

IUCrData

ISSN 2414-3146

Received 14 November 2016 Accepted 23 November 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; hydrazide; inversion dimers; hydrogen bonding.

CCDC reference: 1518861

Structural data: full structural data are available from iucrdata.iucr.org

N'-[(*E*)-4-Methoxybenzylidene]-2-(4-methylphenoxy)acetohydrazide

Seranthimata Samshuddin,^a S. Naveen,^b Dandavathi Arunkumar,^c A. Mahesha,^c N. K. Lokanath^d* and Muneer Abdoh^e*

^aDepartment of Chemistry, SDM Institute of Technology, Ujire 574 240, India, ^bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^cDepartment of P.G. Studies in Chemistry, Alva's College, Moodabidri 574 227, India, ^dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and ^eDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories. *Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, muneer@najah.edu

The title compound, $C_{17}H_{18}N_2O_3$, crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit. The dihedral angle between the 4-methoxyphenyl ring and the toluene ring is 88.13 (10)° in molecule *A* and 61.47 (10)° in molecule *B*. In the crystal, molecules are linked *via* pairs of N-H···O hydrogen bonds, forming *A*–*A* and *B*–*B* inversion dimers with $R_2^2(8)$ ring motifs. The *B*–*B* dimers are linked by C–H···O hydrogen bonds, forming chains propagating along the [110] direction. The molecules are also linked by a series of C–H··· π interactions, forming a three-dimensional structure.

Structure description

A number of industrial and biologically active compounds can be synthesized by using Schiff bases as the substrates *via* cycloaddition, ring closure and replacement reactions. In addition, Schiff bases are also known to have biological activities such as antifungal (Singh & Dash, 1988) antimicrobial (El-masry *et al.*, 2000, Pandeya *et al.*, 1999), antitumor and as herbicides. Schiff bases have also been employed as ligands for complexation of metal ions (Aydogan *et al.*, 2001), since many of these complexes may be useful and serve as the models for biologically important species. They have wide range of applications on the industrial scale such as dyes and pigments. In view of the importance of Schiff base hydrazones, we report herein on the synthesis and crystal structure of title compound.

The molecular structure of the two independent molecules (A and B) of the title compound is shown in Fig. 1. The dihedral angle between the 4-methoxyphenyl ring and the toluene ring is 88.13 (10)° in molecule A and 61.47 (10)° in molecule B. The methoxy

Figure 1

View of the molecular structure of the two independent molecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view of the pairs of N-H···O hydrogen bonds forming the A-A and B-B inversion dimers with $R_2^2(8)$ ring motifs (see Table 1).

Figure 3

A view along the c axis of the crystal packing of the title compound (colour code: molecule A blue, molecule B red). The hydrogen bonds are shown as dashed lines (see Table 1), and only the H atoms (grey balls) involved in hydrogen bonding have been included.

Table 1Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2A–C7A, C11A–C16A, C2B–C7B and C11B–C16B rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1A - H1A \cdots O2A^{i}$	0.86	2.07	2.9226 (17)	173
$N1B - H1B \cdots O2B^{ii}$	0.86	2.07	2.9207 (17)	171
$C17B - H17C \cdots O1B^{iii}$	0.96	2.45	3.394 (2)	167
$C3A - H3A \cdots Cg3^{ii}$	0.93	2.95	3.549 (2)	123
$C6A - H6A \cdots Cg3^{i}$	0.93	2.98	3.698 (2)	135
$C16B - H16B \cdot \cdot \cdot Cg1$	0.93	2.81	3.742 (2)	177
$C17B - H17A \cdots Cg2^{i}$	0.96	2.81	3.569 (2)	136
$C17A - H17D \cdots Cg4^{ii}$	0.96	2.93	3.619 (2)	130

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 2, -y, -z + 1; (iii) -x + 1, -y + 1, -z + 1.

group in both molecules lies in the plane of the phenyl ring as indicated by the torsion angles of 4.2 (3)° for C17A-O3A-C14A-C13A and -6.1 (2)° for C17B-O3B-C14B-C13B. In the crystal, molecules are linked *via* pairs of N-H···O hydrogen bonds forming A-A and B-B inversion dimers with $R_2^2(8)$ ring motifs (Fig. 2 and Table 1). The B-B dimers are linked by C-H···O hydrogen bonds, forming chains propagating along [110]; see Table 1 and Fig. 3. The molecules are also linked by a series of C-H··· π interactions (Table 1), forming a three-dimensional structure.

