

ISSN 2414-3146

Received 30 November 2016 Accepted 22 December 2016

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; *N*-bromosulfimide; *syn* conformation.

CCDC reference: 1454896

Structural data: full structural data are available from iucrdata.iucr.org

data reports

N-Bromo-S-(4-nitrophenyl)-S-phenylsulfimide

Md. Chanmiya Sheikh,^a Toshiaki Yoshimura,^a* Takayoshi Fujii^a and Ryuta Miyatake^b

^aDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and ^bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan. *Correspondence e-mail: by4ut6@bma.biglobe.ne.jp

The title compound, $C_{12}H_9BrN_2O_2S$, the first crystal structure of an *N*-halosulfimide, adopts a *syn* conformation about the S—N bond, with a Br-N-S-C(phenyl) torsion angle of $-54.64 (17)^{\circ}$. The dihedral angle between between the phenyl and 4-nitrophenyl rings is 65.04 (14)°. In the crystal, molecules are linked by $C-H\cdots Br$, $C-H\cdots N$ and $C-H\cdots O$ interactions, forming a tape structure along the *c* axis.

Structure description

The chemistry of *N*-halosulfimides (R,R'S=NX) has attracted much attention due to their unique structures and reactivities (Oae & Furukawa, 1983; Yoshimura *et al.*, 1977; Kumar & Shreeve, 1981; Aucott *et al.*, 2004). Previously, we have synthesized diaryl(fluoro)- λ^6 -sulfanenitriles by the reaction of *S*,*S*-diaryl-*N*-bromosulfimides with tetrabutylammonium fluoride (Yoshimura *et al.*, 1992) and also by the reaction of *S*,*S*diarylsulfimides using SelectfluorTM, an electrophilic fluorinating reagent, where the reaction proceeds *via S*,*S*-diaryl-*N*-fluorosulfimides as intermediates which undergo 1,2migration of the F atom (Fujii *et al.*, 2003). We have also performed DFT calculations using a model compound, *S*,*S*-dimethyl-*N*-fluorosulfimide, which showed that the *syn* conformer of *N*-fluorosulfimide is more stable than the *anti* one. In order to elucidate the mechanism of this 1,2-migration (retention or inversion), it is important to examine the structures of *N*-halosulfimides. However, the corresponding *N*-fluorosulfimides could not be isolated, and similar compounds of *N*-chlorosulfimides are also unstable for X-ray analysis. The crystal structure of the title compound, *N*-bromo-*S*-(4-nitrophenyl)-*S*phenylsulfimide, has now been successfully resolved.

The molecular structure of the title compound was found to have a *syn* conformation, consistent with the prediction of the DFT calculation, as illustrated in Fig. 1. In the

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

crystal, the molecules are linked through weak C3– $H2 \cdot \cdot \cdot (N = Br)$ and C5– $H3 \cdot \cdot \cdot O1$ hydrogen bonds, forming a tape along the *c* axis (Table 1 and Fig. 2).

Synthesis and crystallization

The title compound was prepared by the method previously reported (Yoshimura *et al.*, 1977) using *S*-(4-nitrophenyl)-*S*-phenylsulfimide mono hydrate and *N*-bromosuccinimide and crystallized from a benzene-hexane (1:1) solution (yield: 95%; m.p. 425–426 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors are grateful to the Department of Applied Chemistry, Faculty of Engineering, University of Toyama, for

Figure 2

A partial packing diagram for the title compound with $C-H\cdots(N=Br)$ and $C-H\cdots O$ hydrogen bonds shown as blue dashed lines.

	•	,		
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H2\cdots Br1^i$	0.95	2.86	3.598 (3)	135
$C3-H2 \cdot \cdot \cdot N1^i$	0.95	2.44	3.286 (3)	149
$C5-H3\cdots O1^{ii}$	0.95	2.54	3.435 (3)	158

Symmetry codes: (i) x, y, z - 1; (ii) $x, -y - \frac{1}{2}, z + \frac{1}{2}$.

Table 2

Crystal data	
Chemical formula	C12H9BrN2O2S
M _r	325.18
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	173
a, b, c (Å)	9.12236 (10), 18.7734 (3), 7.70271 (10)
β (°)	108.576 (1)
$V(Å^3)$	1250.42 (3)
Z	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	6.02
Crystal size (mm)	$0.52 \times 0.27 \times 0.20$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T_{\min}, T_{\max}	0.226, 0.300
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections	14491, 2279, 2124
R.	0.077
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.101, 1.08
No. of reflections	2279
No. of parameters	163
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.83, -0.40

Computer programs: *RAPID-AUTO* (Rigaku, 2001), *SIR92* (Altomare et al., 1994), *SHELXL97* (Sheldrick, 2008), *CrystalStructure* (Rigaku, 2010).

the provision of laboratory facilities. They also acknowledge the University of Toyama for providing funds for single-crystal X-ray analyses.

