IUCrData

ISSN 2414-3146

Received 1 January 2017 Accepted 4 January 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; triazole; pyrazole; hydrogen bond; thiosemicarbazides.

CCDC reference: 1525650

Structural data: full structural data are available from iucrdata.iucr.org

4-Cyclohexyl-3-[(3,5-dimethyl-1*H*-pyrazol-1-yl)methyl]-4,5-dihydro-1*H*-1,2,4-triazole-5-thione

Joel T. Mague,^a Shaaban K. Mohamed,^{b,c} Mehmet Akkurt,^d Adel A. Marzouk,^e Hamdy M. Abdel-Rahman^f and Farouq E. Hawaiz⁸*

^aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, ^cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^ePharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, 71515 Assiut, Egypt, ^fFaculty of Pharmacy, Medicinal Chemistry Department, Assiut University, Assiut 71526, Egypt, and ^gChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

In the title compound, $C_{14}H_{21}N_5S$, the dihedral angle between the triazole ring and the pyrazole ring is 88.16 (7)°. The cyclohexyl ring is disordered over two chair conformations in a 0.720 (3):0.280 (3) ratio. In the crystal, the molecules are linked by N-H···N hydrogen bonds to generate C(7) chains propagating in [001]. The chains are cross-linked by very weak C-H···S hydrogen bonds to generate (100) sheets.

Structure description

As part of our ongoing studies of pyrazole derivatives (Mague *et al.*, 2015), we report herein the synthesis and crystal structure of the title compound (Fig. 1).

The dihedral angle between the mean planes of the triazole and pyrazole rings is 88.16 (7)°. The cyclohexyl ring is disordered over two chair conformations in a 0.720 (3):0.280 (3) ratio. In the crystal, the molecules form (100) layers through a combination of N3-H3···N5ⁱ, C9-H9A···S1ⁱⁱ and C9-H9B···S1ⁱⁱⁱ (symmetry codes: (1) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$) hydrogen bonds (Table 1 and Fig. 2).

Figure 1

The title molecule with 50% probability ellipsoids. Only the major component of the disordered cyclohexane ring is shown.

Synthesis and crystallization

A solution of 1-[2-(3,5-dimethyl-1H-pyrazol-1-yl)acetyl]-4cyclohexyl thiosemicarbazides (1.23 g, 4 mmol) in ethanol(50 ml) was added dropwise to 2 N sodium hydroxide solution(20 ml). The reaction mixture was refluxed for 2 h, cooled andfiltered. The filtrate was acidified with 2 N hydrochloric acidsolution. The separated solid was collected, washed with waterand recrystallized from ethanol solution to yield colourlessplates.

Refinement

Crystal and refinement details appear in Table 2. The cyclohexyl group is disordered in a 72:28 ratio over two chair conformations related by an approximately 180° rotation about the N1–C3 bond. The two components were refined with restraints that their geometries be comparable.

Figure 2

Packing viewed along the *b* axis. $N-H\cdots N$ and $C-H\cdots S$ hydrogen bonds are shown, respectively, as blue and black dotted lines.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N3-H3\cdots N5^{i}$ $C9-H9A\cdots S1^{ii}$	0.90(3) 0.96(3)	1.91 (3) 2.93 (3)	2.805 (2) 3.766 (3)	175 (3) 147 (2)
$C9-H9B\cdots S1^{iii}$	0.98 (3)	2.88 (3)	3.761 (2)	151 (2)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{14}H_{21}N_5S$
M _r	291.42
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	20.7954 (6), 6.2107 (2), 11.7871 (3)
β (°)	90.653 (1)
$V(Å^3)$	1522.25 (8)
Ζ	4
Radiation type	Cu Kα
$\mu (\text{mm}^{-1})$	1.87
Crystal size (mm)	$0.34 \times 0.19 \times 0.02$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (SADABS; Bruker, 2016)
Tmin. Tmax	0.83, 0.97
No. of measured, independent and observed $[I > 2\pi(I)]$ reflections	11034, 2951, 2589
P_{i}	0.034
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.048 0.115 1.05
No of reflections	2951
No of parameters	215
No. of restraints	13
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	0.65, -0.82

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL 20147* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Mague, J. T., Mohamed, S. K., Akkurt, M. & Albayati, M. R. (2015). *Acta Cryst.* E**71**, 0417.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

full crystallographic data

IUCrData (2017). **2**, x170020 [https://doi.org/10.1107/S2414314617000207]