 $\begin{array}{c} C_{17}H_{18}N_2O_3\\ 298.33 \end{array}$

Triclinic, P1

1578.95 (8)

 $0.29 \times 0.27 \times 0.25$

Bruker APEXII

21401, 5906, 3766

2011) 0.984, 0.987

0.026

0.609

Μο Κα

0.09

9.4835 (3), 11.9112 (4), 15.5727 (4)

72.136 (1), 86.122 (1), 70.688 (1)

Multi-scan (SADABS; Bruker,

296

4

Table 2Experimental details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction

 T_{\min} , T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int}

 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$

Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.042, 0.128, 1.02No. of reflections5906No. of parameters401H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å⁻³)0.13, -0.15

Computer programs: *APEX2* and *SAINT* (Bruker, 2011), *SHELXS97* and *SHELXL97* (Sheldrick, 2008) and *Mercury* (Macrae *et al.*, 2008).

Synthesis and crystallization

A mixture of 2-(4-methylphenoxy)acetohydrazide (1.8 g, 0.01 mol), anisaldehyde (1.36 g, 0.01 mol) and hydrazine hydrate (0.6 ml, 0.012 mol) in 15 ml of 2-propanol containing two drops of sulfuric acid, was refluxed for ca 3 h. On cooling, the solid that separated was filtered and recrystallized from DMF. On slow evaporation of the solvent colourless block-like crystals were obtained (yield 78%, m.p. 478 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). *Bull. Korean Chem. Soc.* **22**, 476–480.
- Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- El-masry, A. H., Fahmy, H. H. & Ali Abdelwahed, S. H. (2000). *Molecules*, 5, 1429–1438.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). *Farmaco*, **54**, 624–628.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.

full crystallographic data

IUCrData (2016). **1**, x161877 [https://doi.org/10.1107/S2414314616018770]

N'-[(E)-4-Methoxybenzylidene]-2-(4-methylphenoxy)acetohydrazide

Seranthimata Samshuddin, S. Naveen, Dandavathi Arunkumar, A. Mahesha, N. K. Lokanath and Muneer Abdoh

N'-[(E)-4-Methoxybenzylidene]-2-(4-methylphenoxy)acetohydrazide

Crystal data

C₁₇H₁₈N₂O₃ $M_r = 298.33$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.4835 (3) Å b = 11.9112 (4) Å c = 15.5727 (4) Å a = 72.136 (1)° $\beta = 86.122$ (1)° $\gamma = 70.688$ (1)° V = 1578.95 (8) Å³

Data collection

Bruker APEXII diffractometer Radiation source: Enraf Nonius FR590 Graphite monochromator Detector resolution: 18.4 pixels mm⁻¹ CCD rotation images, thick slices scans Absorption correction: multi-scan (SADABS; Bruker, 2011) $T_{min} = 0.984, T_{max} = 0.987$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.128$ S = 1.025906 reflections 401 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 4 F(000) = 632 $D_x = 1.255 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3766 reflections $\theta = 2.0-25.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.29 \times 0.27 \times 0.25 \text{ mm}$

21401 measured reflections 5906 independent reflections 3766 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 25.7^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -14 \rightarrow 13$ $l = -18 \rightarrow 18$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.068P)^2 + 0.0979P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.13$ e Å⁻³ $\Delta\rho_{min} = -0.15$ e Å⁻³

