IUCrData

ISSN 2414-3146

Received 30 September 2016 Accepted 24 November 2016

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary

Keywords: crystal structure; fused tetracyclic core; furan; disorder; dimer.

CCDC reference: 1519100

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 8-amino-7-(furan-2-yl)-5,6-dihydrothieno-[2,3-b]benzo[h]quinoline-9-carboxylate

Etify A. Bakhite,^a Manpreet Kaur,^b Mehmet Akkurt,^c Shaaban K. Mohamed,^{d,e} Jerry P. Jasinski^b and Mustafa R. Albayati^f*

^aChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

In the title compound, $C_{22}H_{18}N_2O_3S$, the two independent molecules in the asymmetric unit form a dimer *via* N-H···O hydrogen bonds. In the crystal, the molecular layers can be found in the (110) plane, connected by C-H··· π interactions. Atoms of the furan ring of one independent molecule are disordered over two sets of sites with an occupancy ratio 0.735 (3):0.265 (3).

Structure description

The thiophene moiety is present in a large number of bioactive molecules having diverse biological activities such as anti-inflammatory (Murakami *et al.*, 1998), anticonvulsant (Kulandasamy *et al.*, 2009), antibacterial (Lu *et al.*, 2011) and antitumor (Kaushik *et al.*, 2012). The quinoline ring system is one of the most commonly encountered heterocycles in medicinal chemistry (Bouraiou *et al.*, 2007). Substituted quinolines possess diverse chemotherapeutic activities including antibacterial (Kidwai *et al.*, 2000), antifungal (Musiol *et al.*, 2006), antimalarial (Charris *et al.*, 2005; Cunico *et al.*, 2006) and antitumor (Chen *et al.*, 2006). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound.

In the asymmetric unit (Fig. 1), the two independent molecules A and B form a dimer via N-H···O hydrogen bonds (Table 1). In both molecules, the cyclohexene rings of the fused tetracyclic cores are puckered with $Q_{\rm T} = 0.438$ (2) Å, $\theta = 65.0$ (2)°, $\varphi = 277.0$ (3)° in A and $Q_{\rm T} = 0.481$ (2) Å, $\theta = 111.8$ (2)°, $\varphi = 87.2$ (2)° in B. In both A and B, the molecular conformation is stabilized by an N-H···O hydrogen bonds.

Figure 1

A view of molecules A and B in the asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. For clarity, only the major disorder component of the furan ring in molecule A is shown.

In the crystal, molecular layers can be found in the (110) plane which are connected by C-H··· π and C-H···N interactions (Fig. 2, Table 1). There is a π - π interaction between the N1A/C4A-C8A and C9A-C14A(-x, -y + 1, -z + 2) rings with a centroid-centroid distance of 3.7975 (10) Å.

Synthesis and crystallization

To a mixture of 3-cyano-5,6-dihydro-4-(2-furyl)-benzo[*h*]qui-]quinoline-2(1*H*)-thione (10 mmol) and ethyl chloroacetate (10 mmol) in ethanol (20 ml) containing sodium ethoxide (20 mmol) was heated under reflux for one h and then allowed to cool. The solid that formed was collected and recrystallized from ethanol. Yield: 77%; m.p. 460–461 K. IR: 3490, 3360 (NH₂), 1665 (C=O) cm^{-1. 1}H NMR (CDCl₃): 8.45 (*m*, 1H, CH–furyl); 6.60 (*m*, 2H, 2CH–furyl); 7.15–7.75 (*m*, 4H, ArH); 5.75 (*s*, 2H, NH₂); 4.02–4.45 (*q*, 2H, OCH₂); 2.85 (*t*, 4H, CH₂– CH₂); 1.30–1.45 (*t*, 3H, CH₃ of ester) p.p.m.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms O3/C17–C20 atoms of the

Figure 2

Packing of the title molecule, viewed down the a axis, with the hydrogen bonds shown by dotted lines. For clarity, the minor disorder component of the furan ring in molecule A is omitted.

Table 1 Hydrogen-bond geometry (Å, °).

Cg8, Cg9 and Cg11 are the centroids of the O3B/C17B-C20B furan, N1B/C4B-C8B pyridine and C9B-C14B benzene rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2A - HN2A \cdots O1A$	0.83 (3)	2.23 (3)	2.839 (2)	131 (2)
$N2A - HN2A \cdots O1B$	0.83 (3)	2.33 (3)	2.962 (2)	134 (2)
$N2A - HN2B \cdots O3A$	0.86 (3)	2.17 (3)	2.869 (3)	138 (2)
$N2B - HN2D \cdots O1A$	0.87 (3)	2.33 (2)	2.998 (2)	134 (2)
$N2B - HN2D \cdots O1B$	0.87 (3)	2.17 (2)	2.802 (2)	129 (2)
$N2B - HN2C \cdots Cg8$	0.83 (3)	2.55 (3)	3.294 (2)	150 (2)
$C18B - H18B \cdot \cdot \cdot Cg11^{i}$	0.93	2.53	3.353 (2)	148
$C21A - H21A \cdots Cg9^{i}$	0.97	2.96	3.718 (2)	136
$C15A - H15A \cdots N1A^{ii}$	0.97	2.61	3.386 (2)	137

Symmetry codes: (i) $x - \frac{3}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$; (ii) -x, -y + 1, -z + 2.

Table	2	
Evnari	montal	details

zxpe	erim	ental	deta	IIS.

Crystal data	
Chemical formula	$C_{22}H_{18}N_2O_3S$
Mr	390.44
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	173
a, b, c (Å)	11.5227 (1), 25.5293 (3),
	12.4749 (1)
β (°)	90.038 (1)
$V(Å^3)$	3669.70 (6)
Z	8
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	1.79
Crystal size (mm)	$0.24 \times 0.22 \times 0.18$
Data collection	
Diffractometer	Rigaku Oxford Diffraction
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.850, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	26340, 7070, 6264
R _{int}	0.041
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.615
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.121, 1.02
No. of reflections	7070
No. of parameters	535
No. of restraints	6
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.51, -0.35

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

furan ring of molecule A are disordered over two sets of sites with an occupancy ratio 0.735 (3):0.265 (3).