4-Cyclohexyl-3-[(3,5-dimethyl-1*H*-pyrazol-1-yl)methyl]-4,5-dihydro-1*H*-1,2,4-triazole-5-thione

Joel T. Mague, Shaaban K. Mohamed, Mehmet Akkurt, Adel A. Marzouk, Hamdy M. Abdel-Rahman and Farouq E. Hawaiz

4-Cyclohexyl-3-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4,5-dihydro-1-H-1,2,4-triazole-5-thione

Crystal data

C₁₄H₂₁N₅S $M_r = 291.42$ Monoclinic, $P2_1/c$ a = 20.7954 (6) Å b = 6.2107 (2) Å c = 11.7871 (3) Å $\beta = 90.653$ (1)° V = 1522.25 (8) Å³ Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro–focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (*SADABS*; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.115$ S = 1.052951 reflections 215 parameters 13 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 624 $D_x = 1.272 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8361 reflections $\theta = 4.3-72.4^{\circ}$ $\mu = 1.87 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.34 \times 0.19 \times 0.02 \text{ mm}$

 $T_{\min} = 0.83, T_{\max} = 0.97$ 11034 measured reflections 2951 independent reflections 2589 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 72.4^{\circ}, \theta_{min} = 4.3^{\circ}$ $h = -25 \rightarrow 25$ $k = -7 \rightarrow 7$ $l = -14 \rightarrow 14$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0372P)^2 + 1.6394P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.65$ e Å⁻³ $\Delta\rho_{min} = -0.82$ e Å⁻³ Extinction correction: *SHELXL 2014/7* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0022 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H-atoms of the methyl groups and the disordered cyclohexyl group were placed in calculated positions (C—H = 0.98 - 1.00 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The cyclohexyl group is disordered in a 72:28 ratio over two chair conformations related by an approximately 180° rotation about the N1—C3 bond. The two components were refined with restraints that their geometries be comparable.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S 1	0.81796 (3)	0.38503 (9)	0.90485 (5)	0.03905 (19)	
N1	0.78874 (8)	0.5335 (3)	0.68895 (14)	0.0306 (4)	
N2	0.68920 (8)	0.4124 (3)	0.66233 (13)	0.0288 (4)	
N3	0.71376 (8)	0.3535 (3)	0.76686 (14)	0.0294 (4)	
Н3	0.6906 (13)	0.264 (5)	0.810(2)	0.051 (8)*	
N4	0.66611 (9)	0.6146 (3)	0.45832 (13)	0.0299 (4)	
N5	0.64407 (8)	0.4451 (3)	0.39492 (13)	0.0288 (4)	
C1	0.77356 (10)	0.4235 (3)	0.78605 (17)	0.0297 (4)	
C2	0.73585 (9)	0.5221 (3)	0.61729 (16)	0.0281 (4)	
C3A	0.85297 (11)	0.6382 (5)	0.6856 (2)	0.0252 (6)	0.720 (3)
H3A	0.8808	0.5706	0.7454	0.030*	0.720 (3)
C4A	0.88585 (13)	0.6111 (4)	0.5723 (2)	0.0277 (6)	0.720 (3)
H4A1	0.8608	0.6850	0.5119	0.033*	0.720 (3)
H4A2	0.8889	0.4564	0.5527	0.033*	0.720 (3)
C5A	0.9536 (2)	0.7096 (8)	0.5823 (7)	0.0329 (6)	0.720 (3)
H5A1	0.9791	0.6286	0.6394	0.039*	0.720 (3)
H5A2	0.9755	0.6973	0.5085	0.039*	0.720 (3)
C6A	0.95014 (14)	0.9463 (5)	0.6170 (3)	0.0322 (6)	0.720 (3)
H6A1	0.9943	1.0031	0.6277	0.039*	0.720 (3)
H6A2	0.9291	1.0300	0.5555	0.039*	0.720 (3)
C7A	0.91282 (15)	0.9761 (6)	0.7263 (3)	0.0386 (9)	0.720 (3)
H7A1	0.9092	1.1315	0.7438	0.046*	0.720 (3)
H7A2	0.9362	0.9057	0.7898	0.046*	0.720 (3)
C8A	0.84542 (19)	0.8779 (7)	0.7143 (6)	0.0279 (9)	0.720 (3)
H8A1	0.8210	0.9520	0.6532	0.033*	0.720 (3)
