

ISSN 2414-3146

Received 16 January 2017 Accepted 19 January 2017

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; imidazole; hydrogen bonds.

CCDC reference: 1528488

Structural data: full structural data are available from iucrdata.iucr.org

Ethyl 2-(2,5-dioxo-4,4-diphenylimidazolidin-1-yl)-acetate

Youssef Ramli,^a Rachida Akrad,^a* Walid Guerrab,^a Jamal Taoufik,^a Mhamed Ansar^a and Joel T. Mague^b

^aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: rakrad@yahoo.com

The five-membered ring of the title compound, $C_{19}H_{18}N_2O_4$, adopts an envelope conformation. In the crystal, pairwise $N-H\cdots O$ hydrogen bonds form centrosymmetric dimers which are connected into chains parallel to the *c*-axis direction by pairwise $C-H\cdots O$ hydrogen bonds. A second set of $C-H\cdots O$ hydrogen bonds links these chains into sheets oriented parallel to (100). A combination of additional $C-H\cdots O$ hydrogen bonds and $C-H\cdots \pi(\text{ring})$ interactions combine the sheets into a three-dimensional network.

Structure description

An enormous variety of hydantoin derivatives with varied pharmaceutical and medicinal applications, have been reported (Weichet, 1974; Havera & Strycker, 1976; Khodair *et al.*, 1997; Thenmozhiyal *et al.*, 2004). As a continuation of our research into hydantoin derivatives (Akrad *et al.* 2017), the title compound (Fig. 1) was prepared and its molecular and crystal structure is reported here.

A puckering analysis of the five-membered ring gave the parameters Q(2) = 0.0712 (16) Å and $\varphi(2) = 279.3 (13)^{\circ}$. The conformation of the ring is best described as an envelope on C1. The dihedral angle between the C4–C9 benzene ring and the mean plane of the five-membered ring is 80.56 (6)°, while the corresponding angle for the C10–C15 ring is 61.79 (4)°.

In the crystal, the molecules form centrosymmetric dimers through complementary $N1-H1\cdots O2$ hydrogen bonds. The dimers are linked into chains running parallel to the *c*-axis direction by pairwise $C15-H15\cdots O1$ hydrogen bonds (Table 1 and Figs. 2 and 3). The chains are formed into sheets oriented parallel to (100) by $C16-H16A\cdots O4$ hydrogen bonds (Table 2 and Figs. 2 and 3) while the sheets are associated by a

Table 1 Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C4–C9 and C10–C15 benzene rings, respectively,

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
N1_H102 ⁱ	0.91(2)	1.91(2)	2 8203 (17)	172 6 (17)
$C15-H15\cdots O1^{ii}$	0.91(2) 0.954(18)	2.591 (18)	3.332 (2)	134.8 (14)
$C16-H16A\cdots O4^{iii}$	0.971 (18)	2.653 (19)	3.415 (2)	135.7 (13)
C18−H18A····O3 ^{iv}	0.977 (18)	2.658 (19)	3.633 (2)	175.9 (14)
$C7 - H7 \cdot \cdot \cdot Cg3^{v}$	1.01 (2)	2.976 (18)	3.6661 (19)	126.6 (13)
$C12-H12\cdots Cg2^{vi}$	0.996 (18)	2.701 (18)	3.6673 (19)	163.1 (18)
$C19-H19A\cdots Cg2$	1.03 (2)	2.83 (2)	3.572 (2)	129.0 (16)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) -x + 2, -y, -z + 1; (v) x + 1, y, z; (vi) -x + 1, -y + 2, -z.

combination of C18-H18A···O3 hydrogen bonds and C7-H7··· $\pi(Cg3)$ interactions (Table 1 and Figs. 2 and 3). The packing is further aided by C12-H12··· $\pi(Cg2)$ and C19-H19··· $\pi(Cg2)$ (interactions (Table 2 and Figs. 2 and 3).

Synthesis and crystallization

To a solution of 5,5-diphenylimidazolidine-2,4-dione (3.96 mol, 1 g) in 20 ml of ethanol was added ethyl bromo-

Figure 1

The structure of the title molecule, showing the atom-labeling scheme and 50% probability ellipsoids.

Figure 2

Details of the intermolecular interactions. $N-H\cdots O$, $C-H\cdots O$ and $C-H\cdots \pi$ (ring) interactions are shown as blue, black and orange dotted lines, respectively.

Table	2	
Experi	mental	details

Crystal data	
Chemical formula	$C_{19}H_{18}N_2O_4$
M _r	338.35
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	8.5041 (5), 8.6959 (5), 12.5024 (8)
α, β, γ (°)	71.002 (1), 88.165 (1), 72.572 (1)
$V(\text{\AA}^3)$	831.87 (9)
Ζ	2
Radiation type	Μο Κα
$\mu \ (\mathrm{mm}^{-1})$	0.10
Crystal size (mm)	$0.43 \times 0.29 \times 0.26$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (<i>TWINABS</i> ; Sheldrick, 2009)
T_{\min}, T_{\max}	0.96, 0.97
No. of measured, independent and	31786, 31786, 21954
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.031
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.686
Refinement $D(E^2) = D(E^2)$	0.047 0.120 1.00
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.047, 0.130, 1.06
No. of reflections	31/86
No. of parameters	299
H-atom treatment $(-3)^{2}$	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e \ A}^{-})$	0.51, -0.32

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008*b*).

acetate (3.96 mol, 438 mm l), K_2CO_3 (3.96 mol) and a catalytic amount of tetrabutylammonium bromide. The mixture was stirred at room temperature for 24 h. Progress was monitored by TLC and, when complete, the solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol solution to afford colourless block-like crystals of the title compound (yield 67%).

