

IUCrData

ISSN 2414-3146

Received 30 October 2016 Accepted 31 October 2016

Edited by E. R. T. Tiekink, Sunway University, Malaysia

Keywords: crystal structure; 1*H*-pyrazole; pyrazine; 1*H*-pyrazolo[3,4-*b*]pyrazine.

CCDC reference: 1513135

Structural data: full structural data are available from iucrdata.iucr.org

6-Amino-3-methyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyrazine-5-carboxamide

Manpreet Kaur,^a Shaaban K. Mohamed,^{b,c} Mehmet Akkurt,^d Jerry P. Jasinski,^a Talaat I. El-Emary^e and Mustafa R. Albayati^f*

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Chemistry, Faculty of Science, Assiut University, 71515 Assiut, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

In the title compound, $C_{13}H_{12}N_6O$, the pyrazolo[3,4-*b*]pyrazine ring system is planar (r.m.s. deviation for the nine fitted atoms = 0.024 Å) and makes a dihedral angle of 5.72 (6)° with the pendent phenyl ring. The molecular conformation is stabilized by intramolecular N-H···O and C-H···N hydrogen bonds, each generating an S(6) loop. In the crystal, pairs of molecules are connected into inversion dimers by strong N-H···O hydrogen bonds, forming $R_2^2(8)$ ring motifs. These are linked into sheets parallel to (100) *via* N-H···N hydrogen bonds; π - π interactions between symmetry-related pyrazole and phenyl rings [centroid–centroid distances = 3.4453 (9) Å] within the sheets are also noted.

Structure description

Pyrazole-containing compounds have been shown to exhibit numerous biological activities such as anti-inflammatory (Süküroğlu *et al.*, 2005), antimalarial (Cunico *et al.*, 2006), antitumor (Naito, *et al.*, 2002), antibacterial, antifungal (Akbas *et al.*, 2005; El-Emary, 2006), antiparasitic (El-Kashef *et al.*, 2000; Rathelot *et al.*, 2002) and antiviral (Ding *et al.*, 1994). This led to the structure determination of the title compound (Fig. 1).

The pyrazolo[3,4-*b*]pyrazine ring system of the title compound is essentially planar with puckering parameters Q(2) = 0.0552 (15) Å and $\varphi(2) = 251.1$ (15)°. It is inclined to the phenyl ring with a dihedral angle of 5.72 (6)°. The bond lengths and bond angles of the title compound are normal and are in agreement with those reported for a similar

Table 1			
Hydroge	en-bond geom	etry (Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2 - H2B \cdots O1$	0.93(2)	1.97 (2)	2,6878 (18)	132.1 (17)
$C13-H13\cdots N3$	0.95	2.31	2.985 (2)	127
$N1-H1A\cdotsO1^{i}$	0.88	2.07	2.9488 (18)	175
$N2 - H2A \cdots N2^{ii}$	0.86	2.50	3.345 (2)	167

Symmetry codes: (i) -x + 1, -y + 3, -z + 1; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

compound (Mague *et al.*, 2014). Intramolecular $C-H \cdots N$ and $N-H \cdots O$ hydrogen bonds form *S*(6) loop systems (Table 1, Fig. 2), stabilizing the molecular conformation.

In the crystal, pairs of molecules are connected into inversion dimers by N-H···O hydrogen bonds, leading to $R_2^2(8)$

Figure 1

The title compound, with 50% probability displacement ellipsoids.

Figure 2

A view down the b axis of the unit-cell contents of the title compound. Dashed lines indicate hydrogen bonds.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{13}H_{12}N_{6}O$
Mr	268.29
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	173
a, b, c (Å)	14.7907 (5), 4.80351 (15), 17.1203 (8)
β (°)	92.067 (4)
$V(Å^3)$	1215.57 (8)
Z	4
Radiation type	Cu Ka
$\mu (\mathrm{mm}^{-1})^{51}$	0.83
Crystal size (mm)	$0.38 \times 0.08 \times 0.08$
Data collection	
Diffractometer	Rigaku Oxford Diffraction
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.909, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4156, 2307, 2011
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.615
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.112, 1.06
No. of reflections	2307
No. of parameters	187
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.22, -0.27

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

ring motifs. These dimers are linked by N-H···N hydrogen bonds, leading to the formation of sheets parallel to the *bc* plane. Further connections within sheets are *via* π - π interactions between symmetry-related pyrazole and phenyl rings [centroid-centroid distances = 3.4453 (9) Å; symmetry operation: *x*, 1 + *y*, *z*].