H8A2	0.8217	0.8947	0.7861	0.033*	0.720 (3)
C3B	0.8402 (2)	0.6828 (9)	0.6466 (6)	0.0252 (6)	0.280 (3)
H3B	0.8259	0.7426	0.5717	0.030*	0.280 (3)
C4B	0.9015 (3)	0.5558 (9)	0.6290 (7)	0.0277 (6)	0.280 (3)
H4B1	0.8935	0.4395	0.5732	0.033*	0.280 (3)
H4B2	0.9151	0.4886	0.7016	0.033*	0.280 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5B	0.9551 (5)	0.703 (2)	0.5861 (16)	0.0329 (6)	0.280 (3)
H5B1	0.9951	0.6191	0.5771	0.039*	0.280 (3)
H5B2	0.9427	0.7626	0.5110	0.039*	0.280 (3)
C6B	0.9673 (3)	0.8887 (11)	0.6694 (7)	0.0322 (6)	0.280 (3)
H6B1	0.9820	0.8306	0.7435	0.039*	0.280 (3)
H6B2	1.0013	0.9842	0.6399	0.039*	0.280 (3)
C7B	0.9054 (3)	1.0165 (10)	0.6848 (8)	0.0386 (9)	0.280 (3)
H7B1	0.8920	1.0805	0.6113	0.046*	0.280(3)
H7B2	0.9131	1.1353	0.7393	0.046*	0.280 (3)
C8B	0.8516 (5)	0.8710 (18)	0.7286 (15)	0.0279 (9)	0.280(3)
H8B1	0.8115	0.9555	0.7361	0.033*	0.280(3)
H8B2	0.8637	0.8146	0.8045	0.033*	0.280 (3)
С9	0.73190 (11)	0.6154 (4)	0.50055 (17)	0.0335 (5)	
H9A	0.7575 (12)	0.531 (4)	0.450 (2)	0.040 (7)*	
H9B	0.7465 (12)	0.765 (5)	0.502 (2)	0.049 (7)*	
C10	0.61843 (12)	0.7525 (3)	0.48504 (17)	0.0371 (5)	
C11	0.56341 (12)	0.6719 (4)	0.43495 (19)	0.0408 (5)	
H11	0.5216	0.7330	0.4370	0.049*	
C12	0.58160 (10)	0.4813 (3)	0.38033 (16)	0.0322 (5)	
C13	0.63050 (16)	0.9470 (4)	0.5565 (2)	0.0550 (7)	
H13A	0.6662	1.0298	0.5249	0.083*	
H13B	0.6415	0.9023	0.6341	0.083*	
H13C	0.5917	1.0366	0.5575	0.083*	
C14	0.54153 (11)	0.3250 (4)	0.3135 (2)	0.0436 (6)	
H14A	0.5054	0.4012	0.2778	0.065*	
H14B	0.5251	0.2134	0.3643	0.065*	
H14C	0.5679	0.2582	0.2548	0.065*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S 1	0.0416 (3)	0.0356 (3)	0.0395 (3)	0.0083 (2)	-0.0179 (2)	-0.0107 (2)
N1	0.0252 (8)	0.0328 (9)	0.0339 (9)	-0.0084 (7)	0.0007 (7)	-0.0110 (7)
N2	0.0313 (9)	0.0318 (9)	0.0230 (8)	-0.0086 (7)	-0.0048 (6)	0.0040 (7)
N3	0.0313 (9)	0.0328 (9)	0.0240 (8)	-0.0045 (7)	-0.0065 (7)	0.0030 (7)
N4	0.0439 (10)	0.0247 (9)	0.0212 (8)	-0.0062 (7)	-0.0003 (7)	-0.0013 (6)
N5	0.0377 (9)	0.0260 (8)	0.0227 (8)	-0.0044 (7)	-0.0013 (7)	-0.0036 (7)
C1	0.0310 (10)	0.0274 (10)	0.0307 (10)	0.0022 (8)	-0.0039 (8)	-0.0089 (8)
C2	0.0314 (10)	0.0271 (10)	0.0257 (9)	-0.0076 (8)	0.0005 (7)	-0.0049 (8)
C3A	0.0185 (12)	0.0288 (14)	0.0280 (17)	-0.0030 (10)	-0.0098 (10)	-0.0019 (11)
C4A	0.0282 (13)	0.0230 (13)	0.0321 (16)	0.0004 (10)	0.0022 (11)	-0.0052 (11)
C5A	0.0267 (10)	0.0341 (12)	0.0378 (12)	0.0011 (9)	0.0029 (9)	-0.0017 (10)
C6A	0.0279 (14)	0.0344 (16)	0.0343 (17)	-0.0093 (12)	-0.0010 (12)	-0.0006 (12)
C7A	0.0365 (15)	0.0430 (18)	0.036 (2)	-0.0149 (13)	-0.0011 (15)	-0.0158 (16)
C8A	0.0307 (13)	0.0267 (11)	0.0263 (19)	-0.0035 (9)	0.0038 (13)	-0.0061 (10)
C3B	0.0185 (12)	0.0288 (14)	0.0280 (17)	-0.0030 (10)	-0.0098 (10)	-0.0019 (11)
C4B	0.0282 (13)	0.0230 (13)	0.0321 (16)	0.0004 (10)	0.0022 (11)	-0.0052 (11)
C5B	0.0267 (10)	0.0341 (12)	0.0378 (12)	0.0011 (9)	0.0029 (9)	-0.0017 (10)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.00138 (10) \\ -0.0061 (10) \\ -0.0014 (8) \\ 0.0008 (8) \\ -0.0016 (9) \\ 0.0008 (8) \\ -0.0115 (11) \\ 0.0073 (11) \end{array}$
C13 $0.090(2)$ $0.0327(13)$ $0.0417(14)$ $0.0082(13)$ $-0.0048(13)$ C14 $0.0403(12)$ $0.0544(15)$ $0.0358(12)$ $-0.0051(11)$ $-0.0074(9)$	-0.0073(11) -0.0073(11)

