

IUCrData

ISSN 2414-3146

Received 13 December 2016 Accepted 12 January 2017

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; inorganic polymer; thiocyanate.

CCDC reference: 1526974

Structural data: full structural data are available from iucrdata.iucr.org

catena-Poly[[μ_2 -4,4'-bis(pyridin-3-ylethynyl)-1,1'biphenyl- $\kappa^2 N:N'$]bis(μ_2 -thiocyanato- $\kappa^2 N:S$)bis(thiocyanato- κS)dimercury(II)]

Shuzhi Tan,* Leili Liu and Yongli Du

School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, People's Republic of China. *Correspondence e-mail: cyrstalclear@126.com

In the title polymer, $[Hg_2(SCN)_4(C_{26}H_{16}N_2)]_n$, the two equivalent Hg^{II} atoms are coordinated by one N atom of a bridging 4,4'-bis(pyridin-3-ylethynyl)-1,1'biphenyl ligand, two S atoms of two thiocyanates and one N atom of a thiocyanate, giving rise to a distored tetrahedral coordination environment. Two thiocyanate ligands bridge symmetry-related metal atoms to form a polymeric chain extending parallel to [001], and another bridging mode is accomplished by the organic ligand that is located about an inversion centre. The dihedral angle between the coordinating pyridine ring and the benzene ring is 11.4 (2)°, and the two coordinating pyridine rings in the organic ligand are parallel by symmetry. The point group of the ligand in the compound is thus close to C_{2h} . The result of the mode of the organic ligands is the formation of zigzag sheets connected *via* bridging thiocyanate ligands.

Structure description

Recently, coordination polymers (CPs) have attracted much attention due to their fascinating structures as well as their potential applications in gas storage and separation, heterogeneous catalysis, proton conductivity, and luminescent sensors, *etc.* Organic ligands play a key role in the construction of CPs with various structures and topologies with pyridine-based ligands being widely used. A mercury-based coordination polymer was described by Wang *et al.* (2014).

In this work, an angular pyridine-based ligand, 4,4'-bis(pyridin-3-ylethynyl)-1,1'biphenyl (*L*) was synthesized and employed to react with Hg(SCN)₂ to afford the title complex, [Hg₂(SCN)₄(*L*)]_n. The Hg^{II} atom is coordinated by one N atom of an *L* ligand, two S atoms of two thiocyanate ligands (one bridging, one terminal) and one N atom of

Figure 1

The coordination mode of the title complex, with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. [Symmetry codes: (i) -2 - x, 1 - y, -z; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.]

the another bridging thiocyanate ligand, in a distorted tetrahedral environment (Table 1 and Fig. 1). The dihedral angle between the coordinating pyridine ring and the benzene ring is 11.4 (2)°, and the two coordinating pyridine rings are parallel, by symmetry. The formed inorganic $[Hg(SCN)_2]_n$ chains are bridged by the organic ligands into a three-dimensional network, whereby the organic ligands are arranged in zigzag sheets approximately parallel to (010) (Fig. 2). Within an organic sheet π - π interactions between nearly parallel aligned pyridine and benzene rings of neighbouring ligands are evident, with a centroid-to-centroid distance of 3.655 (3) Å.

Synthesis and crystallization

The organic ligand L, 4,4'-bis(pyridin-3-ylethynyl)-1,1'biphenyl, was synthesized following the reported procedure (Kaae *et al.*, 2012). 3 ml of a methanol solution of Hg(SCN)₂ (0.1 mmol, 31 mg) was layered upon 3 ml of a chloroform solution of L (0.2 mmol, 70 mg). After 4 d, yellow crystals of the title complex suitable for X-ray analysis were obtained.

Figure 2

The zigzag sheets of the complex, viewed down the c axis, with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity.

Table 1				
Selected	geometric	parameters	(Å.	°).