Synthesis and crystallization

The title compound was prepared according to our reported method (El-Emary, 2007). Crystals for X-ray diffraction analysis were obtained by slow evaporation of a dimethyl sulfoxide solution of the compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffract-ometer.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Akbas, E., Berber, I., Sener, A. & Hasanov, B. (2005). *Farmaco*, **60**, 23–26.
- Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A., Zanatta, N., de Souza, M. V., Freitas, I. O., Soares, R. P. & Krettli, A. U. (2006). *Bioorg. Med. Chem. Lett.* **16**, 649–653.
- Ding, L., Grehn, L., De Clercq, E., Andrei, G., Snoeck, R., Balzarini, J., Fransson, B., Ragnarsson, U. & Francis, G. W. (1994). Acta Chem. Scand. 48, 498–505.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- El-Emary, T. I. (2006). J. Chin. Chem. Soc. 53, 391-401.

- El-Emary, I. T. (2007). J. Chin. Chem. Soc. 54, 507-518.
- El-Kashef, H. S., El-Emary, T. I., Gasquet, M., Timon-David, P., Maldonaldo, J. & Vanelle, P. (2000). *Pharmazie*, **55**, 572–576.
- Mague, J. T., Mohamed, S. K., Akkurt, M., El-Emary, T. I. & Albayati, M. R. (2014). *Acta Cryst.* E**70**, o1212–o1213.
- Naito, H., Ohsuki, S., Sugimori, M., Atsumi, R., Minami, M., Nakamura, Y., Ishii, M., Hirotani, K., Kumazawa, E. & Ejima, A. (2002). Chem. Pharm. Bull. 50, 453–462.
- Rathelot, P., Azas, N., El-Kashef, H., Delmas, F., Di Giorgio, C., Timon-David, P., Maldonado, J. & Vanelle, P. (2002). *Eur. J. Med. Chem.* **37**, 671–679.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Süküroğlu, M., Caliskan Ergün, B., Unlü, S., Sahin, M. F., Küpeli, E., Yesilada, E. & Banoglu, E. (2005). Arch. Pharm. Res. 28, 509–517.

full crystallographic data

IUCrData (2016). 1, x161742 [https://doi.org/10.1107/S2414314616017429]

6-Amino-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyrazine-5-carboxamide

Manpreet Kaur, Shaaban K. Mohamed, Mehmet Akkurt, Jerry P. Jasinski, Talaat I. El-Emary and Mustafa R. Albayati

6-Amino-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]pyrazine-5-carboxamide

Crystal data

 $C_{13}H_{12}N_6O$ $M_r = 268.29$ Monoclinic, $P2_1/c$ a = 14.7907 (5) Å b = 4.80351 (15) Å c = 17.1203 (8) Å $\beta = 92.067$ (4)° V = 1215.57 (8) Å³ Z = 4

Data collection

Rigaku Oxford Diffraction diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 16.0416 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.909, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.112$ S = 1.062307 reflections 187 parameters 0 restraints F(000) = 560 $D_x = 1.466 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 1708 reflections $\theta = 3.9-71.0^{\circ}$ $\mu = 0.83 \text{ mm}^{-1}$ T = 173 KNeedle, yellow $0.38 \times 0.08 \times 0.08 \text{ mm}$

4156 measured reflections 2307 independent reflections 2011 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 71.4^\circ, \ \theta_{min} = 5.2^\circ$ $h = -13 \rightarrow 18$ $k = -5 \rightarrow 3$ $l = -18 \rightarrow 20$