Acknowledgements

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X ray diffract-ometer.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Bouraiou, A., Belfaitah, A., Bouacida, S., Benard-Rocherulle, P. & Carboni, B. (2007). Acta Cryst. E63, o2133-o2135.
- Charris, J., Dominguez, J., Gamboa, N., Rodrigues, J. & Angel, J. (2005). Eur. J. Med. Chem. 40, 875–881.
- Chen, Y., Huang, C., Huang, Z., Tseng, C., Chang, F., Yang, S., Lin, S. & Tzeng, C. (2006). *Bioorg. Med. Chem.* 14, 3098–3105.
- Cunico, W., Cechinel, C., Bonacorso, H., Martins, M., Zanatta, N., de Souza, N., Freitas, I., Soares, R. & Krettli, A. (2006). *Bioorg. Med. Chem. Lett.* 16, 649–653.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

- Kaushik, N. K., Kim, H. S., Chae, Y. J., Lee, Y. N., Kwon, G., Choi, E. H. & Kim, I. T. (2012). *Molecules*, **17**, 11456–11468.
- Kidwai, M., Bhushan, K., Sapra, P., Saxena, R. & Gupta, R. (2000). Bioorg. Med. Chem. 8, 69–72.
- Kulandasamy, R., Adhikari, A. V. & Stables, J. P. (2009). Eur. J. Med. Chem. 44, 4376–4384.
- Lu, X., Wan, B., Franzblau, S. G. & You, Q. (2011). *Eur. J. Med. Chem.* **46**, 3551–3563.
- Murakami, N., Takase, H., Saito, T., Iwata, K., Miura, H. & Naruse, T. (1998). Eur. J. Pharmacol. 352, 81–90.
- Musiol, R., Jampilek, J., Buchta, V., Silva, L., Niedbala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). *Bioorg. Med. Chem.* 14, 3592–3598.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2016). **1**, x161884 [https://doi.org/10.1107/S2414314616018848]

Ethyl 8-amino-7-(furan-2-yl)-5,6-dihydrothieno[2,3-*b*]benzo[*h*]quinoline-9carboxylate

Etify A. Bakhite, Manpreet Kaur, Mehmet Akkurt, Shaaban K. Mohamed, Jerry P. Jasinski and Mustafa R. Albayati

Ethyl 8-amino-7-(furan-2-yl)-5,6-dihydrothieno[2,3-b]benzo[h]quinoline-9-carboxylate

Crystal data

$C_{22}H_{18}N_2O_3S$	F(000) = 1632
$M_r = 390.44$	$D_{\rm x} = 1.413 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Cu Ka radiation, $\lambda = 1.54184$ Å
$a = 11.5227 (1) \text{\AA}$	Cell parameters from 11878 reflections
b = 25.5293 (3) Å	$\theta = 4.0-71.5^{\circ}$
c = 12.4749 (1) Å	$\mu = 1.79 \text{ mm}^{-1}$
$\beta = 90.038(1)^{\circ}$	T = 173 K
V = 3669.70 (6) Å ³	Prism, yellow
Z = 8	$0.24 \times 0.22 \times 0.18 \text{ mm}$
Data collection	
Rigaku Oxford Diffraction	26340 measured reflections
diffractometer	7070 independent reflections
Radiation source: Enhance (Cu) X-ray Source	6264 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.041$
ω scans	$\theta_{\rm max} = 71.6^\circ, \ \theta_{\rm min} = 3.5^\circ$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(CrysAlis PRO; Agilent, 2014)	$k = -31 \rightarrow 31$
$T_{\min} = 0.850, \ T_{\max} = 1.000$	$l = -15 \rightarrow 9$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Laget squares matrix: full	I stome trasted by a mixture of indens