Geometric parameters (Å, °)

61 61	1 (9((2)	C2D C4D	1 514 (4)
	1.080 (2)		1.514 (4)
NI-CI	1.373 (3)	C3B—C8B	1.534 (5)
NI—C2	1.381 (3)	C3B—H3B	1.0000
N1—C3A	1.487 (3)	C4B—C5B	1.534 (5)
N1—C3B	1.506 (4)	C4B—H4B1	0.9900
N2—C2	1.303 (2)	C4B—H4B2	0.9900
N2—N3	1.378 (2)	C5B—C6B	1.532 (5)
N3—C1	1.334 (3)	C5B—H5B1	0.9900
N3—H3	0.90 (3)	C5B—H5B2	0.9900
N4—C10	1.350 (3)	C6B—C7B	1.525 (4)
N4—N5	1.367 (2)	C6B—H6B1	0.9900
N4—C9	1.451 (3)	C6B—H6B2	0.9900
N5-C12	1.328 (3)	C7B—C8B	1.531 (5)
C2—C9	1.495 (3)	C7B—H7B1	0.9900
C3A—C4A	1.516 (3)	C7B—H7B2	0.9900
C3A—C8A	1.536 (4)	C8B—H8B1	0.9900
СЗА—НЗА	1.0000	C8B—H8B2	0.9900
C4A—C5A	1.539 (4)	С9—Н9А	0.96 (3)
C4A—H4A1	0.9900	С9—Н9В	0.98 (3)
C4A—H4A2	0.9900	C10-C11	1.376 (3)
C5A—C6A	1.528 (4)	C10—C13	1.492 (3)
C5A—H5A1	0.9900	C11—C12	1.402 (3)
C5A—H5A2	0.9900	C11—H11	0.9500
C6A—C7A	1.523 (4)	C12—C14	1.497 (3)
C6A—H6A1	0.9900	C13—H13A	0.9800
C6A—H6A2	0.9900	C13—H13B	0.9800
C7A—C8A	1.533 (4)	C13—H13C	0.9800
C7A—H7A1	0.9900	C14—H14A	0.9800
С7А—Н7А2	0.9900	C14—H14B	0.9800
C8A—H8A1	0.9900	C14—H14C	0.9800
C8A—H8A2	0.9900		
C1—N1—C2	107.18 (16)	C4B—C3B—H3B	108.4
C1—N1—C3A	117.09 (18)	C8B-C3B-H3B	108.4
C2-N1-C3A	135.69 (19)	C3B-C4B-C5B	110.5 (5)
C1-N1-C3B	138.9 (3)	C3B-C4B-H4B1	109.6