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0562P)^2 + 0.3905P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.27$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	r	11	7	II. */II	
01	A 0.40400 (7)	<i>y</i>	2	O_{iso} / O_{eq}	
	0.49400 (7)	1.2243 (2)	0.5/401 (/)	0.0261 (3)	
	0.61528 (9)	1.3370(3)	0.50430 (8)	0.0259 (3)	
HIA	0.5852	1.4680	0.4/85	0.031*	
HIB	0.6724	1.3050	0.4945	0.031*	
N2	0.51127 (9)	0.8234 (3)	0.68305 (9)	0.0264 (3)	
H2A	0.4974	0.6859	0.7128	0.032*	
N3	0.64619 (8)	0.5919 (3)	0.69322 (7)	0.0188 (3)	
N4	0.71717 (8)	0.9523 (3)	0.57703 (7)	0.0186 (3)	
N5	0.88003 (8)	0.4818 (3)	0.66020(7)	0.0203 (3)	
N6	0.80080 (8)	0.4173 (3)	0.69785 (7)	0.0185 (3)	
C1	0.57451 (10)	1.1873 (3)	0.55802 (9)	0.0201 (3)	
C2	0.63173 (10)	0.9704 (3)	0.59852 (8)	0.0187 (3)	
C3	0.59627 (10)	0.7917 (3)	0.65810 (9)	0.0189 (3)	
C4	0.73170 (10)	0.5843 (3)	0.67103 (8)	0.0170 (3)	
C5	0.76778 (10)	0.7588 (3)	0.61399 (9)	0.0182 (3)	
C6	0.86115 (10)	0.6839 (3)	0.61053 (9)	0.0200 (3)	
C7	0.93157 (10)	0.8105 (4)	0.56164 (10)	0.0275 (4)	
H7A	0.9917	0.7674	0.5844	0.041*	
H7B	0.9232	1.0128	0.5598	0.041*	
H7C	0.9261	0.7346	0.5085	0.041*	
C8	0.80259 (10)	0.2105 (3)	0.75710 (9)	0.0188 (3)	
C9	0.88429 (10)	0.0839 (3)	0.77948 (10)	0.0246 (4)	
H9	0.9388	0.1388	0.7562	0.030*	
C10	0.88520(11)	-0.1224 (4)	0.83593 (10)	0.0291 (4)	
H10	0.9408	-0.2087	0.8512	0.035*	
C11	0.80605 (12)	-0.2052 (3)	0.87057 (10)	0.0281 (4)	
H11	0.8072	-0.3483	0.9089	0.034*	
C12	0.72548 (11)	-0.0761 (3)	0.84836 (9)	0.0257 (4)	
H12	0.6710	-0.1311	0.8718	0.031*	
C13	0.72332 (10)	0.1325 (3)	0.79237 (9)	0.0223 (3)	
H13	0.6678	0.2218	0.7782	0.027*	
H2B	0.4722 (14)	0.939 (4)	0.6543 (13)	0.036 (5)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0188 (5)	0.0262 (6)	0.0333 (6)	0.0053 (4)	0.0009 (5)	0.0035 (5)
N1	0.0220 (6)	0.0268 (7)	0.0289 (7)	0.0044 (6)	0.0004 (5)	0.0080 (6)
N2	0.0169 (6)	0.0288 (7)	0.0338 (8)	0.0048 (6)	0.0065 (6)	0.0094 (6)
N3	0.0142 (6)	0.0202 (6)	0.0219 (6)	0.0006 (5)	0.0015 (5)	-0.0010 (5)
N4	0.0156 (6)	0.0200 (6)	0.0201 (6)	-0.0005 (5)	-0.0004 (5)	-0.0020 (5)
N5	0.0135 (6)	0.0255 (7)	0.0221 (6)	0.0001 (5)	0.0024 (5)	-0.0011 (5)
N6	0.0133 (6)	0.0205 (6)	0.0216 (6)	0.0010 (5)	0.0012 (5)	0.0010 (5)
C1	0.0191 (7)	0.0182 (7)	0.0229 (7)	0.0009 (6)	-0.0021 (6)	-0.0029 (6)
C2	0.0171 (7)	0.0182 (7)	0.0208 (7)	0.0000 (6)	-0.0005 (6)	-0.0021 (6)

