

IUCrData

ISSN 2414-3146

Received 29 December 2016 Accepted 9 January 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrogen bonding; $\pi - \pi$ stacking; zwitterion.

CCDC reference: 1526368

Structural data: full structural data are available from iucrdata.iucr.org

(*E*)-1-(4-Fluorophenyl)-2-(2-oxidonaphthalen-1-yl)diazenium

Hassiba Bougueria,^{a,b}* Souheyla Chetioui,^a Assia Mili,^a Salah eddine Bouaoud^a and Hocine Merazig^a

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and ^bCentre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria. *Correspondence e-mail: naadia.saadouni@gmail.com

In the title zwitterion, $C_{16}H_{11}FN_2O$, which belongs to the family of azo dyes, the dihedral angle between the benzene ring and the naphthalene ring system is 15.33 (7)° and an intramolecular $N-H\cdots O$ hydrogen bond closes an S(6) ring. In the crystal, inversion dimers linked by weak $C-H\cdots O$ hydrogen bonds generate $R_2^2(16)$ loops. Aromatic $\pi-\pi$ stacking [centroid–centroid distance = 3.585 (11) Å] is also observed.

Structure description

The structures and properties of azo dyes (solubility, habit, stability, colour) are dependent on their solid-state structures (Kennedy *et al.*, 2004). As part of our studies in this area, we now describe the structure of the title compound, which shows zwitterionic behaviour (*i.e.* proton transfer from the naphthol group to the azo group) in the solid state.

The dihedral angle between the benzene ring and the naphthalene ring system is 15.33 (7)° and an intramolecular N-H···O hydrogen bond (Fig. 1 and Table 1) closes an S(6) ring. In the crystal, inversion dimers linked by weak C-H···O hydrogen bonds generate $R_2^2(16)$ loops. The dimers are linked through π - π stacking between the benzene ring and naphthalene ring systems of adjacent molecules, the centroid-centroid distance between the C1-ring and C9-ring being 3.585 (11) Å.

Synthesis and crystallization

The title compound was obtained through the diazotization of 4-fluoroaniline followed by a coupling reaction with 2-naphthol according to the established procedure (Wang *et*

Figure 1

The molecular structure with displacement ellipsoids drawn at the 50% probability level.

al., 2003). Colourless prisms of were obtained by slow evaporation of THF-H₂O (1:1 v/v) solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

We thank all researchers of the CHEMS Research Unit of the University of Constantine Algeria for the valuable assistance they have provided us throughout the realization of this work.

References

- Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). *Chem. Eur. J.* **10**, 4606–4615.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1N\cdotsO1$	0.86	1.83	2.5342 (18)	138
$C3-H3\cdotsO1^{i}$	0.93	2.54	3.417 (2)	157

Symmetry code: (i) -x + 1, -y + 1, -z.

Table 2

Experimental details.

Crystal data	
Chemical formula	$C_{16}H_{11}FN_2O$
$M_{ m r}$	266.27
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	293
a, b, c (Å)	13.211 (3), 13.685 (2), 6.8580 (14)
β (°)	92.971 (11)
$V(A^3)$	1238.2 (4)
Z	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.10
Crystal size (mm)	$0.1 \times 0.1 \times 0.1$
•	
Data collection	
Diffractometer	Bruker APEXII
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2006)
T_{\min}, T_{\max}	0.990, Ó.990
No. of measured, independent and	10648, 2815, 1886
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.033
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.124, 0.97
No. of reflections	2817
No. of parameters	182
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.26, -0.19

Computer programs: APEX2 and SAINT (Bruker, 2006), SHELXS86 and SHELXL97 (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012).

Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77-86.

full crystallographic data

IUCrData (2017). **2**, x170039 [https://doi.org/10.1107/S2414314617000396]

(E)-1-(4-Fluorophenyl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium

Hassiba Bougueria, Souheyla Chetioui, Assia Mili, Salah eddine Bouaoud and Hocine Merazig

(E)-1-(4-Fluorophenyl)-2-(2-oxidonaphthalen-1-yl)diazen-1-ium

Crystal data

C₁₆H₁₁FN₂O $M_r = 266.27$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.211 (3) Å b = 13.685 (2) Å c = 6.8580 (14) Å $\beta = 92.971$ (11)° V = 1238.2 (4) Å³ Z = 4

Data collection

Bruker APEXII diffractometer Graphite monochromator CCD rotation images, thin slices scans Absorption correction: multi-scan (SADABS; Bruker, 2006) $T_{\min} = 0.990, T_{\max} = 0.990$ 10648 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.124$ S = 0.972817 reflections 182 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 552 $D_x = 1.428 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2528 reflections $\theta = 3.0-27.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.1 \times 0.1 \times 0.1 \text{ mm}$

2815 independent reflections 1886 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -15 \rightarrow 17$ $k = -17 \rightarrow 13$ $l = -8 \rightarrow 7$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0721P)^2 + 0.0881P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.26$ e Å⁻³ $\Delta\rho_{min} = -0.19$ e Å⁻³

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.06264 (7)	0.21274 (7)	0.05713 (17)	0.0439 (4)	
01	0.48253 (8)	0.60742 (7)	0.13349 (17)	0.0293 (4)	
N1	0.30356 (10)	0.54101 (8)	0.09440 (18)	0.0228 (4)	
N2	0.26550 (10)	0.62815 (8)	0.09470 (18)	0.0218 (4)	
C1	0.12128 (12)	0.29487 (11)	0.0642 (3)	0.0280 (5)	
C2	0.22314 (12)	0.28554 (11)	0.0370 (3)	0.0290 (5)	
C3	0.28263 (12)	0.36936 (11)	0.0479 (2)	0.0259 (5)	
C4	0.23846 (11)	0.45913 (10)	0.0844 (2)	0.0216 (4)	
C5	0.13491 (12)	0.46609 (11)	0.1111 (2)	0.0261 (5)	
C6	0.07590 (13)	0.38305 (11)	0.1005 (3)	0.0290 (5)	
C9	0.44015 (12)	0.69218 (11)	0.1297 (2)	0.0232 (5)	
C10	0.50143 (12)	0.77902 (11)	0.1477 (2)	0.0276 (5)	
C11	0.45942 (12)	0.86927 (11)	0.1419 (2)	0.0259 (5)	
C12	0.35172 (12)	0.88390 (10)	0.1183 (2)	0.0227 (5)	
C13	0.30979 (13)	0.97866 (11)	0.1140 (2)	0.0267 (5)	
C14	0.20713 (13)	0.99159 (11)	0.0913 (2)	0.0300 (5)	
C15	0.14335 (12)	0.91015 (11)	0.0711 (2)	0.0286 (5)	
C16	0.18212 (12)	0.81701 (11)	0.0766 (2)	0.0258 (5)	
C17	0.28710 (12)	0.80125 (10)	0.1012 (2)	0.0209 (5)	
C18	0.33171 (11)	0.70416 (10)	0.1080 (2)	0.0205 (4)	
H1N	0.36822	0.53301	0.10028	0.0274*	
H2	0.25148	0.22489	0.01198	0.0348*	
H3	0.35187	0.36530	0.03071	0.0311*	
H5	0.10579	0.52639	0.13602	0.0313*	
H6	0.00662	0.38655	0.11756	0.0347*	
H10	0.57148	0.77297	0.16368	0.0331*	
H11	0.50162	0.92359	0.15343	0.0311*	
H13	0.35220	1.03278	0.12652	0.0320*	
H14	0.17985	1.05425	0.08938	0.0360*	
H15	0.07371	0.91924	0.05368	0.0343*	
H16	0.13844	0.76383	0.06400	0.0309*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0319 (6)	0.0280 (5)	0.0717 (8)	-0.0104 (4)	0.0010 (5)	-0.0031 (5)
01	0.0253 (6)	0.0244 (6)	0.0381 (7)	0.0032 (5)	0.0011 (5)	0.0011 (5)
N1	0.0210 (7)	0.0209 (7)	0.0265 (7)	0.0009 (5)	0.0008 (5)	0.0009 (5)
N2	0.0278 (8)	0.0183 (7)	0.0194 (7)	0.0002 (5)	0.0015 (5)	-0.0003 (5)
C1	0.0265 (9)	0.0210 (8)	0.0360 (9)	-0.0070 (7)	-0.0019 (7)	0.0014 (7)
C2	0.0284 (9)	0.0189 (8)	0.0398 (10)	0.0022 (7)	0.0018 (8)	-0.0008 (7)
C3	0.0237 (9)	0.0239 (8)	0.0301 (9)	0.0009 (6)	0.0021 (7)	0.0020 (6)
C4	0.0245 (8)	0.0206 (7)	0.0194 (8)	-0.0029 (6)	-0.0008 (6)	0.0021 (6)
C5	0.0267 (9)	0.0216 (8)	0.0299 (9)	0.0036 (7)	0.0009 (7)	-0.0009 (6)
C6	0.0214 (8)	0.0295 (9)	0.0360 (10)	0.0000 (7)	0.0012 (7)	-0.0002 (7)