Funding information

Funding for this research was provided by: Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture, Japan (award Nos. 09239218, 14044032); Japan Society for the Promotion of Sciencehttps://doi.org/10.13039/501100001691 (award No. P11336).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Aucott, S. M., Bailey, M. R., Elsegood, M. R. J., Gilby, L. M., Holmes, K. E., Kelly, P. F., Papageorgiou, M. J. & Pedrón-Haba, S. (2004). *New J. Chem.* 28, 959–966.

- Fujii, T., Asai, S., Okada, T., Hao, W., Morita, H. & Yoshimura, T. (2003). *Tetrahedron Lett.* 44, 6203–6205.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kumar, R. C. & Shreeve, J. M. (1981). J. Am. Chem. Soc. 103, 1951– 1952.
- Oae, S. & Furukawa, N. (1983). In *Sulfilimines and Related Derivatives*. Washington DC: American Chemical Society.
- Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yoshimura, T., Furukawa, N., Akasaka, T. & Oae, S. (1977). *Tetrahedron*, **33**, 1061–1067.
- Yoshimura, T., Kita, H., Takeuchi, K., Takata, E., Hasegawa, K., Shimasaki, C. & Tsukurimichi, E. (1992). *Chem. Lett.* **21**, 1433– 1436.

full crystallographic data

IUCrData (2017). **2**, x162033 [https://doi.org/10.1107/S2414314616020332]