C3	0.0155 (7)	0.0195 (7)	0.0218 (7)	-0.0002 (5)	0.0004 (6)	-0.0034 (6)
C4	0.0157 (7)	0.0175 (7)	0.0177 (7)	0.0002 (5)	-0.0006 (5)	-0.0027 (5)
C5	0.0151 (7)	0.0195 (7)	0.0201 (7)	-0.0003 (5)	0.0013 (5)	-0.0016 (6)
C6	0.0151 (7)	0.0238 (7)	0.0212 (7)	0.0001 (6)	0.0011 (6)	-0.0012 (6)
C7	0.0177 (7)	0.0356 (9)	0.0295 (8)	0.0003 (6)	0.0049 (6)	0.0057 (7)
C8	0.0185 (7)	0.0183 (7)	0.0195 (7)	0.0008 (6)	-0.0006 (6)	-0.0016 (6)
C9	0.0173 (7)	0.0285 (8)	0.0280 (8)	0.0019 (6)	-0.0007 (6)	0.0017 (7)
C10	0.0236 (8)	0.0312 (8)	0.0319 (9)	0.0038 (7)	-0.0052 (7)	0.0048 (7)
C11	0.0335 (9)	0.0270 (8)	0.0236 (8)	-0.0014 (7)	-0.0025 (7)	0.0039 (7)
C12	0.0262 (8)	0.0277 (8)	0.0235 (8)	-0.0044 (7)	0.0045 (6)	-0.0007 (6)
C13	0.0179 (7)	0.0243 (7)	0.0248 (8)	0.0004 (6)	0.0016 (6)	-0.0004 (6)

Geometric parameters (Å, °)

01—C1	1.2444 (18)	C4—C5	1.407 (2)
N1—H1A	0.8800	C5—C6	1.430 (2)
N1—H1B	0.8800	C6—C7	1.489 (2)
N1-C1	1.329 (2)	С7—Н7А	0.9800
N2—H2A	0.8636	С7—Н7В	0.9800
N2—C3	1.3509 (19)	С7—Н7С	0.9800
N2—H2B	0.93 (2)	C8—C9	1.394 (2)
N3—C3	1.340 (2)	C8—C13	1.389 (2)
N3—C4	1.3341 (18)	С9—Н9	0.9500
N4—C2	1.3316 (19)	C9—C10	1.384 (2)
N4—C5	1.338 (2)	C10—H10	0.9500
N5—N6	1.3927 (16)	C10—C11	1.389 (2)
N5—C6	1.314 (2)	C11—H11	0.9500
N6—C4	1.3656 (19)	C11—C12	1.384 (2)
N6—C8	1.4193 (19)	C12—H12	0.9500
C1—C2	1.497 (2)	C12—C13	1.386 (2)
C2—C3	1.446 (2)	C13—H13	0.9500
H1A—N1—H1B	120.0	N5C6C5	110.00 (13)
C1—N1—H1A	120.0	N5C6C7	121.93 (13)
C1—N1—H1B	120.0	C5—C6—C7	128.05 (14)
H2A—N2—H2B	127.9	С6—С7—Н7А	109.5
C3—N2—H2A	110.1	С6—С7—Н7В	109.5
C3—N2—H2B	117.8 (13)	C6—C7—H7C	109.5
C4—N3—C3	113.86 (12)	H7A—C7—H7B	109.5
C2—N4—C5	115.77 (12)	H7A—C7—H7C	109.5
C6—N5—N6	107.54 (12)	H7B—C7—H7C	109.5
N5—N6—C8	119.49 (12)	C9—C8—N6	119.68 (14)
C4—N6—N5	110.22 (12)	C13—C8—N6	120.33 (13)
C4—N6—C8	130.23 (13)	C13—C8—C9	119.98 (14)
01—C1—N1	122.47 (14)	С8—С9—Н9	120.3
O1—C1—C2	121.81 (14)	C10-C9-C8	119.38 (15)
N1-C1-C2	115.72 (13)	С10—С9—Н9	120.3
N4—C2—C1	116.34 (13)	C9—C10—H10	119.5