C2 11 C2D	112 1 (2)		100 (
C2—NI—C3B	113.1 (3)	C5B—C4B—H4B1	109.6
C2—N2—N3	103.48 (16)	C3B—C4B—H4B2	109.6
C1—N3—N2	113.59 (17)	C5B—C4B—H4B2	109.6
C1—N3—H3	127.6 (17)	H4B1—C4B—H4B2	108.1
N2—N3—H3	118.4 (17)	C6B—C5B—C4B	110.7 (6)
C10—N4—N5	111.93 (17)	C6B—C5B—H5B1	109.5
C10—N4—C9	127.58 (18)	C4B—C5B—H5B1	109.5
N5—N4—C9	119.98 (17)	C6B—C5B—H5B2	109.5
C12—N5—N4	105.21 (17)	C4B—C5B—H5B2	109.5
N3—C1—N1	104.10 (17)	H5B1—C5B—H5B2	108.1
N3—C1—S1	126.53 (17)	C7B—C6B—C5B	109.5 (5)
N1—C1—S1	129.36 (16)	C7B—C6B—H6B1	109.8
N2-C2-N1	111.65 (17)	C5B—C6B—H6B1	109.8
$N_2 - C_2 - C_9$	122.99 (18)	C7B-C6B-H6B2	109.8
N1 - C2 - C9	125.33 (17)	C5B-C6B-H6B2	109.8
N1 - C3A - C4A	112 9 (2)	H6B1 - C6B - H6B2	109.0
N1 = C2A = C8A	112.9(2) 108.0(2)	$\begin{array}{c} 110D1 - C0D - 110D2 \\ C6D - C7D - C9D \\ \end{array}$	100.2
NI = CSA = CSA	100.9(2)	C(B = C7B = U7B1)	110.7 (3)
C4A - C3A - C8A	110.5 (3)	$C_{0}B - C_{1}B - H_{1}BI$	109.5
NI-C3A-H3A	108.1		109.5
С4А—СЗА—НЗА	108.1	С6В—С/В—Н/В2	109.5
С8А—С3А—НЗА	108.1	C8B—C7B—H7B2	109.5
C3A—C4A—C5A	108.1 (3)	H7B1—C7B—H7B2	108.1
C3A—C4A—H4A1	110.1	C7B—C8B—C3B	110.2 (5)
C5A—C4A—H4A1	110.1	C7B—C8B—H8B1	109.6
C3A—C4A—H4A2	110.1	C3B—C8B—H8B1	109.6
C5A—C4A—H4A2	110.1	C7B—C8B—H8B2	109.6
H4A1—C4A—H4A2	108.4	C3B—C8B—H8B2	109.6
C6A—C5A—C4A	110.9 (3)	H8B1—C8B—H8B2	108.1
C6A—C5A—H5A1	109.4	N4—C9—C2	110.86 (16)
C4A—C5A—H5A1	109.5	N4—C9—H9A	108.1 (15)
С6А—С5А—Н5А2	109.5	С2—С9—Н9А	109.8 (15)
C4A - C5A - H5A2	109.4	N4—C9—H9B	107.5 (15)
H5A1 - C5A - H5A2	108.0	$C_2 - C_9 - H_9B$	107.5(10) 109.7(16)
C7A - C6A - C5A	111.7(3)	$H_{0}A = C_{0} = H_{0}B$	109.7(10)
C7A $C6A$ $H6A1$	100.3	$N_{A} = C_{A} = C_{A}$	106 15 (10)
	109.3	N4 C10 C13	100.15(1)
C7A C6A H6A2	109.5	N4-C10-C13	121.7(2)
C/A = COA = HOA2	109.5		152.1(2)
C5A - C6A - H6A2	109.3	C10-C11-C12	106.1 (2)
H6A1—C6A—H6A2	107.9		127.0
C6A—C7A—C8A	110.4 (3)	C12—C11—H11	127.0
C6A—C7A—H7A1	109.6	N5—C12—C11	110.61 (19)
C8A—C7A—H7A1	109.6	N5—C12—C14	119.78 (19)
C6A—C7A—H7A2	109.6	C11—C12—C14	129.6 (2)
C8A—C7A—H7A2	109.6	C10—C13—H13A	109.5
H7A1—C7A—H7A2	108.1	C10-C13-H13B	109.5
C7A—C8A—C3A	108.1 (3)	H13A—C13—H13B	109.5
C7A—C8A—H8A1	110.1	C10—C13—H13C	109.5
C3A—C8A—H8A1	110.1	H13A—C13—H13C	109.5