Refinement on F^2 Hydrogen site location: mixedLeast-squares matrix: fullH atoms treated by a mixture of independent $R[F^2 > 2\sigma(F^2)] = 0.042$ and constrained refinement $wR(F^2) = 0.121$ $w = 1/[\sigma^2(F_o^2) + (0.0748P)^2 + 1.4658P]$ S = 1.02where $P = (F_o^2 + 2F_c^2)/3$ 7070 reflections $(\Delta/\sigma)_{max} = 0.001$ 535 parameters $\Delta\rho_{max} = 0.51$ e Å⁻³6 restraints $\Delta\rho_{min} = -0.35$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1A	0.22490 (3)	0.33984 (2)	0.86042 (3)	0.02556 (12)	
O1A	0.56095 (11)	0.33865 (5)	0.80644 (11)	0.0341 (3)	
O2A	0.42720 (11)	0.27591 (5)	0.83821 (10)	0.0303 (3)	
N1A	0.05971 (12)	0.41276 (5)	0.86245 (11)	0.0241 (3)	
N2A	0.46257 (14)	0.43728 (7)	0.75339 (14)	0.0341 (3)	
HN2A	0.522 (2)	0.4191 (10)	0.7475 (19)	0.041*	
HN2B	0.462 (2)	0.4705 (10)	0.7422 (19)	0.041*	
C1A	0.46067 (15)	0.32571 (7)	0.82123 (13)	0.0257 (3)	
C2A	0.36303 (14)	0.36142 (6)	0.82271 (13)	0.0254 (3)	
C3A	0.36690 (14)	0.41373 (6)	0.79308 (13)	0.0245 (3)	
C4A	0.25402 (14)	0.43856 (6)	0.80529 (13)	0.0231 (3)	
C5A	0.17046 (14)	0.40254 (6)	0.84125 (13)	0.0232 (3)	
C6A	0.21524 (14)	0.49043 (6)	0.78678 (13)	0.0241 (3)	
C7A	0.09879 (14)	0.50196 (6)	0.80572 (13)	0.0241 (3)	
C8A	0.02490 (14)	0.46196 (6)	0.84584 (12)	0.0236 (3)	
C9A	-0.09666 (14)	0.47437 (7)	0.87498 (13)	0.0249 (3)	
C10A	-0.17635 (15)	0.43420 (7)	0.89447 (14)	0.0293 (4)	
H10A	-0.153863	0.399475	0.885679	0.035*	
C11A	-0.28851 (16)	0.44565 (8)	0.92675 (15)	0.0338 (4)	
H11A	-0.341193	0.418752	0.939354	0.041*	
C12A	-0.32185 (16)	0.49745 (8)	0.94017 (15)	0.0354 (4)	
H12A	-0.396979	0.505315	0.962087	0.042*	
C13A	-0.24327 (16)	0.53752 (7)	0.92095 (15)	0.0324 (4)	
H13A	-0.266326	0.572119	0.930411	0.039*	
C14A	-0.13053 (15)	0.52677 (7)	0.88773 (13)	0.0268 (3)	
C15A	-0.04349 (16)	0.56975 (7)	0.86893 (15)	0.0303 (4)	
H15A	-0.003843	0.577505	0.935690	0.036*	
H15B	-0.083923	0.601183	0.846270	0.036*	
C16A	0.04587 (15)	0.55486 (6)	0.78416 (14)	0.0285 (3)	
H16A	0.008902	0.554493	0.714280	0.034*	
H16B	0.106769	0.581082	0.782748	0.034*	
C17A	0.2979 (7)	0.5314 (4)	0.7524 (8)	0.0262 (10)	0.735 (3)
C18A	0.2961 (3)	0.56622 (11)	0.6707 (2)	0.0369 (6)	0.735 (3)
H18A	0.240017	0.569180	0.617413	0.044*	0.735 (3)
C19A	0.3992 (16)	0.5979 (7)	0.6830 (12)	0.0446 (9)	0.735 (3)
H19A	0.422671	0.625051	0.638384	0.054*	0.735 (3)
C20A	0.4539 (2)	0.58110 (10)	0.7692 (3)	0.0417 (6)	0.735 (3)
H20A	0.523515	0.594683	0.794691	0.050*	0.735 (3)
O3A	0.39379 (15)	0.54085 (8)	0.81596 (17)	0.0337 (4)	0.735 (3)
C17C	0.282 (2)	0.5346 (11)	0.741 (2)	0.0262 (10)	0.265 (3)
C18C	0.3788 (7)	0.5585 (3)	0.7729 (7)	0.0369 (6)	0.265 (3)
H18C	0.422078	0.551525	0.834168	0.044*	0.265 (3)
C19C	0.402 (4)	0.598 (2)	0.692 (3)	0.0446 (9)	0.265 (3)
H19C	0.462936	0.621598	0.691796	0.054*	0.265 (3)
C20C	0.3211 (7)	0.5927 (3)	0.6206 (7)	0.0417 (6)	0.265 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H20C	0.315117	0.614125	0.560551	0.050*	0.265 (3)
O3C	0.2450 (5)	0.5525 (2)	0.6428 (4)	0.0337 (4)	0.265 (3)
C21A	0.51885 (17)	0.23712 (7)	0.83563 (16)	0.0348 (4)	
H21A	0.570214	0.241588	0.896586	0.042*	
H21B	0.564068	0.240675	0.770478	0.042*	
C22A	0.4620(2)	0.18439 (8)	0.83956 (18)	0.0457 (5)	
H22A	0.417416	0.179079	0.775411	0.069*	
H22B	0.411632	0.182600	0.900753	0.069*	
H22C	0.520348	0.157701	0.845037	0.069*	
S1B	1.02424 (3)	0.42431 (2)	0.56674 (3)	0.02733 (12)	
O1B	0.69672 (11)	0.43020 (5)	0.65658 (11)	0.0366 (3)	
O2B	0.82546 (11)	0.49130 (5)	0.60154 (12)	0.0372 (3)	
O3B	0.86546 (14)	0.21442 (6)	0.60904 (12)	0.0471 (4)	
N1B	1.18642 (12)	0.34871 (5)	0.56442 (11)	0.0246 (3)	
N2B	0.78963 (13)	0.33034 (7)	0.69322 (14)	0.0326 (3)	
HN2C	0.798 (2)	0.3007 (10)	0.7195 (19)	0.039*	
HN2D	0.730(2)	0.3500(10)	0.7069 (18)	0.039*	
C1B	0.79366(15)	0.44204 (7)	0.62714 (14)	0.0292(4)	
C2B	0.88844(14)	0.40521(7)	0.61652(14)	0.0267(3)	
C3B	0.88368 (14)	0.35349(7)	0.64893 (13)	0.0251(3)	
C4B	0.99295(14)	0.32699 (6)	0.62983(12)	0.0238(3)	
C5B	1 07690 (14)	0.36130 (6)	0.58800 (13)	0.0245(3)	
C6B	1 02569 (14)	0.27431 (6)	0.64358(12)	0.0236(3)	
C7B	1 13874 (14)	0.27994(6)	0.61924 (13)	0.0250(3) 0.0251(3)	
C8B	1 21695 (14)	0.29883 (6)	0.51921(13) 0.58245(13)	0.0231(3) 0.0243(3)	
C9B	1 33937 (14)	0.29005(0) 0.28466(7)	0.56215(13) 0.56314(13)	0.0213(3) 0.0253(3)	
C10B	1 42585 (15)	0.20100(7) 0.32303(7)	0.56302(13)	0.0235(3) 0.0276(3)	
H10B	1 406239	0.357947	0.574158	0.0270(3)	
C11B	1.54065 (15)	0.30924 (8)	0.54638 (14)	0.0316(4)	
H11B	1 598095	0.334818	0.547796	0.0318 (4)	
C12B	1.57021 (16)	0.25741 (8)	0.52763 (15)	0.0361(4)	
H12B	1.647229	0.225741(0)	0.515318	0.043*	
C13B	1.04722) 1 48511 (17)	0.248555	0.513510 0.52722(15)	0.045 0.0352 (4)	
H13B	1 505379	0.184524	0.513931	0.042*	
C14B	1 36936 (15)	0.104924 0.23194 (7)	0.54647(14)	0.042 0.0290 (4)	
C15B	1.30930(13) 1.27430(17)	0.25194(7) 0.19147(7)	0.54764(14)	0.0290(4) 0.0348(4)	
H15C	1.27430 (17)	0.157309	0.562736	0.0348 (4)	
H15D	1.307342	0.189993	0.302750	0.042*	
C16B	1 18314 (16)	0.109995	0.63247 (16)	0.042 0.0331 (4)	
H16C	1 118817	0.180319	0.626580	0.040*	
H16D	1.116017	0.200740	0.703249	0.040*	
C17B	0.94080(14)	0.200740	0.703249 0.68132 (14)	0.040	
C18B	0.94000(14) 0.91781(17)	0.23300(0) 0.21757(8)	0.00132(14) 0.78011(15)	0.0252(5)	
	0.91/81(17)	0.21757 (8)	0.78011 (13)	0.0303 (4)	
	0.730303	0.220410	0.0+3077	0.044	
U10D	0.02130 (19)	0.16230 (9)	0.7090 (2)	0.0507 (0)	
C20D	0.7021(2)	0.103443	0.023474	0.001°	
	0.7951 (2)	0.18204 (9)	0.0000 (2)	0.0330 (6)	
H20B	0./32602	0.162626	0.63/295	0.064*	