-		
2.392 (4)	$Hg1-S2^{i}$	2.4325 (13)
2.4170 (13)	Hg1-N2	2.568 (5)
109.28 (10)	N1-Hg1-N2	84.04 (13)
99.19 (10)	S1-Hg1-N2	98.29 (10)
148.61 (5)	S2 ⁱ -Hg1-N2	97.50 (11)
	2.392 (4) 2.4170 (13) 109.28 (10) 99.19 (10) 148.61 (5)	$\begin{array}{cccc} 2.392 \ (4) & Hg1-S2^{i} \\ 2.4170 \ (13) & Hg1-N2 \\ 109.28 \ (10) & N1-Hg1-N2 \\ 99.19 \ (10) & S1-Hg1-N2 \\ 148.61 \ (5) & S2^{i}-Hg1-N2 \end{array}$

[Hg₂(SCN)₄(C₂₆H₁₆N₂)]

6.9175 (5), 17.6267 (13),

Monoclinic, $P2_1/c$

12.0029 (9)

 $0.20 \times 0.18 \times 0.18$

Bruker SMART 1000 CCD area-

detector diffractometer

Multi-scan (SADABS; Bruker,

91.017 (1) 1463.32 (19)

Μο Κα

10.80

989.9

100

2

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Table	2	
Experi	mental	details

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) β (°) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm) Data collection Diffractometer

Absorption correction

1998)
0.221, 0.247
7862, 2726, 2275
0.030
0.606
0.028, 0.062, 1.02
2726
190
H-atom parameters constrained
1.52, -0.78

Computer programs: SMART and SAINT (Bruker, 1998), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The maximum and minimum residual electron density peaks of 2.15 and 1.73 e Å⁻³, respectively, are located 0.93 and 1.00 Å from the Hg atom.

Acknowledgements

The authors thank Qilu University of Technology for supporting this work.

References

- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kaae, B. H., Harpsøe, K., Kvist, T., Mathiesen, J. M., Mølck, C., Gloriam, D., Jimenez, H. N., Uberti, M. A., Nielsen, S. M., Nielsen, B., Bräuner-Osborne, H., Sauerberg, P., Clausen, R. P. & Madsen, U. (2012). *ChemMedChem*, 7, 440–451.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C**71**, 3–8.

Wang, B., Li, M. & Xie, Y. (2014). Acta Cryst. E70, m208.

full crystallographic data

IUCrData (2017). **2**, x170059 [https://doi.org/10.1107/S2414314617000591]

catena-Poly[[μ_2 -4,4'-bis(pyridin-3-ylethynyl)-1,1'-biphenyl- $\kappa^2 N:N'$]bis(μ_2 -thiocyanato- $\kappa^2 N:S$)bis(thiocyanato- κS)dimercury(II)]

Shuzhi Tan, Leili Liu and Yongli Du

catena-Poly[[μ_2 -4,4'-bis(pyridin-3-ylethynyl)-1,1'-biphenyl- $\kappa^2 N:N'$]bis(μ_2 -thiocyanato- $\kappa^2 N:S$)bis(thiocyanato- κS)dimercury(II)]

Crystal data

$[H\sigma_2(SCN)_4(C_{24}H_{14}N_2)]$
M = 0.000
$M_r = 989.9$
Monoclinic, $P2_1/c$
<i>a</i> = 6.9175 (5) Å
<i>b</i> = 17.6267 (13) Å
c = 12.0029 (9) Å
$\beta = 91.017 (1)^{\circ}$
$V = 1463.32 (19) Å^3$
Z = 2

Data collection

Bruker SMART 1000 CCD area-detector diffractometer ω and phi scans Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\min} = 0.221, T_{\max} = 0.247$ 7862 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.062$ S = 1.022726 reflections 190 parameters 0 restraints 0 constraints F(000) = 924 $D_x = 2.247 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2275 reflections $\theta = 2.1-25.5^{\circ}$ $\mu = 10.80 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.20 \times 0.18 \times 0.18 \text{ mm}$

2726 independent reflections 2275 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -20 \rightarrow 21$ $l = -10 \rightarrow 14$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0265P)^2 + 1.8001P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.52 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.78 \text{ e } \text{Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A	ľ	2)	1
--	---	----	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Hg1	0.34026 (3)	0.25411 (2)	0.44910 (2)	0.01732 (8)	
S 1	0.65961 (18)	0.27179 (8)	0.52991 (12)	0.0205 (3)	
S2	0.1157 (2)	0.32566 (8)	0.84385 (12)	0.0227 (3)	