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Zv 0.0693 (5) O1A 0.62766 (15) -0.10667(12)0.25322(8)O2A 0.48929(12) 0.00034(10)0.38205(7)0.0523(4)O3A 1.42111 (13) -0.61212(11)0.69317 (8) 0.0640(4)N1A 0.67734 (14) -0.11448(11)0.48438 (8) 0.0473 (5) N2A 0.81426 (14) 0.50537 (9) -0.20652(11)0.0466(4)C1A 0.7133(4)0.3263(3)0.00499 (19) 0.1448(16)C2A 0.6947 (3) 0.2086(2)0.07176 (14) 0.0903(9)C3A 0.7806(2)0.1485(2)0.15016 (15) 0.0784(8)C4A 0.7635(2)0.04332 (18) 0.21292 (12) 0.0654(7)C5A 0.65672 (19) -0.00312(17)0.19669 (11) 0.0567 (6) C6A 0.0539(2)0.11750 (12) 0.0763 (8) 0.5715 (2) C7A 0.5910(3)0.1585(3)0.05705 (14) 0.0952(9)C8A 0.6934(2)-0.15650(16)0.34117 (11) 0.0655(7) C9A 0.61066 (17) -0.08207(14)0.40320 (10) 0.0439(5)C10A 0.86917 (17) -0.23483(14)0.58434 (11) 0.0469(5)0.61346 (10) C11A 1.01379 (17) -0.33017(14)0.0445(5)C12A 1.07332 (18) -0.36059(15)0.69929 (11) 0.0545 (6) 1.20890 (19) C13A -0.45358(16)0.72909(11) 0.0554 (6) C14A 1.28807 (17) -0.51757(14)0.67161 (11) 0.0483(5)C15A 1.2317(2)-0.48595(16)0.58491 (11) 0.0617 (6) C16A 1.09718 (19) 0.0564 (6) -0.39536(15)0.55635(11) C17A 1.4796 (2) -0.65423(18)0.78254(13)0.0728(7)O1B 0.81558 (13) 0.13675 (11) 0.72848 (8) 0.0634(5)O2B 0.98466 (12) 0.01561 (11) 0.61375 (7) 0.0603 (4) O3B 0.11002 (13) 0.58182 (11) 0.21213 (8) 0.0640(4)N1B 0.80908 (13) 0.10968 (11) 0.50178 (8) 0.0479(4)N2B 0.67169 (14) 0.19796 (11) 0.47024 (9) 0.0464(4)C1B 0.8441(4)-0.2943(3)1.02392 (17) 0.1524(13)C2B 0.8360(2)-0.1803(3)0.94423 (15) 0.0907(9)C3B 0.8593(2)-0.0773(3)0.95466 (14) 0.0964(12)C4B 0.0794(9)0.8521(2)0.0272(2)0.88290 (14) C5B 0.81862 (18) 0.03015 (17) 0.79686 (11) 0.0548(6)C6B 0.7916 (2) 0.0651(7)-0.07031(18)0.78532 (12) C7B 0.8018 (2) -0.1739(2)0.85892 (14) 0.0800(8)C8B 0.75049 (19) 0.15668 (16) 0.64326 (11) 0.0569 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

COD	0.05000 (10)			0.0450 (0)
C9B	0.85908 (18)	0.08797 (14)	0.58578 (10)	0.0470 (6)
C10B	0.63556 (17)	0.21631 (14)	0.38850 (10)	0.0456 (5)
C11B	0.49714 (17)	0.31029 (14)	0.34541 (10)	0.0437 (5)
C12B	0.40738 (18)	0.39544 (15)	0.38652 (11)	0.0528 (6)
C13B	0.27787 (19)	0.48620 (16)	0.34533 (11)	0.0545 (6)
C14B	0.23462 (17)	0.49484 (14)	0.25990 (10)	0.0481 (6)
C15B	0.32298 (19)	0.41067 (15)	0.21760 (11)	0.0557 (6)
C16B	0.45144 (19)	0.31997 (15)	0.25966 (11)	0.0548 (6)
C17B	0.0093 (2)	0.66292 (16)	0.25662 (13)	0.0662 (7)
H1A	0.63450	-0.07770	0.52340	0.0570*
H3A	0.85310	0.17950	0.16150	0.0940*
H4A	0.82350	0.00450	0.26550	0.0780*
H1A1	0.75270	0.30900	-0.04970	0.2170*
H6A	0.50100	0.02170	0.10500	0.0920*
H1A2	0.78090	0.35300	0.03080	0.2170*
H7A	0.53170	0.19680	0.00420	0.1140*
H1A3	0.61790	0.39100	-0.00820	0.2170*
H8A1	0.79630	-0.15750	0.33820	0.0790*
H8A2	0.69410	-0.24200	0.36610	0.0790*
H10A	0.81580	-0.19370	0.62440	0.0560*
H12A	1.02080	-0.31730	0.73830	0.0650*
H13A	1.24610	-0.47260	0.78740	0.0670*
H15	1.28630	-0.52710	0.54520	0.0740*
H16A	1.06060	-0.37690	0.49790	0.0680*
H17D	1.49320	-0.58610	0.79770	0.1090*
H17E	1.57410	-0.71930	0.78770	0.1090*
H17F	1.41130	-0.68600	0.82310	0.1090*
H1B1	0.94640	-0.33820	1.04460	0.2280*
H1B	0.86260	0.06860	0.46760	0.0570*
H1B2	0.80420	-0.34820	1.00580	0.2280*
H1B3	0.78680	-0.26860	1.07190	0.2280*
H3B	0.88080	-0.07810	1.01230	0.1160*
H8B1	0.71670	0.24530	0.61130	0.0680*
H4B	0.86960	0.09510	0.89220	0.0950*
H8B2	0.66380	0.12890	0.65260	0.0680*
H6B	0.76640	-0.06900	0.72820	0.0780*
H7B	0.78460	-0.24190	0.84980	0.0960*
H10B	0.69940	0.16830	0.35560	0.0550*
H12B	0.43550	0.39110	0.44380	0.0630*
H13B	0.21950	0.54160	0.37490	0.0650*
H15B	0.29500	0.41560	0.16010	0.0670*
H16B	0.50900	0.26390	0.23030	0.0660*
H17A	-0.02200	0.61410	0.31100	0.0990*
H17B	-0.07640	0.71560	0.21750	0.0990*
H17C	0.05870	0.71360	0.27130	0.0990*