C21B	0.73855 (18)	0.53200 (8)	0.61779 (17)	0.0404 (4)
H21C	0.776869	0.565605	0.625701	0.048*
H21D	0.696033	0.524921	0.683296	0.048*
C22B	0.6554 (2)	0.53445 (9)	0.52547 (19)	0.0481 (5)
H22D	0.697369	0.541281	0.460532	0.072*
H22E	0.600206	0.562013	0.537528	0.072*
H22E	0.600206	0.562013	0.537528	0.072*
H22F	0.615224	0.501639	0.519249	0.072*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0241 (2)	0.01813 (19)	0.0345 (2)	-0.00011 (14)	0.00498 (15)	0.00198 (14)
O1A	0.0239 (6)	0.0310 (6)	0.0474 (7)	0.0021 (5)	0.0016 (5)	-0.0010 (5)
O2A	0.0304 (6)	0.0227 (6)	0.0377 (6)	0.0045 (5)	0.0024 (5)	0.0018 (5)
N1A	0.0226 (7)	0.0211 (6)	0.0286 (7)	-0.0009 (5)	0.0026 (5)	-0.0010 (5)
N2A	0.0227 (7)	0.0253 (8)	0.0543 (10)	0.0005 (6)	0.0072 (7)	0.0045 (7)
C1A	0.0276 (8)	0.0244 (8)	0.0252 (8)	0.0026 (7)	0.0009 (6)	-0.0006 (6)
C2A	0.0224 (8)	0.0232 (8)	0.0305 (8)	-0.0006 (6)	0.0032 (6)	-0.0006 (6)
C3A	0.0230 (8)	0.0226 (8)	0.0280 (8)	-0.0010 (6)	0.0013 (6)	-0.0024 (6)
C4A	0.0235 (8)	0.0213 (7)	0.0247 (7)	-0.0018 (6)	0.0028 (6)	-0.0012 (6)
C5A	0.0249 (8)	0.0192 (7)	0.0255 (7)	-0.0010 (6)	0.0014 (6)	-0.0010 (6)
C6A	0.0255 (8)	0.0204 (7)	0.0263 (8)	-0.0012 (6)	0.0031 (6)	-0.0004 (6)
C7A	0.0258 (8)	0.0212 (8)	0.0254 (8)	0.0002 (6)	0.0018 (6)	0.0004 (6)
C8A	0.0235 (8)	0.0225 (8)	0.0247 (7)	-0.0009 (6)	0.0008 (6)	-0.0012 (6)
C9A	0.0229 (8)	0.0260 (8)	0.0258 (8)	0.0006 (6)	-0.0002 (6)	0.0001 (6)
C10A	0.0258 (8)	0.0291 (8)	0.0329 (9)	-0.0020 (7)	0.0016 (7)	-0.0011 (7)
C11A	0.0254 (9)	0.0390 (10)	0.0370 (9)	-0.0054 (7)	0.0027 (7)	0.0014 (8)
C12A	0.0227 (8)	0.0456 (11)	0.0377 (9)	0.0060 (7)	0.0044 (7)	0.0028 (8)
C13A	0.0299 (9)	0.0330 (9)	0.0344 (9)	0.0074 (7)	0.0033 (7)	0.0020 (7)
C14A	0.0255 (8)	0.0281 (8)	0.0270 (8)	0.0034 (6)	0.0005 (6)	0.0018 (6)
C15A	0.0302 (9)	0.0211 (8)	0.0396 (9)	0.0048 (7)	0.0055 (7)	0.0014 (7)
C16A	0.0279 (8)	0.0229 (8)	0.0346 (9)	0.0018 (6)	0.0054 (7)	0.0051 (7)
C17A	0.024 (3)	0.0190 (14)	0.036 (2)	0.0028 (19)	0.0079 (15)	0.0007 (10)
C18A	0.0445 (16)	0.0279 (12)	0.0384 (13)	-0.0023 (11)	0.0120 (12)	0.0092 (10)
C19A	0.0494 (16)	0.0260 (9)	0.059 (3)	-0.0094 (10)	0.0248 (18)	0.0026 (18)
C20A	0.0374 (13)	0.0255 (12)	0.0622 (17)	-0.0127 (10)	0.0167 (12)	-0.0029 (11)
O3A	0.0283 (8)	0.0282 (9)	0.0444 (10)	-0.0104 (7)	0.0024 (7)	0.0012 (8)
C17C	0.024 (3)	0.0190 (14)	0.036 (2)	0.0028 (19)	0.0079 (15)	0.0007 (10)
C18C	0.0445 (16)	0.0279 (12)	0.0384 (13)	-0.0023 (11)	0.0120 (12)	0.0092 (10)
C19C	0.0494 (16)	0.0260 (9)	0.059 (3)	-0.0094 (10)	0.0248 (18)	0.0026 (18)
C20C	0.0374 (13)	0.0255 (12)	0.0622 (17)	-0.0127 (10)	0.0167 (12)	-0.0029 (11)
O3C	0.0283 (8)	0.0282 (9)	0.0444 (10)	-0.0104 (7)	0.0024 (7)	0.0012 (8)
C21A	0.0384 (10)	0.0273 (9)	0.0386 (10)	0.0110 (7)	-0.0054 (8)	-0.0009 (7)
C22A	0.0592 (13)	0.0262 (9)	0.0518 (12)	0.0084 (9)	-0.0151 (10)	0.0008 (8)
S1B	0.0224 (2)	0.0226 (2)	0.0370 (2)	0.00243 (14)	0.00525 (16)	0.00390 (15)
O1B	0.0248 (6)	0.0362 (7)	0.0488 (8)	0.0053 (5)	0.0069 (5)	0.0077 (6)
O2B	0.0293 (7)	0.0292 (6)	0.0531 (8)	0.0070 (5)	0.0080 (6)	0.0060 (6)
O3B	0.0457 (8)	0.0517 (9)	0.0440 (8)	-0.0184 (7)	-0.0076 (6)	-0.0019 (7)

N1B	0.0214 (7)	0.0239 (7)	0.0286 (7)	0.0008 (5)	0.0027 (5)	0.0010 (5)
N2B	0.0215 (7)	0.0279 (8)	0.0483 (9)	0.0003 (6)	0.0052 (6)	0.0035 (7)
C1B	0.0240 (8)	0.0309 (9)	0.0327 (9)	0.0029 (7)	0.0020 (7)	0.0032 (7)
C2B	0.0213 (8)	0.0280 (8)	0.0308 (8)	0.0011 (6)	0.0023 (6)	0.0008 (6)
C3B	0.0206 (8)	0.0279 (8)	0.0268 (8)	-0.0003 (6)	-0.0013 (6)	-0.0024 (6)
C4B	0.0219 (8)	0.0255 (8)	0.0241 (7)	-0.0003 (6)	-0.0009 (6)	-0.0006 (6)
C5B	0.0239 (8)	0.0226 (8)	0.0269 (8)	0.0003 (6)	-0.0007 (6)	-0.0002 (6)
C6B	0.0234 (8)	0.0235 (8)	0.0240 (7)	-0.0027 (6)	-0.0027 (6)	-0.0011 (6)
C7B	0.0261 (8)	0.0230 (8)	0.0261 (8)	0.0009 (6)	-0.0019 (6)	0.0006 (6)
C8B	0.0239 (8)	0.0244 (8)	0.0247 (7)	0.0014 (6)	-0.0002 (6)	-0.0016 (6)
C9B	0.0250 (8)	0.0282 (8)	0.0229 (7)	0.0044 (6)	0.0006 (6)	0.0020 (6)
C10B	0.0268 (8)	0.0309 (8)	0.0252 (8)	0.0030 (7)	-0.0010 (6)	0.0000 (6)
C11B	0.0238 (8)	0.0413 (10)	0.0297 (8)	0.0004 (7)	-0.0016 (6)	0.0025 (7)
C12B	0.0240 (8)	0.0473 (11)	0.0371 (9)	0.0101 (8)	0.0019 (7)	0.0048 (8)
C13B	0.0331 (10)	0.0333 (9)	0.0393 (10)	0.0120 (7)	0.0030 (7)	0.0035 (8)
C14B	0.0284 (9)	0.0284 (8)	0.0303 (8)	0.0063 (7)	0.0011 (7)	0.0026 (7)
C15B	0.0348 (9)	0.0230 (8)	0.0465 (10)	0.0052 (7)	0.0023 (8)	-0.0011 (7)
C16B	0.0299 (9)	0.0253 (9)	0.0443 (10)	0.0020 (7)	0.0039 (7)	0.0052 (7)
C17B	0.0209 (7)	0.0227 (8)	0.0320 (8)	0.0007 (6)	-0.0025 (6)	-0.0002 (6)
C18B	0.0353 (10)	0.0482 (11)	0.0260 (8)	-0.0003 (8)	0.0001 (7)	0.0041 (8)
C19B	0.0383 (11)	0.0389 (11)	0.0747 (16)	0.0060 (9)	0.0215 (11)	0.0276 (11)
C20B	0.0379 (11)	0.0360 (11)	0.0869 (18)	-0.0159 (9)	0.0030 (11)	-0.0056 (11)
C21B	0.0388 (10)	0.0339 (10)	0.0485 (11)	0.0075 (8)	0.0056 (9)	-0.0004 (8)
C22B	0.0459 (12)	0.0428 (12)	0.0555 (13)	0.0132 (9)	0.0012 (10)	0.0059 (10)