	101 00 (10)	G0 G10 G11	101 07 (15)
N4—C2—C3	121.88 (13)	C9—C10—C11	121.07 (15)
C3—C2—C1	121.78 (13)	C11—C10—H10	119.5
N2—C3—C2	121.43 (13)	C10—C11—H11	120.5
N3—C3—N2	116.29 (13)	C12—C11—C10	118.98 (15)
N3—C3—C2	122.25 (13)	C12—C11—H11	120.5
N3—C4—N6	128.75 (13)	C11—C12—H12	119.6
N3—C4—C5	124.66 (13)	C11—C12—C13	120.79 (15)
N6-C4-C5	106.58 (13)	C13—C12—H12	119.6
N4—C5—C4	121.50 (13)	C8—C13—H13	120.1
N4—C5—C6	132.81 (14)	C12—C13—C8	119.78 (15)
C4—C5—C6	105.66 (13)	C12—C13—H13	120.1
O1—C1—C2—N4	-179.29 (13)	C2—N4—C5—C4	0.8 (2)
O1—C1—C2—C3	0.3 (2)	C2—N4—C5—C6	-176.75 (15)
N1—C1—C2—N4	0.6 (2)	C3—N3—C4—N6	176.55 (14)
N1—C1—C2—C3	-179.82 (13)	C3—N3—C4—C5	-2.4 (2)
N3—C4—C5—N4	0.4 (2)	C4—N3—C3—N2	-174.80 (13)
N3—C4—C5—C6	178.55 (13)	C4—N3—C3—C2	3.3 (2)
N4—C2—C3—N2	175.69 (14)	C4—N6—C8—C9	-173.91 (14)
N4—C2—C3—N3	-2.3(2)	C4—N6—C8—C13	6.5 (2)
N4—C5—C6—N5	178.32 (15)	C4—C5—C6—N5	0.45 (17)
N4—C5—C6—C7	0.1 (3)	C4—C5—C6—C7	-177.76 (15)
N5—N6—C4—N3	-178.54 (13)	C5—N4—C2—C1	179.62 (12)
N5—N6—C4—C5	0.58 (16)	C5—N4—C2—C3	0.0 (2)
N5—N6—C8—C9	3.0 (2)	C6—N5—N6—C4	-0.30 (16)
N5—N6—C8—C13	-176.51 (13)	C6—N5—N6—C8	-177.82 (13)
N6—N5—C6—C5	-0.10 (16)	C8—N6—C4—N3	-1.4 (3)
N6—N5—C6—C7	178.24 (13)	C8—N6—C4—C5	177.75 (14)
N6-C4-C5-N4	-178.78 (13)	C8—C9—C10—C11	0.0 (3)
N6—C4—C5—C6	-0.61 (16)	C9—C8—C13—C12	-1.6(2)
N6—C8—C9—C10	-178.44 (15)	C9-C10-C11-C12	-0.6(3)
N6-C8-C13-C12	177.92 (14)	C10-C11-C12-C13	0.1 (2)
C1 - C2 - C3 - N2	-3.9(2)	$C_{11} - C_{12} - C_{13} - C_{8}$	1.0 (2)
C1 - C2 - C3 - N3	178 17 (13)	C_{13} C_{8} C_{9} C_{10}	110(2)
C1 $C2$ $C3$ 113	1,0,1,(15)		1.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>B</i> …O1	0.93 (2)	1.97 (2)	2.6878 (18)	132.1 (17)
C13—H13…N3	0.95	2.31	2.985 (2)	127
N1—H1A···O1 ⁱ	0.88	2.07	2.9488 (18)	175
N2—H2A····N2 ⁱⁱ	0.86	2.50	3.345 (2)	167

Symmetry codes: (i) -x+1, -y+3, -z+1; (ii) -x+1, y-1/2, -z+3/2.