data reports

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
O1A	0.0851 (10)	0.0679 (8)	0.0536 (7)	-0.0146 (7)	-0.0097 (6)	-0.0253 (7)
O2A	0.0465 (7)	0.0512 (7)	0.0523 (7)	-0.0065 (6)	-0.0064 (5)	-0.0145 (5)
O3A	0.0514 (7)	0.0578 (7)	0.0666 (8)	-0.0002 (6)	-0.0040 (6)	-0.0140 (6)
N1A	0.0422 (8)	0.0463 (8)	0.0474 (8)	-0.0051 (6)	-0.0014 (6)	-0.0153 (6)
N2A	0.0428 (8)	0.0410 (7)	0.0500 (8)	-0.0084 (6)	-0.0011 (6)	-0.0104 (6)
C1A	0.130 (3)	0.140 (3)	0.119 (2)	-0.043 (2)	0.0296 (19)	0.0176 (19)
C2A	0.0645 (14)	0.1090 (18)	0.0666 (14)	-0.0113 (13)	0.0162 (12)	-0.0051 (13)
C3A	0.0530 (12)	0.0982 (16)	0.0811 (15)	-0.0190 (11)	0.0149 (11)	-0.0319 (13)
C4A	0.0507 (11)	0.0791 (13)	0.0564 (11)	-0.0025 (10)	-0.0043 (8)	-0.0255 (10)
C5A	0.0463 (10)	0.0711 (12)	0.0448 (10)	-0.0008 (9)	-0.0010 (8)	-0.0257 (9)
C6A	0.0575 (12)	0.1120 (17)	0.0502 (11)	-0.0164 (12)	-0.0063 (9)	-0.0221 (12)
C7A	0.0648 (14)	0.139 (2)	0.0517 (12)	-0.0155 (14)	-0.0048 (10)	-0.0048 (13)
C8A	0.0810 (13)	0.0513 (11)	0.0533 (11)	-0.0023 (9)	-0.0048 (9)	-0.0200 (9)
C9A	0.0453 (10)	0.0380 (9)	0.0466 (9)	-0.0136 (8)	-0.0016 (7)	-0.0096 (7)
C10A	0.0436 (9)	0.0475 (9)	0.0487 (10)	-0.0111 (8)	0.0021 (7)	-0.0173 (8)
C11A	0.0423 (9)	0.0414 (9)	0.0473 (9)	-0.0132 (7)	0.0004 (7)	-0.0103 (7)
C12A	0.0487 (10)	0.0612 (11)	0.0531 (10)	-0.0095 (9)	0.0007 (8)	-0.0257 (9)
C13A	0.0506 (10)	0.0626 (11)	0.0509 (10)	-0.0138 (9)	-0.0069 (8)	-0.0174 (9)
C14A	0.0412 (9)	0.0418 (9)	0.0557 (10)	-0.0107 (8)	0.0017 (8)	-0.0091 (8)
C15A	0.0626 (12)	0.0592 (11)	0.0496 (10)	-0.0015 (9)	0.0070 (9)	-0.0184 (9)
C16A	0.0593 (11)	0.0567 (11)	0.0417 (9)	-0.0056 (9)	-0.0011 (8)	-0.0125 (8)
C17A	0.0544 (12)	0.0709 (13)	0.0746 (13)	-0.0051 (10)	-0.0117 (10)	-0.0101 (10)
O1B	0.0652 (8)	0.0699 (8)	0.0634 (8)	-0.0194 (6)	-0.0090 (6)	-0.0324 (7)
O2B	0.0399 (7)	0.0756 (8)	0.0530 (7)	-0.0063 (6)	-0.0058 (5)	-0.0140 (6)
O3B	0.0532 (7)	0.0641 (8)	0.0594 (7)	-0.0026 (6)	-0.0110 (6)	-0.0126 (6)
N1B	0.0388 (7)	0.0516 (8)	0.0461 (8)	-0.0066 (6)	-0.0026 (6)	-0.0129 (6)
N2B	0.0392 (7)	0.0460 (8)	0.0490 (8)	-0.0110 (6)	-0.0023 (6)	-0.0098 (6)
C1B	0.123 (2)	0.207 (3)	0.0850 (18)	-0.075 (2)	-0.0123 (16)	0.041 (2)
C2B	0.0595 (13)	0.140 (2)	0.0596 (14)	-0.0362 (14)	0.0009 (10)	-0.0076 (14)
C3B	0.0687 (15)	0.168 (3)	0.0447 (12)	-0.0283 (16)	-0.0057 (10)	-0.0310 (16)
C4B	0.0650 (13)	0.1193 (18)	0.0658 (13)	-0.0235 (12)	-0.0068 (10)	-0.0499 (13)
C5B	0.0406 (9)	0.0756 (13)	0.0501 (10)	-0.0111 (8)	-0.0008 (7)	-0.0297 (10)
C6B	0.0693 (12)	0.0877 (14)	0.0474 (10)	-0.0317 (11)	0.0051 (8)	-0.0270 (10)
C7B	0.0797 (15)	0.0969 (16)	0.0651 (13)	-0.0399 (12)	0.0099 (11)	-0.0162 (12)
C8B	0.0534 (10)	0.0603 (11)	0.0568 (10)	-0.0124 (9)	-0.0070 (8)	-0.0222 (9)
C9B	0.0425 (10)	0.0494 (10)	0.0475 (10)	-0.0172 (8)	-0.0006 (7)	-0.0094 (8)
C10B	0.0434 (9)	0.0468 (9)	0.0454 (9)	-0.0142 (7)	0.0024 (7)	-0.0130 (7)
C11B	0.0434 (9)	0.0436 (9)	0.0428 (9)	-0.0151 (7)	0.0019 (7)	-0.0103 (7)
C12B	0.0495 (10)	0.0608 (11)	0.0425 (9)	-0.0100 (9)	-0.0029 (7)	-0.0156 (8)
C13B	0.0508 (10)	0.0589 (11)	0.0499 (10)	-0.0096 (9)	0.0040 (8)	-0.0204 (8)
C14B	0.0432 (9)	0.0473 (10)	0.0486 (10)	-0.0139 (8)	-0.0039 (7)	-0.0069 (8)
C15B	0.0599 (11)	0.0589 (11)	0.0455 (9)	-0.0128 (9)	-0.0093 (8)	-0.0166 (8)
C16B	0.0552 (11)	0.0542 (10)	0.0514 (10)	-0.0078 (8)	-0.0017 (8)	-0.0210 (8)
C17B	0.0514 (11)	0.0553 (11)	0.0814 (13)	-0.0036 (9)	-0.0063 (9)	-0.0190 (10)