Geometric parameters (Å, °)

S1A—C5A	1.7355 (16)	C21A—H21B	0.9700
S1A—C2A	1.7489 (17)	C22A—H22A	0.9600
O1A—C1A	1.216 (2)	C22A—H22B	0.9600
O2A—C1A	1.345 (2)	C22A—H22C	0.9600
O2A—C21A	1.448 (2)	S1B—C5B	1.7395 (16)
N1A—C5A	1.329 (2)	S1B—C2B	1.7530 (17)
N1A—C8A	1.335 (2)	O1B—C1B	1.214 (2)
N2A—C3A	1.350 (2)	O2B—C1B	1.348 (2)
N2A—HN2A	0.83 (3)	O2B—C21B	1.457 (2)
N2A—HN2B	0.86 (3)	O3B—C17B	1.357 (2)
C1A—C2A	1.448 (2)	O3B—C20B	1.377 (3)
C2A—C3A	1.386 (2)	N1B—C5B	1.335 (2)
C3A—C4A	1.455 (2)	N1B—C8B	1.340 (2)
C4A—C5A	1.405 (2)	N2B—C3B	1.353 (2)
C4A—C6A	1.416 (2)	N2B—HN2C	0.83 (3)
C6A—C7A	1.394 (2)	N2B—HN2D	0.87 (3)
C6A—C17A	1.479 (5)	C1B—C2B	1.447 (2)
C6A—C17C	1.480 (12)	C2B—C3B	1.382 (2)
C7A—C8A	1.421 (2)	C3B—C4B	1.449 (2)
C7A—C16A	1.506 (2)	C4B—C5B	1.406 (2)
C8A—C9A	1.482 (2)	C4B—C6B	1.407 (2)

C9A—C10A	1.398 (2)	C6B—C7B	1.387 (2)
C9A—C14A	1.403 (2)	C6B—C17B	1.479 (2)
C10A—C11A	1.385 (3)	C7B—C8B	1.418 (2)
C10A—H10A	0.9300	C7B—C16B	1.510 (2)
C11A—C12A	1.387 (3)	C8B—C9B	1.476 (2)
C11A—H11A	0.9300	C9B—C10B	1.397 (2)
C12A—C13A	1.387 (3)	C9B—C14B	1.405 (2)
C12A—H12A	0.9300	C10B—C11B	1.385 (2)
C13A—C14A	1.391 (2)	C10B—H10B	0.9300
C13A—H13A	0.9300	C11B—C12B	1.386 (3)
C14A—C15A	1.505 (2)	C11B—H11B	0.9300
C15A—C16A	1.525 (2)	C12B—C13B	1.384 (3)
С15А—Н15А	0.9700	C12B—H12B	0.9300
C15A—H15B	0.9700	C13B—C14B	1.394 (3)
C16A—H16A	0.9700	C13B—H13B	0.9300
C16A—H16B	0.9700	C14B—C15B	1.506 (3)
C17A—C18A	1.352 (6)	C15B—C16B	1.529 (3)
C17A—O3A	1.381 (6)	C15B—H15C	0.9700
C18A—C19A	1.445 (9)	C15B—H15D	0.9700
C18A—H18A	0.9300	C16B—H16C	0.9700
C19A—C20A	1.317 (12)	C16B—H16D	0.9700
С19А—Н19А	0.9300	C17B—C18B	1.337 (3)
C20A—O3A	1.370 (3)	C18B—C19B	1.437 (3)
C20A—H20A	0.9300	C18B—H18B	0.9300
C17C—C18C	1.335 (17)	C19B—C20B	1.318 (4)
C17C—O3C	1.37 (2)	C19B—H19B	0.9300
C18C—C19C	1.442 (19)	C20B—H20B	0.9300
C18C—H18C	0.9300	C21B—C22B	1.499 (3)
C19C—C20C	1.30 (3)	C21B—H21C	0.9700
C19C—H19C	0.9300	C21B—H21D	0.9700
C20C—O3C	1.379 (8)	C22B—H22D	0.9600
C20C—H20C	0.9300	C22B—H22E	0.9600
C21A—C22A	1.498 (3)	C22B—H22F	0.9600
C21A—H21A	0.9700		
C5A—S1A—C2A	90.08 (8)	H21A—C21A—H21B	108.5
C1A—O2A—C21A	115.70 (14)	C21A—C22A—H22A	109.5
C5A—N1A—C8A	116.25 (14)	C21A—C22A—H22B	109.5
C3A—N2A—HN2A	117.3 (17)	H22A—C22A—H22B	109.5
C3A—N2A—HN2B	119.9 (16)	C21A—C22A—H22C	109.5
HN2A—N2A—HN2B	122 (2)	H22A—C22A—H22C	109.5
O1A—C1A—O2A	123.58 (15)	H22B—C22A—H22C	109.5
O1A—C1A—C2A	124.71 (16)	C5B—S1B—C2B	90.01 (8)
O2A—C1A—C2A	111.72 (14)	C1B—O2B—C21B	116.43 (15)
C3A—C2A—C1A	125.29 (15)	C17B—O3B—C20B	105.86 (17)
C3A—C2A—S1A	113.86 (12)	C5B—N1B—C8B	116.09 (14)
C1A—C2A—S1A	120.82 (13)	C3B—N2B—HN2C	118.1 (17)
N2A—C3A—C2A	123.59 (16)	C3B—N2B—HN2D	117.4 (16)
· · · · · · ·			()