N-Bromo-S-(4-nitrophenyl)-S-phenylsulfimide

Md. Chanmiya Sheikh, Toshiaki Yoshimura, Takayoshi Fujii and Ryuta Miyatake

N-Bromo-S-(4-nitrophenyl)-S-phenylsulfimide

Crystal data C12H9BrN2O2S F(000) = 648.00 $M_r = 325.18$ $D_{\rm x} = 1.727 {\rm Mg m^{-3}}$ Cu *K* α radiation, $\lambda = 1.54187$ Å Monoclinic, $P2_1/c$ Cell parameters from 13002 reflections Hall symbol: -P 2ybc *a* = 9.12236 (10) Å $\theta = 4.7 - 68.3^{\circ}$ b = 18.7734(3) Å $\mu = 6.02 \text{ mm}^{-1}$ c = 7.70271 (10) ÅT = 173 K $\beta = 108.576 (1)^{\circ}$ Block, yellow V = 1250.42 (3) Å³ $0.52 \times 0.27 \times 0.20 \text{ mm}$ Z = 4Data collection Rigaku R-AXIS RAPID 2279 independent reflections diffractometer 2124 reflections with $F^2 > 2.0\sigma(F^2)$ Detector resolution: 10.000 pixels mm⁻¹ $R_{\rm int} = 0.077$ $\theta_{\rm max} = 68.2^{\circ}$ ω scans $h = -10 \rightarrow 10$ Absorption correction: multi-scan $k = -21 \rightarrow 22$ (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.226, \ T_{\rm max} = 0.300$ $l = -9 \rightarrow 9$ 14491 measured reflections Refinement Refinement on F^2 Secondary atom site location: difference Fourier $R[F^2 > 2\sigma(F^2)] = 0.037$ map $wR(F^2) = 0.101$ Hydrogen site location: inferred from S = 1.08neighbouring sites 2279 reflections H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0602P)^2 + 0.2679P]$ 163 parameters where $P = (F_0^2 + 2F_c^2)/3$ 0 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ direct methods $\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.40 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.91904 (3)	0.032258 (15)	0.74644 (3)	0.04051 (15)
S1	0.64227 (7)	0.07351 (3)	0.43986 (8)	0.03335 (18)
01	0.6655 (3)	-0.22788 (11)	0.0004 (3)	0.0550 (6)
O2	0.7188 (3)	-0.15518 (13)	-0.1882 (3)	0.0597 (6)
N1	0.7002 (3)	0.05179 (12)	0.6514 (3)	0.0377 (5)
N2	0.6924 (3)	-0.16817 (13)	-0.0455 (3)	0.0410 (6)
C1	0.6804 (3)	0.00334 (13)	0.2999 (4)	0.0312 (5)
C2	0.6876 (3)	0.01676 (14)	0.1252 (4)	0.0344 (6)
C3	0.6935 (3)	-0.03971 (13)	0.0125 (4)	0.0349 (6)
C4	0.6913 (3)	-0.10794 (14)	0.0781 (4)	0.0336 (6)
C5	0.6850 (3)	-0.12264 (14)	0.2515 (4)	0.0365 (6)
C6	0.6798 (3)	-0.06594 (14)	0.3630 (4)	0.0344 (6)
C7	0.7462 (3)	0.14683 (13)	0.3886 (3)	0.0342 (6)
C8	0.6725 (4)	0.21283 (15)	0.3750 (4)	0.0409 (6)
C9	0.7501 (4)	0.27343 (15)	0.3495 (4)	0.0479 (7)
C10	0.8984 (4)	0.26804 (16)	0.3384 (4)	0.0514 (8)
C11	0.9707 (4)	0.20242 (15)	0.3515 (4)	0.0445 (7)
C12	0.8943 (3)	0.14113 (15)	0.3777 (4)	0.0386 (6)
H1	0.6884	0.0644	0.0837	0.0413*
H2	0.6989	-0.0317	-0.1071	0.0418*
Н3	0.6842	-0.1703	0.2924	0.0438*
H4	0.6758	-0.0742	0.4831	0.0413*
Н5	0.5709	0.2161	0.3831	0.0490*
H6	0.7016	0.3187	0.3396	0.0575*
H7	0.9511	0.3098	0.3217	0.0617*
H8	1.0720	0.1993	0.3426	0.0534*
Н9	0.9433	0.0959	0.3879	0.0464*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.0399 (3)	0.0421 (3)	0.0385 (2)	0.00127 (10)	0.01095 (15)	0.00459 (10)
S 1	0.0334 (4)	0.0342 (4)	0.0354 (4)	0.0022 (3)	0.0151 (3)	0.0019 (3)
01	0.0734 (15)	0.0357 (12)	0.0560 (13)	0.0016 (10)	0.0207 (11)	-0.0056 (10)
O2	0.0776 (16)	0.0631 (15)	0.0474 (12)	-0.0027 (12)	0.0324 (11)	-0.0130 (11)
N1	0.0408 (12)	0.0407 (12)	0.0363 (11)	0.0022 (10)	0.0188 (10)	0.0024 (10)
N2	0.0373 (12)	0.0461 (15)	0.0375 (12)	0.0036 (10)	0.0089 (10)	-0.0066 (10)
C1	0.0275 (12)	0.0327 (14)	0.0335 (12)	-0.0007 (10)	0.0098 (10)	-0.0004 (10)
C2	0.0346 (14)	0.0356 (13)	0.0336 (13)	-0.0014 (11)	0.0115 (11)	0.0063 (11)
C3	0.0318 (14)	0.0434 (16)	0.0305 (13)	-0.0026 (10)	0.0115 (11)	0.0019 (11)
C4	0.0286 (12)	0.0382 (14)	0.0331 (12)	-0.0013 (10)	0.0088 (10)	-0.0041 (11)
C5	0.0382 (14)	0.0343 (14)	0.0368 (13)	-0.0001 (11)	0.0118 (11)	0.0034 (11)
C6	0.0356 (13)	0.0381 (14)	0.0315 (12)	-0.0011 (11)	0.0134 (10)	0.0042 (10)
C7	0.0413 (14)	0.0311 (13)	0.0305 (12)	-0.0003 (11)	0.0118 (11)	0.0015 (10)
C8	0.0477 (15)	0.0413 (16)	0.0317 (13)	0.0083 (12)	0.0099 (11)	0.0017 (11)

data reports

C9	0.071 (2)	0.0304 (15)	0.0371 (14)	0.0057 (14)	0.0106 (13)	0.0035 (12)
C10	0.070 (2)	0.0410 (17)	0.0407 (15)	-0.0135 (15)	0.0141 (14)	0.0054 (13)
C11	0.0498 (16)	0.0425 (17)	0.0418 (15)	-0.0083 (13)	0.0153 (12)	0.0024 (12)
C12	0.0436 (15)	0.0349 (15)	0.0384 (14)	-0.0010 (11)	0.0145 (12)	0.0032 (11)

Geometric parameters (Å, °)