Geometric parameters (Å, °)

01A—C5A	1.378 (2)	C8A—H8A2	0.9700
O1A—C8A	1.410 (2)	C10A—H10A	0.9300
O2A—C9A	1.226 (2)	C12A—H12A	0.9300
O3A—C14A	1.363 (2)	C13A—H13A	0.9300
O3A—C17A	1.410 (2)	C15A—H15	0.9300
O1B—C8B	1.421 (2)	C16A—H16A	0.9300
O1B—C5B	1.378 (2)	C17A—H17F	0.9600
O2B—C9B	1.230 (2)	C17A—H17D	0.9600
O3B—C14B	1.364 (2)	C17A—H17E	0.9600
O3B—C17B	1.427 (2)	C1B—C2B	1.517 (4)
N1A—N2A	1.3751 (19)	C2B—C7B	1.362 (3)
N1A—C9A	1.340 (2)	C2B—C3B	1.374 (5)
N2A—C10A	1.270 (2)	C3B—C4B	1.380 (3)
N1A—H1A	0.8600	C4B—C5B	1.385 (3)
N1B—C9B	1.3409 (19)	C5B—C6B	1.368 (3)
N1B—N2B	1.3813 (19)	C6B—C7B	1.383 (3)
N2B—C10B	1.275 (2)	C8B—C9B	1.516 (2)
N1B—H1B	0.8600	C10B—C11B	1.454 (2)
C1A—C2A	1.524 (4)	C11B—C16B	1.391 (2)
C2A—C7A	1.371 (4)	C11B—C12B	1.385 (2)
C2A—C3A	1.371 (3)	C12B—C13B	1.375 (3)
C3A—C4A	1.383 (3)	C13B—C14B	1.382 (2)
C4A—C5A	1.373 (3)	C14B—C15B	1.384 (2)
C5A—C6A	1.376 (3)	C15B—C16B	1.372 (3)
C6A—C7A	1.372 (4)	C1B—H1B1	0.9600
C8A—C9A	1.516 (2)	C1B—H1B2	0.9600
C10A—C11A	1.454 (2)	C1B—H1B3	0.9600
C11A—C16A	1.393 (2)	СЗВ—НЗВ	0.9300
C11A—C12A	1.381 (2)	C4B—H4B	0.9300
C12A—C13A	1.385 (3)	C6B—H6B	0.9300
C13A—C14A	1.377 (2)	C7B—H7B	0.9300
C14A—C15A	1.380 (2)	C8B—H8B1	0.9700
C15A—C16A	1.364 (3)	C8B—H8B2	0.9700
C1A—H1A2	0.9600	C10B—H10B	0.9300
C1A—H1A1	0.9600	C12B—H12B	0.9300
C1A—H1A3	0.9600	C13B—H13B	0.9300
СЗА—НЗА	0.9300	C15B—H15B	0.9300
C4A—H4A	0.9300	C16B—H16B	0.9300
С6А—Н6А	0.9300	C17B—H17A	0.9600
C7A—H7A	0.9300	C17B—H17B	0.9600
C8A—H8A1	0.9700	C17B—H17C	0.9600
C5A—O1A—C8A	117.56 (15)	H17D—C17A—H17E	110.00
C14A—O3A—C17A	118.43 (14)	O3A—C17A—H17D	109.00
C5B	118.15 (14)	O3A—C17A—H17E	109.00
C14B—O3B—C17B	117.61 (13)	O3A—C17A—H17F	109.00

N2A—N1A—C9A	120 10 (13)	H17D—C17A—H17F	109.00
N1A - N2A - C10A	116 76 (13)	H17F $C17A$ $H17F$	109.00
N2A N1A H1A	120.00	$C_{3B} C_{2B} C_{7B} C_{7B}$	109.00
COA NIA HIA	120.00	$C_{1B} = C_{2B} = C_{1B}$	110.7(2)
N2P N1P COP	120.00 (13)	C1B $C2B$ $C7B$	121.0(2) 121.6(3)
N1D N2D C10D	120.00(13) 115.97(13)	C1D - C2D - C7D	121.0(3)
COD N1D U1D	113.07 (13)	$C_{2}D = C_{3}D = C_{4}D$	122.3(2)
C9D—NID—IID	120.00	$C_{3}B = C_{4}B = C_{3}B$	119.4(2)