N2A—C3A—C4A	125.07 (15)	HN2C—N2B—HN2D	123 (2)
C2A—C3A—C4A	111.28 (14)	O1B—C1B—O2B	123.64 (16)
C5A—C4A—C6A	116.60 (15)	O1B—C1B—C2B	124.09 (17)
C5A—C4A—C3A	111.16 (14)	O2B—C1B—C2B	112.27 (14)
C6A—C4A—C3A	132.24 (15)	C3B—C2B—C1B	124.31 (15)
N1A—C5A—C4A	126.37 (15)	C3B—C2B—S1B	113.89 (12)
N1A—C5A—S1A	120.04 (12)	C1B—C2B—S1B	121.71 (13)
C4A—C5A—S1A	113.57 (12)	N2B—C3B—C2B	124.67 (16)
C7A—C6A—C4A	118.25 (15)	N2B—C3B—C4B	124.03 (16)
C7A—C6A—C17A	121.3 (4)	C2B—C3B—C4B	111.30 (14)
C4A—C6A—C17A	120.4 (4)	C5B—C4B—C6B	117.14 (15)
C7A—C6A—C17C	113.9 (14)	C5B—C4B—C3B	111.62 (14)
C4A—C6A—C17C	127.7 (15)	C6B—C4B—C3B	131.22 (15)
C6A—C7A—C8A	119.02 (15)	N1B—C5B—C4B	125.63 (15)
C6A—C7A—C16A	123.28 (15)	N1B—C5B—S1B	121.24 (12)
C8A—C7A—C16A	117.69 (14)	C4B—C5B—S1B	113.13 (12)
N1A—C8A—C7A	123.43 (15)	C7B—C6B—C4B	118.55 (15)
N1A—C8A—C9A	116.55 (14)	C7B—C6B—C17B	120.77 (15)
C7A—C8A—C9A	119.99 (14)	C4B—C6B—C17B	120.67 (15)
C10A—C9A—C14A	119.81 (15)	C6B—C7B—C8B	118.87 (15)
C10A—C9A—C8A	120.47 (15)	C6B—C7B—C16B	122.78 (15)
C14A—C9A—C8A	119.66 (15)	C8B—C7B—C16B	118.33 (15)
C11A—C10A—C9A	120.58 (17)	N1B—C8B—C7B	123.58 (15)
C11A—C10A—H10A	119.7	N1B—C8B—C9B	117.15 (14)
C9A—C10A—H10A	119.7	C7B—C8B—C9B	119.27 (15)
C10A—C11A—C12A	119.66 (17)	C10B—C9B—C14B	119.73 (16)
C10A—C11A—H11A	120.2	C10B—C9B—C8B	120.65 (15)
C12A—C11A—H11A	120.2	C14B—C9B—C8B	119.61 (15)
C13A—C12A—C11A	120.09 (17)	C11B—C10B—C9B	120.21 (17)
C13A—C12A—H12A	120.0	C11B—C10B—H10B	119.9
C11A—C12A—H12A	120.0	C9B—C10B—H10B	119.9
C12A—C13A—C14A	121.05 (17)	C10B—C11B—C12B	120.20 (17)
C12A—C13A—H13A	119.5	C10B—C11B—H11B	119.9
C14A—C13A—H13A	119.5	C12B—C11B—H11B	119.9
C13A—C14A—C9A	118.81 (16)	C13B—C12B—C11B	119.98 (17)
C13A—C14A—C15A	121.67 (16)	C13B—C12B—H12B	120.0
C9A—C14A—C15A	119.48 (15)	C11B—C12B—H12B	120.0
C14A—C15A—C16A	112.13 (14)	C12B—C13B—C14B	120.85 (17)
C14A—C15A—H15A	109.2	C12B—C13B—H13B	119.6
C16A—C15A—H15A	109.2	C14B—C13B—H13B	119.6
C14A—C15A—H15B	109.2	C13B— $C14B$ — $C9B$	119.00 (17)
C16A - C15A - H15B	109.2	C13B-C14B-C15B	122.50 (16)
H15A - C15A - H15B	107.9	C9B-C14B-C15B	118 48 (15)
C7A—C16A—C15A	111.91 (14)	C14B— $C15B$ — $C16B$	110.83 (15)
C7A—C16A—H16A	109.2	C14B— $C15B$ — $H15C$	109 5
C15A—C16A—H16A	109.2	C16B— $C15B$ — $H15C$	109.5
C7A—C16A—H16B	109.2	C14B— $C15B$ — $H15D$	109.5
C15A—C16A—H16B	109.2	C16B—C15B—H15D	109.5
	1 1 1 1 1 1 1		10/10