N1	0.1994 (6)	0.3753 (2)	0.4098 (3)	0.0156 (9)
N2	0.1456 (6)	0.2626 (2)	0.6289 (4)	0.0192 (10)
N3	0.5993 (7)	0.2468 (3)	0.7608 (4)	0.0295 (12)
C1	0.3013 (7)	0.4384 (3)	0.4306 (5)	0.0204 (12)
H1	0.425505	0.433605	0.464884	0.025*
C2	0.2349 (8)	0.5101 (3)	0.4046 (5)	0.0248 (13)
H2	0.311575	0.553457	0.421443	0.030*
C3	0.0562 (7)	0.5181 (3)	0.3540 (5)	0.0214 (12)
H3	0.007957	0.567035	0.335333	0.026*
C4	-0.0549 (7)	0.4526 (3)	0.3300 (4)	0.0163 (11)
C5	0.0234 (7)	0.3833 (3)	0.3607 (4)	0.0182 (11)
H5	-0.050779	0.338861	0.346461	0.022*
C6	-0.2388 (7)	0.4581 (3)	0.2727 (4)	0.0182 (12)
C7	-0.3830 (7)	0.4664 (3)	0.2206 (5)	0.0189 (12)
C8	-0.5611 (7)	0.4759 (3)	0.1569 (4)	0.0143 (11)
C9	-0.6090 (7)	0.5459 (3)	0.1106 (5)	0.0185 (12)
H9	-0.524889	0.587946	0.121710	0.022*
C10	-0.7775 (7)	0.5550 (3)	0.0487 (4)	0.0147 (11)
H10	-0.805817	0.602942	0.016040	0.018*
C11	-0.9079 (7)	0.4947 (3)	0.0330 (4)	0.0145 (11)
C12	-0.8575 (7)	0.4249 (3)	0.0807 (4)	0.0159 (11)
H12	-0.943342	0.383226	0.071779	0.019*
C13	-0.6881 (7)	0.4148 (3)	0.1398 (4)	0.0175 (11)
H13	-0.656548	0.366182	0.169164	0.021*
C14	0.6192 (8)	0.2577 (3)	0.6661 (5)	0.0211 (12)
C15	0.1390 (7)	0.2870 (3)	0.7177 (5)	0.0169 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.01973 (12)	0.01986 (12)	0.01214 (12)	0.00123 (9)	-0.00573 (8)	0.00026 (9)
S1	0.0173 (6)	0.0301 (7)	0.0139 (7)	-0.0010 (6)	-0.0030 (6)	0.0026 (6)
S2	0.0288 (7)	0.0258 (7)	0.0135 (7)	0.0112 (6)	-0.0051 (6)	-0.0039 (6)
N1	0.015 (2)	0.021 (2)	0.010 (2)	-0.0006 (17)	-0.0049 (19)	-0.0024 (18)
N2	0.019 (2)	0.022 (2)	0.016 (3)	0.0052 (18)	-0.004 (2)	0.003 (2)
N3	0.027 (3)	0.047 (3)	0.014 (3)	0.001 (2)	-0.007(2)	-0.001 (2)
C1	0.013 (3)	0.031 (3)	0.017 (3)	0.000 (2)	-0.009(2)	0.002 (2)
C2	0.026 (3)	0.022 (3)	0.026 (4)	-0.006 (2)	-0.004 (3)	-0.004 (2)
C3	0.024 (3)	0.018 (3)	0.022 (3)	0.003 (2)	-0.006 (3)	0.000(2)
C4	0.014 (3)	0.027 (3)	0.008 (3)	0.005 (2)	-0.001(2)	0.002 (2)
C5	0.017 (3)	0.024 (3)	0.013 (3)	-0.004 (2)	-0.002 (2)	-0.001 (2)
C6	0.020 (3)	0.022 (3)	0.013 (3)	0.003 (2)	0.001 (2)	0.004 (2)
C7	0.017 (3)	0.021 (3)	0.018 (3)	0.000 (2)	-0.002 (2)	0.001 (2)
C8	0.010 (2)	0.023 (3)	0.010 (3)	0.0043 (19)	-0.002 (2)	0.000(2)
C9	0.012 (3)	0.020 (3)	0.023 (3)	0.000 (2)	-0.004 (2)	0.001 (2)
C10	0.016 (2)	0.017 (2)	0.011 (3)	0.005 (2)	0.001 (2)	0.001 (2)
C11	0.012 (2)	0.021 (3)	0.010 (3)	0.002 (2)	-0.001 (2)	0.000(2)
C12	0.017 (3)	0.020 (3)	0.010 (3)	-0.001 (2)	-0.001 (2)	-0.001 (2)

data reports

C13	0.022 (3)	0.017 (2)	0.013 (3)	0.005 (2)	0.000 (2)	0.001 (2)
C14	0.015 (3)	0.027 (3)	0.021 (3)	0.000(2)	-0.006 (2)	-0.003 (2)
C15	0.012 (3)	0.021 (3)	0.018 (3)	0.000 (2)	-0.002 (2)	0.003 (2)