С7А—С8А—Н8А2	110.1	H13B—C13—H13C	109.5
C3A—C8A—H8A2	110.1	C12—C14—H14A	109.5
H8A1—C8A—H8A2	108.4	C12—C14—H14B	109.5
N1—C3B—C4B	109.1 (4)	H14A—C14—H14B	109.5
N1—C3B—C8B	111.5 (5)	C12—C14—H14C	109.5
C4B—C3B—C8B	111.0 (5)	H14A—C14—H14C	109.5
N1—C3B—H3B	108.4	H14B—C14—H14C	109.5
C2—N2—N3—C1	-0.1 (2)	N1—C3A—C8A—C7A	172.4 (3)
C10—N4—N5—C12	1.2 (2)	C4A—C3A—C8A—C7A	-63.0 (6)
C9—N4—N5—C12	173.48 (17)	C1—N1—C3B—C4B	72.2 (7)
N2—N3—C1—N1	-0.1 (2)	C2—N1—C3B—C4B	-119.4 (4)
N2—N3—C1—S1	179.05 (15)	C1—N1—C3B—C8B	-50.7 (9)
C2—N1—C1—N3	0.3 (2)	C2—N1—C3B—C8B	117.7 (8)
C3A—N1—C1—N3	178.24 (18)	N1—C3B—C4B—C5B	-179.9 (8)
C3B—N1—C1—N3	169.1 (4)	C8B—C3B—C4B—C5B	-56.7 (10)
C2—N1—C1—S1	-178.83 (16)	C3B—C4B—C5B—C6B	57.6 (13)
C3A—N1—C1—S1	-0.8 (3)	C4B—C5B—C6B—C7B	-58.3 (13)
C3B—N1—C1—S1	-10.0 (5)	C5B—C6B—C7B—C8B	58.5 (9)
N3—N2—C2—N1	0.3 (2)	C6B—C7B—C8B—C3B	-57.8 (12)
N3—N2—C2—C9	178.33 (19)	N1—C3B—C8B—C7B	178.6 (8)
C1—N1—C2—N2	-0.4 (2)	C4B—C3B—C8B—C7B	56.7 (12)
C3A—N1—C2—N2	-177.8 (2)	C10—N4—C9—C2	78.1 (3)
C3B—N1—C2—N2	-172.4 (3)	N5—N4—C9—C2	-92.9 (2)
C1—N1—C2—C9	-178.3 (2)	N2-C2-C9-N4	14.3 (3)
C3A—N1—C2—C9	4.2 (4)	N1-C2-C9-N4	-167.98 (18)
C3B—N1—C2—C9	9.6 (4)	N5—N4—C10—C11	-1.3 (2)
C1—N1—C3A—C4A	138.3 (2)	C9—N4—C10—C11	-172.90 (19)
C2—N1—C3A—C4A	-44.5 (4)	N5—N4—C10—C13	178.3 (2)
C1—N1—C3A—C8A	-98.6 (4)	C9—N4—C10—C13	6.7 (3)
C2—N1—C3A—C8A	78.6 (4)	N4—C10—C11—C12	0.9 (2)
N1—C3A—C4A—C5A	-175.5 (4)	C13—C10—C11—C12	-178.7 (2)
C8A—C3A—C4A—C5A	62.2 (5)	N4—N5—C12—C11	-0.6 (2)
C3A—C4A—C5A—C6A	-57.5 (7)	N4—N5—C12—C14	179.97 (18)
C4A—C5A—C6A—C7A	55.3 (7)	C10-C11-C12-N5	-0.2 (2)
C5A—C6A—C7A—C8A	-55.8 (6)	C10-C11-C12-C14	179.2 (2)
C6A—C7A—C8A—C3A	58.4 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D···A	D—H···A
N3—H3····N5 ⁱ	0.90 (3)	1.91 (3)	2.805 (2)	175 (3)
C9—H9A···S1 ⁱⁱ	0.96 (3)	2.93 (3)	3.766 (3)	147 (2)
C9—H9 <i>B</i> ···S1 ⁱⁱⁱ	0.98 (3)	2.88 (3)	3.761 (2)	151 (2)

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x, -y+1/2, z-1/2; (iii) x, -y+3/2, z-1/2.