C9	0.0247 (9)	0.0253 (8)	0.0197 (8)	0.0003 (7)	0.0023 (6)	0.0006 (6)
C10	0.0225 (8)	0.0312 (9)	0.0289 (9)	-0.0045 (7)	0.0005 (7)	-0.0041 (7)
C11	0.0285 (9)	0.0245 (8)	0.0248 (8)	-0.0082 (7)	0.0018 (7)	-0.0041 (6)
C12	0.0281 (9)	0.0235 (8)	0.0166 (8)	-0.0031 (7)	0.0029 (7)	-0.0006 (6)
C13	0.0335 (10)	0.0211 (8)	0.0256 (8)	-0.0058 (7)	0.0031 (7)	-0.0016 (6)
C14	0.0411 (10)	0.0206 (8)	0.0285 (9)	0.0042 (7)	0.0036 (7)	0.0011 (6)
C15	0.0253 (9)	0.0254 (8)	0.0352 (9)	0.0032 (7)	0.0018 (7)	0.0013 (7)
C16	0.0262 (9)	0.0211 (8)	0.0300 (9)	-0.0035 (7)	0.0018 (7)	-0.0002 (6)
C17	0.0248 (9)	0.0210 (8)	0.0170 (7)	-0.0009 (6)	0.0027 (6)	0.0001 (6)
C18	0.0244 (8)	0.0203 (7)	0.0170 (7)	-0.0019 (6)	0.0026 (6)	0.0001 (6)

Geometric parameters (Å, °)

F1—C1	1.3645 (18)	C12—C13	1.410 (2)
O1—C9	1.2877 (18)	C13—C14	1.369 (2)
N1—N2	1.2942 (16)	C14—C15	1.400 (2)
N1—C4	1.4120 (19)	C15—C16	1.374 (2)
N2-C18	1.3591 (19)	C16—C17	1.405 (2)
N1—H1N	0.8600	C17—C18	1.453 (2)
C1—C2	1.374 (2)	С2—Н2	0.9300
C1—C6	1.376 (2)	С3—Н3	0.9300
C2—C3	1.390 (2)	С5—Н5	0.9300
C3—C4	1.388 (2)	С6—Н6	0.9300
C4—C5	1.393 (2)	C10—H10	0.9300
C5—C6	1.378 (2)	C11—H11	0.9300
C9—C10	1.440 (2)	C13—H13	0.9300
C9—C18	1.442 (2)	C14—H14	0.9300
C10-C11	1.354 (2)	C15—H15	0.9300
C11—C12	1.438 (2)	C16—H16	0.9300
C12—C17	1.418 (2)		
N2—N1—C4	119.71 (13)	C12—C17—C18	119.02 (14)
N1—N2—C18	117.17 (13)	C16—C17—C18	122.71 (13)
C4—N1—H1N	120.00	C12—C17—C16	118.27 (13)
N2—N1—H1N	120.00	C9—C18—C17	120.42 (13)
F1-C1-C6	118.49 (14)	N2—C18—C9	123.53 (13)
C2-C1-C6	123.03 (15)	N2-C18-C17	116.05 (13)
F1—C1—C2	118.48 (13)	C1—C2—H2	121.00
C1—C2—C3	118.09 (14)	C3—C2—H2	121.00
C2—C3—C4	119.87 (14)	С2—С3—Н3	120.00
N1-C4-C3	116.76 (13)	С4—С3—Н3	120.00
C3—C4—C5	120.60 (13)	C4—C5—H5	120.00
N1-C4-C5	122.63 (13)	С6—С5—Н5	120.00
C4—C5—C6	119.57 (14)	C1—C6—H6	121.00
C1—C6—C5	118.83 (15)	С5—С6—Н6	121.00
С10—С9—С18	117.79 (13)	C9—C10—H10	119.00
O1—C9—C10	119.99 (14)	C11—C10—H10	119.00
O1-C9-C18	122.22 (13)	C10-C11-H11	119.00