Br1—N1	1.930 (3)	C7—C12	1.384 (4)
S1—N1	1.597 (3)	C8—C9	1.387 (5)
S1—C1	1.805 (3)	C9—C10	1.386 (6)
S1—C7	1.786 (3)	C10—C11	1.386 (5)
O1—N2	1.223 (4)	C11—C12	1.393 (5)
O2—N2	1.223 (4)	C2—H1	0.950
N2—C4	1.480 (4)	С3—Н2	0.950
C1—C2	1.391 (4)	С5—Н3	0.950
C1—C6	1.389 (4)	С6—Н4	0.950
C2—C3	1.382 (4)	C8—H5	0.950
C3—C4	1.379 (4)	С9—Н6	0.950
C4—C5	1.383 (4)	С10—Н7	0.950
C5—C6	1.378 (4)	C11—H8	0.950
C7—C8	1.398 (4)	С12—Н9	0.950
N1—S1—C1	111.02 (12)	C9—C10—C11	120.8 (3)
N1—S1—C7	113.30 (11)	C10—C11—C12	119.8 (3)
C1—S1—C7	102.33 (13)	C7—C12—C11	119.2 (3)
Br1—N1—S1	113.69 (15)	C1—C2—H1	120.259
O1—N2—O2	123.9 (3)	C3—C2—H1	120.266
O1—N2—C4	118.1 (3)	С2—С3—Н2	120.842
O2—N2—C4	118.0 (3)	C4—C3—H2	120.860
S1—C1—C2	121.54 (19)	С4—С5—Н3	121.040
S1—C1—C6	116.8 (2)	С6—С5—Н3	121.047
C2—C1—C6	121.0 (3)	C1—C6—H4	119.985
C1—C2—C3	119.5 (3)	C5—C6—H4	119.995
C2—C3—C4	118.3 (3)	С7—С8—Н5	120.583
N2—C4—C3	118.0 (3)	С9—С8—Н5	120.577
N2—C4—C5	118.7 (3)	С8—С9—Н6	119.954
C3—C4—C5	123.3 (3)	С10—С9—Н6	119.951
C4—C5—C6	117.9 (3)	С9—С10—Н7	119.609
C1—C6—C5	120.0 (3)	С11—С10—Н7	119.611
S1—C7—C8	115.0 (3)	С10—С11—Н8	120.124
S1—C7—C12	123.5 (2)	С12—С11—Н8	120.123
C8—C7—C12	121.3 (3)	С7—С12—Н9	120.388
C7—C8—C9	118.8 (3)	С11—С12—Н9	120.396
C8—C9—C10	120.1 (3)		
N1—S1—C1—C2	-159.09 (16)	C2—C1—C6—C5	-0.6 (4)
N1—S1—C1—C6	30.08 (19)	C6—C1—C2—C3	0.3 (4)
C1—S1—N1—Br1	59.86 (16)	C1—C2—C3—C4	0.3 (4)

N1—S1—C7—C8	-99.02 (16)	C2—C3—C4—N2	178.03 (19)
N1—S1—C7—C12	75.8 (2)	C2—C3—C4—C5	-0.6 (4)
C7—S1—N1—Br1	-54.64 (17)	N2-C4-C5-C6	-178.29 (18)
C1—S1—C7—C8	141.38 (14)	C3—C4—C5—C6	0.4 (4)
C1—S1—C7—C12	-43.80 (19)	C4C5C1	0.2 (4)
C7—S1—C1—C2	-37.90 (19)	S1—C7—C8—C9	175.13 (14)
C7—S1—C1—C6	151.26 (15)	S1—C7—C12—C11	-174.89 (15)
O1—N2—C4—C3	-168.46 (19)	C8—C7—C12—C11	-0.4 (4)
O1—N2—C4—C5	10.3 (3)	C12—C7—C8—C9	0.2 (4)
O2—N2—C4—C3	10.9 (3)	C7—C8—C9—C10	-0.2 (4)
O2—N2—C4—C5	-170.3 (2)	C8—C9—C10—C11	0.4 (4)
S1—C1—C2—C3	-170.17 (15)	C9-C10-C11-C12	-0.6 (4)
S1—C1—C6—C5	170.33 (15)	C10-C11-C12-C7	0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C3—H2···Br1 ⁱ	0.95	2.86	3.598 (3)	135
C3—H2···N1 ⁱ	0.95	2.44	3.286 (3)	149
С5—Н3…О1 ^{іі}	0.95	2.54	3.435 (3)	158

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) *x*, -*y*-1/2, *z*+1/2.