N2B—NIB—HIB	120.00	OIB-CSB-C6B	124.87 (15)
CIA - C2A - C/A	121.9 (2)		116.09 (17)
CIA—C2A—C3A	121.2 (3)	C4B—C5B—C6B	119.04 (17)
C3A—C2A—C7A	116.9 (2)	C5B—C6B—C7B	119.73 (17)
C2A—C3A—C4A	122.4 (2)	C2B—C7B—C6B	122.7 (2)
C3A—C4A—C5A	119.20 (18)	O1B—C8B—C9B	112.34 (15)
O1A—C5A—C6A	115.23 (17)	N1B—C9B—C8B	115.72 (15)
C4A—C5A—C6A	119.47 (18)	O2B—C9B—C8B	122.86 (14)
O1A—C5A—C4A	125.29 (16)	O2B—C9B—N1B	121.41 (15)
C5A—C6A—C7A	119.7 (2)	N2B-C10B-C11B	121.70 (15)
C2A—C7A—C6A	122.4 (2)	C12B—C11B—C16B	117.24 (15)
O1A—C8A—C9A	112.24 (15)	C10B—C11B—C12B	121.81 (14)
N1A—C9A—C8A	115.43 (14)	C10B—C11B—C16B	120.94 (15)
O2A—C9A—N1A	121.74 (14)	C11B—C12B—C13B	122.09 (15)
O2A—C9A—C8A	122.81 (14)	C12B—C13B—C14B	119.87 (16)
N2A—C10A—C11A	121.36 (15)	O3B—C14B—C15B	116.09 (14)
C12A—C11A—C16A	117.31 (16)	O3B—C14B—C13B	124.99 (15)
C10A—C11A—C16A	121.46 (14)	C13B—C14B—C15B	118.92 (16)
C10A—C11A—C12A	121.23 (15)	C14B—C15B—C16B	120.67 (15)
C11A—C12A—C13A	122.05 (16)	C11B—C16B—C15B	121.22 (16)
C12A—C13A—C14A	119.41 (15)	C2B—C1B—H1B1	109.00
O3A - C14A - C15A	115.78 (15)	C2B—C1B—H1B2	110.00
C13A - C14A - C15A	119.13 (16)	C2B—C1B—H1B3	109.00
O3A - C14A - C13A	125.09(15)	H1B1 - C1B - H1B2	110.00
C14A - C15A - C16A	121.15 (16)	H1B1 - C1B - H1B3	109.00
$C_{11A} - C_{16A} - C_{15A}$	120.92(15)	H1B2— $C1B$ — $H1B3$	109.00
H_1A_1 C_1A H_1A_2	110.00	$C^{2}B - C^{3}B - H^{3}B$	119.00
$C_{2}A = C_{1}A = H_{1}A_{1}$	109.00	C4B $C3B$ $H3B$	119.00
C_{2A} C_{1A} H_{1A}^2	109.00	C_{3B} C_{4B} H_{4B}	120.00
C_{2A} C_{1A} H_{1A3}	109.00	C5B-C4B-H4B	120.00
$H_{1A1} = C_{1A} = H_{1A3}$	109.00	C5B C6B H6B	120.00
H1A2 C1A H1A3	110.00	C7P C6P H6P	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.00	$C^{2}D$ $C^{7}D$ $U^{7}D$	120.00
$C_{A} C_{A} C_{A} H_{A}$	119.00	$C_{2}D - C_{7}D - H_{7}D$	119.00
$C_{A} = C_{A} = H_{A}$	119.00	$COB - C/B - \Pi/B$	119.00
C3A—C4A—H4A	120.00	$OIB - C\delta B - H\delta B I$	109.00
C5A—C4A—H4A	120.00	OIB - C8B - H8B2	109.00
	120.00	CAB = CAB = HABI	109.00
	120.00		109.00
COA - C/A - H/A	119.00	$H\delta B1 - C\delta B - H\delta B2$	108.00
С2А—С7А—Н7А	119.00	N2B—C10B—H10B	119.00
C9A—C8A—H8A2	109.00	C11B—C10B—H10B	119.00