H16A—C16A—H16B	107.9	H15C—C15B—H15D	108.1
C18A—C17A—O3A	109.3 (3)	C7B—C16B—C15B	111.29 (15)
C18A—C17A—C6A	132.4 (5)	C7B—C16B—H16C	109.4
O3A—C17A—C6A	118.1 (4)	C15B—C16B—H16C	109.4
C17A—C18A—C19A	106.0 (5)	C7B—C16B—H16D	109.4
C17A—C18A—H18A	127.0	C15B—C16B—H16D	109.4
C19A—C18A—H18A	127.0	H16C—C16B—H16D	108.0
C20A—C19A—C18A	107.3 (5)	C18B—C17B—O3B	110.89 (16)
C20A—C19A—H19A	126.3	C18B—C17B—C6B	130.61 (16)
C18A—C19A—H19A	126.3	O3B-C17B-C6B	118.31 (15)
C19A - C20A - O3A	110 5 (4)	C17B— $C18B$ — $C19B$	105 84 (18)
C19A - C20A - H20A	124.8	C17B $C18B$ $H18B$	127.1
O3A - C20A - H20A	124.8	C_{19B} C_{18B} H_{18B}	127.1
$C_{20A} = O_{3A} = C_{17A}$	106.9 (3)	C_{20B} C_{19B} C_{18B}	106 74 (18)
$C_{18}C_{-}C_{17}C_{-}O_{3}C_{-}C_$	111.9(10)	$C_{20B} = C_{19B} = H_{19B}$	126.6
$C_{18C} - C_{17C} - C_{6A}$	131.8 (15)	$C_{20B} = C_{10B} = H_{10B}$	126.6
$O_{3}C$ $C_{1}^{1}C$ C_{6}^{6}	1161(13)	$C_{10B} = C_{10B} = M_{10B}$	110.66 (10)
$C_{17} = C_{17} = C_{18} = C_{19} = C$	10.1(15) 105.2(15)	$C_{10B} = C_{20B} = 0.05B$	124.7
C17C = C18C = C19C	105.5 (15)	$O_{3B} C_{20B} H_{20B}$	124.7
$C_{19}C_{18}C_{1$	127.3	$O_{2B} = C_{20B} = H_{20B}$	124.7 111 23 (17)
$C_{19}^{20}C_{-}C_{18}^{10}C$	106.2 (16)	$O_{2B} = C_{21B} = C_{22B}$	100 /
$C_{20}C_{-}C_{10}C_{-}H_{10}C_{-}$	126.0	$\begin{array}{c} C_{22B} \\ C_{22B} \\ C_{22B} \\ C_{21B} \\ C_{21B} \\ H_{21C} \\$	109.4
$C_{18}C_{}C_{19}C_{}H_{19}C_{}H_{19}C_{}$	126.9	O2B C21B H21D	109.4
$C_{10} C_{10} $	120.9 113 0 (11)	$C_{22} = C_{21} = H_{21} = H_{21}$	109.4
$C_{19}C_{}C_{20}C_{}C_{3}C_{}C_{}C_{3}C_{}C_{}C_{3}C_{-$	113.0 (11)	$H_{21}C$ $C_{21}B$ $H_{21}D$	109.4
$0^{2}C$ $C^{2}0C$ $H^{2}0C$	123.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.0
$C_{17} = C_{20} = C_{12} = C$	123.3 103.3 (8)	$C_{21B} = C_{22B} = H_{22E}$	109.5
C1/C = 03C = C20C	103.3(6) 107.13(16)	$\begin{array}{c} \text{C21B} \\ \text{C22B} \\ \text{C22B} \\ \text{C22B} \\ \text{C22E} \\$	109.5
$O_{2A} = C_{21A} = C_{22A}$	110.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{2A} = C_{21A} = H_{21A}$	110.3	$\begin{array}{c} \text{C21D} \\ \text{C22D} \\ \text{C22D} \\ \text{C22D} \\ \text{C22P} \\$	109.5
C_{22A} C_{21A} H_{21B}	110.3	H22D - C22D - H22F	109.5
$C_{2A} = C_{21A} = H_{21B}$	110.3	1122E-C22B-1122F	109.5
C22A—C2IA—H2IB	110.5		
C21A O2A C1A O1A	-1.3(2)	C6A C17C C18C C10C	178 (5)
$C_{21A} = O_{2A} = C_{1A} = O_{1A}$	1.3(2) 178.60(14)	C17C $C18C$ $C19C$ $C20C$	-1(6)
$C_{21A} = C_{2A} = C_{1A} = C_{2A}$	1/0.00(14)	$C_{17}^{18}C_{-}C_{19}^{18}C_{-}C_{20}^{19}C_{-}C_{20}^{20}C$	-2(6)
$O_{A} = C_{A} = C_{A} = C_{A}$	-170.43(15)	$C_{18} = C_{17} = C_{20} = C_{30} = C_{30}$	2(0)
$O_{2A} = C_{1A} = C_{2A} = C_{3A}$	-172.22(14)	$C_{18} = C_{17} = C_{20} = C$	$\frac{3}{3}$
$O_{1A} = C_{1A} = C_{2A} = S_{1A}$	77(2)	$C_{0A} = C_{17} C_{-03} C_{-02} C_{20} C_{-02} C_{-0$	100(2)
$C_{2A} = C_{1A} = C_{2A} = C_{3A}$	-2.08(13)	$C_{10} = C_{20} = C_{10} = C$	-17167(15)
$C_{5A} = S_{1A} = C_{2A} = C_{5A}$	2.08(13)	$C_{1A} = O_{2A} = C_{21A} = C_{22A}$	1/1.07(13)
$C_{A} = C_{A} = C_{A} = C_{A}$	1/9.55(14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1(3) -175 21 (16)
CIA C2A C3A N2A	-174.60(14)	$C_{21}D_{-}C_{2}D_{-}C_{1}D_{-}C_{2}D_{-}C_{$	-70(3)
C1A C2A C3A C4A	-179.28(15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172 40 (16)
$C_{1A} = C_{2A} = C_{3A} = C_{4A}$	1/7.20(13)	02D - 01D - 02D - 03D	172.40(10) 176.55(15)
N2A C3A C4A C5A	2.73 (10) 175 54 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4.0(2)
$C_{2} = C_{3} = C_{4} = C_{5}$	-15(2)	C5B $S1B$ $C2B$ $C3B$	-1.0(2)
$V_{A} = C_{A} = C_{A} = C_{A}$	-2.6(2)	$C_{2D} = C_{2D} = C_{2D} = C_{2D}$	(14)
INZA-UJA-U4A-U0A	5.0 (5)	UDD-SID-UZD-UID	1//.43(13)

