11	119.6 (3)	C20—C22—H22A	109.5
С9—С10—Н10	120.2	С20—С22—Н22В	109.5
C11—C10—H10	120.2	H22A—C22—H22B	109.5
C10-C11-C12	121.7 (3)	C20—C22—H22C	109.5
C10—C11—Cl4	118.9 (2)	H22A—C22—H22C	109.5
C12—C11—Cl4	119.4 (2)	H22B—C22—H22C	109.5
C11—C12—C7	118.3 (3)	С17—С19—Н19А	109.5
C11—C12—S4	121.7 (2)	С17—С19—Н19В	109.5
C7—C12—S4	120.0 (2)	H19A—C19—H19B	109.5
01—C13—C14	106.3 (4)	С17—С19—Н19С	109.5
01—C13—H13A	110.5	H19A—C19—H19C	109.5
C14— $C13$ — $H13A$	110.5	H19B-C19-H19C	109.5
01-C13-H13B	110.5	S4—Cu1—S2	87 85 (3)
C14— $C13$ — $H13B$	110.5	S4—Cu1—S3	92 26 (3)
$H_{13} - C_{13} - H_{13}B$	108.7	\$2_Cu1_\$3	17353(4)
C13 - C14 - C15	107.1 (5)	S4—Cu1—S1	173 81 (4)
C13 - C14 - H14A	110.3	S2_Cu1_S1	97 14 (A)
C15 - C14 - H14A	110.3	$S_2 = C_{11} = S_1$ $S_3 = C_{11} = S_1$	22.17 (4) 88 / 5 (2)
C13 C14 U14P	110.3	$C_{13} = C_{14} = C_{15}$	108 5 (4)
$C_{13} = C_{14} = H_{14} D$	110.3	$C_{13} = 01 = 010$ $C_{17} = N1 = C_{20}$	100.3(4) 120.0(2)
$U_{1J} = U_{14} = \Pi_{14} D$	110.5	C17 = N1 = C20	120.0(3)
$\Pi 14A - U 14 - \Pi 14B$	108.3	$C_1 / - N_1 - H_1 A$	107.3
U10-U13-U14	107.0(5)	C20-NI-HIA	107.5

C16—C15—H15A	110.3	C17—N1—H1B	107.3
C14—C15—H15A	110.3	C20—N1—H1B	107.3
C16—C15—H15B	110.3	H1A—N1—H1B	106.9
C14—C15—H15B	110.3	C1—S1—Cu1	103.90 (12)
H15A—C15—H15B	108.6	C6—S2—Cul	104.27 (13)
C15—C16—O1	109.7 (4)	C7—S3—Cu1	104.12 (10)
C15—C16—H16A	109.7	C12—S4—Cu1	104.08 (10)
O1—C16—H16A	109.7		
C6—C1—C2—C3	2.0 (5)	C10-C11-C12-C7	0.3 (5)
S1—C1—C2—C3	-176.4 (3)	Cl4—C11—C12—C7	-179.9 (2)
C6-C1-C2-Cl1	-176.3 (3)	C10-C11-C12-S4	179.5 (3)
S1—C1—C2—Cl1	5.3 (4)	Cl4—C11—C12—S4	-0.7 (4)
C1—C2—C3—C4	-0.7 (7)	C8—C7—C12—C11	-0.6 (4)
Cl1—C2—C3—C4	177.6 (4)	S3—C7—C12—C11	178.5 (2)
C2—C3—C4—C5	-0.4 (7)	C8—C7—C12—S4	-179.9 (2)
C3—C4—C5—C6	0.2 (7)	S3—C7—C12—S4	-0.8 (3)
C3—C4—C5—Cl2	180.0 (4)	O1—C13—C14—C15	11.8 (7)
C4—C5—C6—C1	1.2 (5)	C13-C14-C15-C16	-7.2 (9)
Cl2—C5—C6—C1	-178.6 (3)	C14—C15—C16—O1	-0.1 (8)
C4—C5—C6—S2	-178.8 (3)	C14—C13—O1—C16	-11.9 (6)
Cl2—C5—C6—S2	1.3 (4)	C15-C16-O1-C13	7.7 (7)
C2-C1-C6-C5	-2.2 (5)	C19—C17—N1—C20	52.1 (5)
S1—C1—C6—C5	176.2 (2)	C18—C17—N1—C20	177.2 (3)
C2-C1-C6-S2	177.8 (2)	C22—C20—N1—C17	56.5 (5)
S1—C1—C6—S2	-3.8 (4)	C21—C20—N1—C17	-179.5 (3)
C12—C7—C8—C9	0.4 (5)	C2-C1-S1-Cu1	-177.0(2)
S3—C7—C8—C9	-178.7 (2)	C6-C1-S1-Cu1	4.6 (3)
C12—C7—C8—Cl3	179.3 (2)	C5—C6—S2—Cu1	-179.1 (3)
S3—C7—C8—Cl3	0.2 (4)	C1—C6—S2—Cu1	0.8 (3)
C7—C8—C9—C10	0.1 (5)	C8—C7—S3—Cu1	179.6 (2)
Cl3—C8—C9—C10	-178.8 (3)	C12—C7—S3—Cu1	0.5 (2)
C8—C9—C10—C11	-0.5 (5)	C11—C12—S4—Cu1	-178.7 (2)
C9—C10—C11—C12	0.3 (5)	C7-C12-S4-Cu1	0.6 (3)
C9—C10—C11—Cl4	-179.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A…S1	0.89	2.59	3.417 (3)	156
N1—H1 <i>B</i> ···O1 ⁱ	0.89	1.93	2.805 (4)	170

Symmetry code: (i) x, y+1, z.