O1A—C8A—H8A1	109.00	C11B—C12B—H12B	119.00
O1A—C8A—H8A2	109.00	C13B—C12B—H12B	119.00
C9A—C8A—H8A1	109.00	C12B—C13B—H13B	120.00
H8A1—C8A—H8A2	108.00	C14B—C13B—H13B	120.00
N2A—C10A—H10A	119.00	C14B—C15B—H15B	120.00
$C_{11}A - C_{10}A - H_{10}A$	119.00	C16B-C15B-H15B	120.00
C13A - C12A - H12A	119.00	C11B-C16B-H16B	119.00
$C_{11}A - C_{12}A - H_{12}A$	119.00	C15B-C16B-H16B	119.00
C12A - C13A - H13A	120.00	O3B-C17B-H17A	109.00
C14A— $C13A$ — $H13A$	120.00	O3B-C17B-H17B	109.00
C_{14A} C_{15A} H_{15}	119.00	O3B - C17B - H17C	109.00
C_{16A} C_{15A} H_{15}	119.00	H17A - C17B - H17B	110.00
C_{15A} C_{16A} H_{16A}	120.00	H17A - C17B - H17C	109.00
$C_{11}A - C_{16}A - H_{16}A$	120.00	H17B-C17B-H17C	109.00
	120.00	III/b—cI/b—III/c	109.00
C8A—O1A—C5A—C4A	11.6 (3)	C12A—C11A—C16A—C15A	0.4(3)
C8A = O1A = C5A = C6A	-169.82(17)	C10A—C11A—C16A—C15A	-178.99(17)
C5A—O1A—C8A—C9A	78.4 (2)	C16A—C11A—C12A—C13A	-1.2(3)
C17A - O3A - C14A - C13A	4.2 (3)	C11A - C12A - C13A - C14A	0.5(3)
C17A - O3A - C14A - C15A	-17589(16)	C12A— $C13A$ — $C14A$ — $C15A$	12(3)
C5B-O1B-C8B-C9B	-8313(19)	C12A— $C13A$ — $C14A$ — $O3A$	-178.86(16)
C8B-O1B-C5B-C6B	13.8 (3)	C13A - C14A - C15A - C16A	-2.1(3)
C8B-O1B-C5B-C4B	-16635(17)	O3A - C14A - C15A - C16A	177.98(17)
C17B - O3B - C14B - C13B	-61(2)	C_{14A} C_{15A} C_{16A} C_{11A}	13(3)
C17B = O3B = C14B = C15B	174.49(16)	C7B-C2B-C3B-C4B	-14(4)
C9A = N1A = N2A = C10A	-178 18 (15)	C1B - C2B - C3B - C4B	-1799(3)
N2A = N1A = C9A = C8A	23(2)	C1B - C2B - C7B - C6B	1791(3)
N2A— $N1A$ — $C9A$ — $O2A$	-17933(15)	C_{3B} C_{2B} C_{7B} C_{6B}	0.5(4)
N1A - N2A - C10A - C11A	-179.54(14)	C2B $C3B$ $C4B$ $C5B$	0.7(4)
N2B = N1B = C9B = O2B	-175.47(15)	C_{3B} C_{4B} C_{5B} O_{1B} O_{2B}	-179.08(19)