Geometric parameters (Å, °)

Hg1—N1	2.392 (4)	C4—C5	1.384 (7)
Hg1—S1	2.4170 (13)	C4—C6	1.438 (7)
Hg1—S2 ⁱ	2.4325 (13)	С5—Н5	0.9500
Hg1—N2	2.568 (5)	C6—C7	1.178 (7)
S1—C14	1.682 (6)	С7—С8	1.448 (7)
S2—C15	1.671 (6)	C8—C9	1.392 (7)
N1—C1	1.338 (6)	C8—C13	1.402 (7)
N1—C5	1.351 (6)	C9—C10	1.381 (7)
N2—C15	1.151 (7)	С9—Н9	0.9500
N3—C14	1.163 (8)	C10—C11	1.404 (7)
C1—C2	1.378 (7)	C10—H10	0.9500
C1—H1	0.9500	C11—C12	1.398 (7)
C2—C3	1.375 (7)	C11—C11 ⁱⁱ	1.500 (9)
С2—Н2	0.9500	C12—C13	1.371 (7)
C3—C4	1.413 (7)	C12—H12	0.9500
С3—Н3	0.9500	C13—H13	0.9500
N1—Hg1—S1	109.28 (10)	N1—C5—H5	118.2
N1—Hg1—S2 ⁱ	99.19 (10)	C4—C5—H5	118.2
S1—Hg1—S2 ⁱ	148.61 (5)	C7—C6—C4	175.0 (6)
N1—Hg1—N2	84.04 (13)	C6—C7—C8	179.4 (6)
S1—Hg1—N2	98.29 (10)	C9—C8—C13	118.6 (4)
S2 ⁱ —Hg1—N2	97.50 (11)	C9—C8—C7	120.5 (4)
C14—S1—Hg1	101.81 (19)	C13—C8—C7	120.9 (4)
C15—S2—Hg1 ⁱⁱⁱ	99.43 (18)	C10—C9—C8	120.7 (5)
C1—N1—C5	117.6 (4)	С10—С9—Н9	119.6
C1—N1—Hg1	119.6 (3)	С8—С9—Н9	119.6
C5—N1—Hg1	122.7 (3)	C9—C10—C11	121.2 (5)
C15—N2—Hg1	146.1 (4)	C9—C10—H10	119.4
N1—C1—C2	123.2 (5)	C11—C10—H10	119.4
N1—C1—H1	118.4	C12—C11—C10	117.1 (4)
C2-C1-H1	118.4	C12—C11—C11 ⁱⁱ	121.9 (6)
C3—C2—C1	119.2 (5)	C10—C11—C11 ⁱⁱ	121.0 (6)
С3—С2—Н2	120.4	C13—C12—C11	122.1 (5)
C1—C2—H2	120.4	C13—C12—H12	118.9
C2—C3—C4	119.2 (5)	C11—C12—H12	118.9
С2—С3—Н3	120.4	C12—C13—C8	120.2 (5)
С4—С3—Н3	120.4	C12—C13—H13	119.9
C5—C4—C3	117.3 (5)	C8—C13—H13	119.9
C5—C4—C6	121.7 (5)	N3—C14—S1	177.1 (5)
C3—C4—C6	121.0 (5)	N2—C15—S2	176.1 (5)
N1—C5—C4	123.6 (5)		

C5—N1—C1—C2	0.2 (8)	C13—C8—C9—C10	-0.3 (8)
Hg1—N1—C1—C2	176.3 (4)	C7—C8—C9—C10	179.2 (5)
N1-C1-C2-C3	-0.6 (9)	C8—C9—C10—C11	1.7 (8)
C1—C2—C3—C4	0.1 (9)	C9—C10—C11—C12	-1.4 (8)
C2—C3—C4—C5	0.8 (8)	C9—C10—C11—C11 ⁱⁱ	179.1 (6)
C2—C3—C4—C6	-177.2 (5)	C10-C11-C12-C13	-0.4 (8)
C1—N1—C5—C4	0.8 (8)	C11 ⁱⁱ —C11—C12—C13	179.1 (6)
Hg1—N1—C5—C4	-175.2 (4)	C11—C12—C13—C8	1.8 (8)
C3—C4—C5—N1	-1.3 (8)	C9—C8—C13—C12	-1.5 (8)
C6—C4—C5—N1	176.8 (5)	C7—C8—C13—C12	179.1 (5)

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*-2, -*y*+1, -*z*; (iii) *x*, -*y*+1/2, *z*+1/2.