C9—C10—C11 C10—C11—C12	121.52 (15)	C12—C11—H11 C12—C13—H13	119.00 120.00
C11 - C12 - C17	119.09(13)	C14—C13—H13	120.00
C13 - C12 - C17	119.85 (14)	C_{13} C_{14} H_{14}	120.00
C11-C12-C13	121.06 (14)	C_{15} C_{14} H_{14}	120.00
C12—C13—C14	120.48 (14)	C14—C15—H15	120.00
C13—C14—C15	119.75 (14)	С16—С15—Н15	120.00
C14—C15—C16	120.96 (15)	С15—С16—Н16	120.00
C15—C16—C17	120.67 (14)	C17—C16—H16	120.00
C4 N1 N2 C18	179 99 (12)	C10 C0 C18 C17	1 1 (2)
V_4 N1 V_4 C_7	1/0.00(12) 168.20(12)	C10 - C9 - C18 - C17	1.1(2)
$N_2 = N_1 = C_4 = C_5$	-122(2)	C_{9} C_{10} C_{11} C_{12} C_{13}	0.2(2)
$N_2 - N_1 - C_4 - C_3$ N1 N2 C18 C0	-12.3(2) -2.7(2)	$C_{10} = C_{11} = C_{12} = C_{13}$	1/9.38(13)
N1 - N2 - C18 - C17	-2.7(2)	$C_{10} - C_{11} - C_{12} - C_{14}$	0.2(2)
$N_1 - N_2 - C_{10} - C_{17}$	1/7.94(12) -178.87(16)	C17 C12 C13 C14	1/9.94(13) -0.7(2)
F1 = C1 = C2 = C3	-1/8.8/(10)	C17 - C12 - C13 - C14	-0.7(2)
$C_0 - C_1 - C_2 - C_3$	0.3(3)	C11 - C12 - C17 - C18	-1/9.48(13)
FI = CI = C6 = C5	1/8.93(10)	C12 - C12 - C17 - C18	-0.02(19)
$C_2 - C_1 - C_0 - C_3$	-0.3(3)	C13 - C12 - C17 - C16	1.2(2)
C1 = C2 = C3 = C4	-0.3(3)	C13 - C12 - C17 - C18	-1/9.3/(13)
$C_2 = C_3 = C_4 = N_1$	1/9./1 (14)	C12-C13-C14-C15	-0.4(2)
$C_2 - C_3 - C_4 - C_5$	0.3 (2)	C13 - C14 - C15 - C16	1.0 (2)
NI-C4-C5-C6	-1/9.62(15)		-0.5 (2)
C3—C4—C5—C6	-0.2 (2)	C15—C16—C17—C12	-0.6 (2)
C4—C5—C6—C1	0.2 (3)	C15—C16—C17—C18	179.97 (14)
O1—C9—C10—C11	179.18 (13)	C12—C17—C18—N2	178.74 (13)
C18—C9—C10—C11	-0.9 (2)	C12—C17—C18—C9	-0.7 (2)
O1—C9—C18—N2	1.7 (2)	C16—C17—C18—N2	-1.8 (2)
O1—C9—C18—C17	-178.98 (13)	C16—C17—C18—C9	178.78 (13)
C10—C9—C18—N2	-178.25 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> …O1	0.86	1.83	2.5342 (18)	138
C3—H3···O1 ⁱ	0.93	2.54	3.417 (2)	157

Symmetry code: (i) -x+1, -y+1, -z.