C9B = N1B = N2B = C10B	177 21 (15)	C_{3B} C_{4B} C_{5B} C_{6B}	0.8 (3)
N2B $N1B$ $C9B$ $C8B$	53(2)	C4B - C5B - C6B - C7B	-1.6(3)
N1B N2B C10B C11B	-177 30 (14)	O1B-C5B-C6B-C7B	$178\ 25\ (18)$
C_{3A} C_{2A} C_{7A} C_{6A}	0.6(4)	C5B-C6B-C7B-C2B	10(3)
C1A - C2A - C7A - C6A	-178.8(3)	O1B— $C8B$ — $C9B$ — $O2B$	5.5 (2)
C7A—C2A—C3A—C4A	-1.0(4)	O1B— $C8B$ — $C9B$ — $N1B$	-175.26 (14)
C1A—C2A—C3A—C4A	178.4 (2)	N2B—C10B—C11B—C12B	8.7 (3)
C2A—C3A—C4A—C5A	-0.1 (3)	N2B—C10B—C11B—C16B	-172.91 (16)
C3A—C4A—C5A—C6A	1.6 (3)	C10B—C11B—C12B—C13B	178.64 (17)
C3A—C4A—C5A—O1A	-179.9 (2)	C16B—C11B—C12B—C13B	0.2 (3)
C4A—C5A—C6A—C7A	-2.0(3)	C10B—C11B—C16B—C15B	-178.20 (17)
O1A—C5A—C6A—C7A	179.4 (2)	C12B—C11B—C16B—C15B	0.3 (3)
C5A—C6A—C7A—C2A	0.9 (4)	C11B—C12B—C13B—C14B	-0.5 (3)
O1A—C8A—C9A—O2A	9.7 (2)	C12B—C13B—C14B—O3B	-179.03 (16)
O1A—C8A—C9A—N1A	-171.96 (15)	C12B—C13B—C14B—C15B	0.4 (3)
N2A—C10A—C11A—C16A	-0.8 (3)	O3B-C14B-C15B-C16B	179.53 (16)
N2A—C10A—C11A—C12A	179.88 (16)	C13B—C14B—C15B—C16B	0.0 (3)
C10A—C11A—C12A—C13A	178.13 (17)	C14B—C15B—C16B—C11B	-0.4 (3)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2A–C7A, C11A–C16A, C2B–C7B and C11B–C16B rings, respectively.

D—H···A	D—H	H···A	D···A	D—H··· A
N1A—H1A····O2A ⁱ	0.86	2.07	2.9226 (17)	173
$N1B$ — $H1B$ ···· $O2B^{ii}$	0.86	2.07	2.9207 (17)	171
C17 <i>B</i> —H17 <i>C</i> ···O1 <i>B</i> ⁱⁱⁱ	0.96	2.45	3.394 (2)	167
C3 <i>A</i> —H3 <i>A</i> ··· <i>Cg</i> 3 ⁱⁱ	0.93	2.95	3.549 (2)	123
C6A—H6A····Cg3 ⁱ	0.93	2.98	3.698 (2)	135
C16 <i>B</i> —H16 <i>B</i> ··· <i>Cg</i> 1	0.93	2.81	3.742 (2)	177
C17B—H17A···Cg2 ⁱ	0.96	2.81	3.569 (2)	136
C17 <i>A</i> —H17 <i>D</i> ··· <i>Cg</i> 4 ⁱⁱ	0.96	2.93	3.619 (2)	130

Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y+1, -z+1.