C2A—C3A—C4A—C6A	179.29 (17)	C1B—C2B—C3B—N2B	1.0 (3)
C8A—N1A—C5A—C4A	1.3 (2)	S1B-C2B-C3B-N2B	177.72 (14)
C8A—N1A—C5A—S1A	179.82 (12)	C1B—C2B—C3B—C4B	-178.74 (16)
C6A—C4A—C5A—N1A	-2.1 (2)	S1B-C2B-C3B-C4B	-2.04 (18)
C3A—C4A—C5A—N1A	178.59 (15)	N2B-C3B-C4B-C5B	-177.03 (16)
C6A—C4A—C5A—S1A	179.31 (12)	C2B—C3B—C4B—C5B	2.7 (2)
C3A—C4A—C5A—S1A	-0.02 (18)	N2B-C3B-C4B-C6B	4.7 (3)
C2A—S1A—C5A—N1A	-177.56 (14)	C2B—C3B—C4B—C6B	-175.54 (16)
C2A—S1A—C5A—C4A	1.15 (13)	C8B—N1B—C5B—C4B	0.3 (2)
C5A—C4A—C6A—C7A	0.3 (2)	C8B—N1B—C5B—S1B	-178.94 (12)
C3A—C4A—C6A—C7A	179.43 (16)	C6B—C4B—C5B—N1B	-3.0 (2)
C5A—C4A—C6A—C17A	177.9 (5)	C3B—C4B—C5B—N1B	178.47 (15)
C3A—C4A—C6A—C17A	-2.9 (5)	C6B-C4B-C5B-S1B	176.26 (11)
C5A—C4A—C6A—C17C	-174.5 (14)	C3B—C4B—C5B—S1B	-2.28 (18)
C3A—C4A—C6A—C17C	4.6 (14)	C2B—S1B—C5B—N1B	-179.74 (14)
C4A—C6A—C7A—C8A	2.0 (2)	C2B—S1B—C5B—C4B	0.97 (13)
C17A—C6A—C7A—C8A	-175.6 (5)	C5B—C4B—C6B—C7B	2.4 (2)
C17C—C6A—C7A—C8A	177.5 (13)	C3B—C4B—C6B—C7B	-179.40 (16)
C4A—C6A—C7A—C16A	-177.02 (15)	C5B—C4B—C6B—C17B	-176.52 (14)
C17A—C6A—C7A—C16A	5.4 (5)	C3B—C4B—C6B—C17B	1.7 (3)
C17C—C6A—C7A—C16A	-1.5 (13)	C4B—C6B—C7B—C8B	0.5 (2)
C5A—N1A—C8A—C7A	1.3 (2)	C17B—C6B—C7B—C8B	179.46 (14)
C5A—N1A—C8A—C9A	-176.71(14)	C4B—C6B—C7B—C16B	179.20 (15)
C6A—C7A—C8A—N1A	-2.9(2)	C17B—C6B—C7B—C16B	-1.9(2)
C16A—C7A—C8A—N1A	176.12 (15)	C5B—N1B—C8B—C7B	3.1 (2)
C6A - C7A - C8A - C9A	174.99 (15)	C5B—N1B— $C8B$ — $C9B$	-176.47(14)
C16A - C7A - C8A - C9A	-5.9(2)	C6B-C7B-C8B-N1B	-3.5(2)
N1A—C8A—C9A—C10A	-14.4(2)	C16B-C7B-C8B-N1B	177.76 (15)
C7A - C8A - C9A - C10A	167.52 (15)	C6B-C7B-C8B-C9B	176.01 (14)
N1A—C8A—C9A—C14A	162.75 (15)	C16B—C7B—C8B—C9B	-2.7(2)
C7A—C8A—C9A—C14A	-15.3(2)	N1B—C8B—C9B—C10B	21.6 (2)
C14A - C9A - C10A - C11A	-0.3(3)	C7B— $C8B$ — $C9B$ — $C10B$	-157.97(15)
C8A - C9A - C10A - C11A	176.87 (16)	N1B-C8B-C9B-C14B	-159.47(15)
C9A—C10A—C11A—C12A	-0.2(3)	C7B—C8B—C9B—C14B	21.0 (2)
C10A—C11A—C12A—C13A	0.2 (3)	C14B - C9B - C10B - C11B	0.1 (2)
C11A—C12A—C13A—C14A	0.2(3)	C8B—C9B—C10B—C11B	179.05 (15)
C12A— $C13A$ — $C14A$ — $C9A$	-0.7(3)	C9B-C10B-C11B-C12B	1.3 (3)
C12A— $C13A$ — $C14A$ — $C15A$	-178.61(17)	C10B— $C11B$ — $C12B$ — $C13B$	-1.0(3)
C10A - C9A - C14A - C13A	0.7 (2)	C11B - C12B - C13B - C14B	-0.6(3)
C8A - C9A - C14A - C13A	-176.44(15)	C12B— $C13B$ — $C14B$ — $C9B$	2.0(3)
C10A - C9A - C14A - C15A	178 67 (16)	C12B $-C13B$ $-C14B$ $-C15B$	-17948(18)
C8A - C9A - C14A - C15A	1.5 (2)	C10B - C9B - C14B - C13B	-1.7(2)
C13A - C14A - C15A - C16A	-150.95(16)	C8B - C9B - C14B - C13B	179.34 (15)
C9A - C14A - C15A - C16A	31.2 (2)	C10B-C9B-C14B-C15B	179.67 (15)
C6A - C7A - C16A - C15A	-142 57 (17)	C8B-C9B-C14B-C15B	07(2)
C8A - C7A - C16A - C15A	38.4 (2)	C13B-C14B-C15B-C16B	143.97 (17)
C14A - C15A - C16A - C7A	-500(2)	C9B-C14B-C15B-C16B	-37 5 (2)
C7A - C6A - C17A - C18A	-53 5 (15)	C6B - C7B - C16B - C15B	147 24 (16)
UIII -UIII-UIUA	55.5 (15)		17/127 (10)

C4A—C6A—C17A—C18A C7A—C6A—C17A—O3A C4A—C6A—C17A—O3A O3A—C17A—C18A—C19A C6A—C17A—C18A—C19A C17A—C18A—C19A—C20A C18A—C19A—C20A—O3A C19A—C20A—O3A—C17A C18A—C17A—O3A—C20A C6A—C17A—O3A—C20A C6A—C17A—O3A—C20A C7A—C6A—C17C—C18C C4A—C6A—C17C—C18C C7A—C6A—C17C—O3C C4A—C6A—C17C—O3C	128.9 (11) $121.3 (7)$ $-56.3 (12)$ $1.8 (15)$ $177.0 (16)$ $-1 (2)$ $-0.7 (19)$ $1.8 (14)$ $-2.3 (10)$ $-178.2 (7)$ $125 (4)$ $-60 (5)$ $-61 (3)$ $114 (2)$	C8B—C7B—C16B—C15B C14B—C15B—C16B—C7B C20B—O3B—C17B—C18B C20B—O3B—C17B—C18B C20B—O3B—C17B—C18B C4B—C6B—C17B—C18B C7B—C6B—C17B—O3B C4B—C6B—C17B—O3B C4B—C6B—C17B—O3B C4B—C17B—C18B—C19B C6B—C17B—C18B—C19B C17B—C18B—C19B—C20B C18B—C19B—C20B—O3B C17B—O3B—C20B—C19B C1B—O2B—C21B—C22B	$\begin{array}{c} -34.1 (2) \\ 52.9 (2) \\ -0.7 (2) \\ -176.30 (17) \\ 87.1 (2) \\ -94.0 (2) \\ -98.35 (19) \\ 80.6 (2) \\ 1.1 (2) \\ 175.93 (18) \\ -1.0 (2) \\ 0.6 (3) \\ 0.1 (3) \\ -82.2 (2) \end{array}$
O3C—C17C—C18C—C19C	4 (4)		

Hydrogen-bond geometry (Å, °)

Cg8, Cg9 and Cg11 are the centroids of the O3B/C17B-C20B furan, N1B/C4B-C8B pyridine and C9B-C14B benzene rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2A—HN2A····O1A	0.83 (3)	2.23 (3)	2.839 (2)	131 (2)
N2A—HN2A…O1B	0.83 (3)	2.33 (3)	2.962 (2)	134 (2)
N2 <i>A</i> —H <i>N</i> 2 <i>B</i> ····O3 <i>A</i>	0.86 (3)	2.17 (3)	2.869 (3)	138 (2)
N2B—HN2D…O1A	0.87 (3)	2.33 (2)	2.998 (2)	134 (2)
N2 <i>B</i> —H <i>N</i> 2 <i>D</i> ···O1 <i>B</i>	0.87 (3)	2.17 (2)	2.802 (2)	129 (2)
N2 <i>B</i> —H <i>N</i> 2 <i>C</i> ··· <i>Cg</i> 8	0.83 (3)	2.55 (3)	3.294 (2)	150 (2)
C18B—H18B···· Cg 11 ⁱ	0.93	2.53	3.353 (2)	148
$C21A$ — $H21A$ ··· $Cg9^{i}$	0.97	2.96	3.718 (2)	136
C15A— $H15A$ ···· $N1A$ ⁱⁱ	0.97	2.61	3.386 (2)	137

Symmetry codes: (i) *x*-3/2, -*y*-1/2, *z*-1/2; (ii) -*x*, -*y*+1, -*z*+2.