Figure 3

The crystal packing, viewed along the b axis. The color code for the intermolecular interactions is similar to that given in Fig. 2.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Analysis of the 1461 reflections having $I/\sigma(I) > 13$ and chosen from the full data set with *CELL_NOW* (Sheldrick, 2008*a*) showed the crystal to belong to the triclinic system and to consist of two major and at least two minor components. Since 91% of the reflections could be indexed on the two major components, it was decided to treat the crystal as having two components. The raw data were processed using the multi-component version of *SAINT* under control of the two-component orientation file generated by *CELL_NOW*.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

- Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). *IUCrData*, **2**, x170033.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.
- Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561–567.
- Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.
- Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535.
- Weichet, B. L. (1974). J. Czech. Patent, 151, 744-747.

full crystallographic data

IUCrData (2017). **2**, x170098 [https://doi.org/10.1107/S2414314617000980]

Ethyl 2-(2,5-dioxo-4,4-diphenylimidazolidin-1-yl)acetate

Youssef Ramli, Rachida Akrad, Walid Guerrab, Jamal Taoufik, Mhamed Ansar and Joel T. Mague

Ethyl 2-(2,5-dioxo-4,4-diphenylimidazolidin-1-yl)acetate

Crystal data

C₁₉H₁₈N₂O₄ $M_r = 338.35$ Triclinic, P1 a = 8.5041 (5) Å b = 8.6959 (5) Å c = 12.5024 (8) Å $\alpha = 71.002 (1)^{\circ}$ $\beta = 88.165 (1)^{\circ}$ $\gamma = 72.572 (1)^{\circ}$ $V = 831.87 (9) \text{ Å}^{3}$

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*TWINABS*; Sheldrick, 2009) $T_{\min} = 0.96, T_{\max} = 0.97$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.130$ S = 1.0631786 reflections 299 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 356 $D_x = 1.351 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9879 reflections $\theta = 2.6-29.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 100 K Column, colourless $0.43 \times 0.29 \times 0.26 \text{ mm}$

31786 measured reflections 31786 independent reflections 21954 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 29.2^\circ, \ \theta_{min} = 1.7^\circ$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -17 \rightarrow 17$

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0527P)^2 + 0.0554P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.51$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00, 90.00$ and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00° . The scan time was 7.5 sec/frame. Analysis of 1461 reflections having $I/\sigma(I) > 13$ and chosen from the full data set with *CELL_NOW* (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to consist of two major and at least two minor components. Since 91% of the reflections could be indexed on the two major components, it was decided to treat the crystal as having tw components. The raw data were processed using the multi-component version of *SAINT* under control of the two-component orientation file generated by *CELL_NOW*.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The structure was refined as a two-component twin.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.66938 (14)	0.42374 (14)	0.40959 (9)	0.0212 (3)
O2	0.48505 (14)	0.30571 (14)	0.11562 (9)	0.0236 (3)
O3	0.85782 (14)	0.08216 (15)	0.34383 (10)	0.0273 (3)
O4	0.73722 (13)	-0.10111 (13)	0.46031 (9)	0.0205 (3)
N1	0.54197 (16)	0.54676 (16)	0.12269 (11)	0.0163 (3)
H1	0.534 (2)	0.603 (2)	0.0466 (17)	0.033 (5)*
N2	0.55850 (16)	0.33561 (16)	0.28322 (10)	0.0168 (3)
C1	0.61488 (18)	0.44787 (19)	0.31540 (12)	0.0160 (3)
C2	0.52414 (18)	0.39103 (19)	0.16561 (13)	0.0165 (3)
C3	0.59387 (18)	0.60646 (19)	0.20887 (12)	0.0143 (3)
C4	0.75973 (18)	0.64172 (19)	0.18369 (12)	0.0157 (3)
C5	0.8844 (2)	0.5282 (2)	0.14690 (14)	0.0207 (3)
Н5	0.862 (2)	0.428 (2)	0.1372 (15)	0.025 (5)*
C6	1.0353 (2)	0.5584 (2)	0.12179 (14)	0.0249 (4)
H6	1.121 (2)	0.476 (2)	0.0956 (15)	0.029 (5)*
C7	1.0626 (2)	0.7013 (2)	0.13345 (15)	0.0270 (4)
H7	1.171 (2)	0.725 (2)	0.1153 (16)	0.036 (5)*
C8	0.9406 (2)	0.8130 (2)	0.17129 (15)	0.0272 (4)
H8	0.956 (2)	0.912 (2)	0.1786 (16)	0.035 (5)*
C9	0.7894 (2)	0.7831 (2)	0.19693 (14)	0.0218 (4)
H9	0.702 (2)	0.864 (2)	0.2216 (15)	0.026 (5)*
C10	0.45633 (18)	0.76081 (19)	0.21919 (13)	0.0151 (3)
C11	0.3922 (2)	0.8989 (2)	0.12049 (14)	0.0190 (3)
H11	0.437 (2)	0.894 (2)	0.0486 (15)	0.021 (4)*
C12	0.2686 (2)	1.0425 (2)	0.12466 (15)	0.0219 (4)
H12	0.222 (2)	1.140 (2)	0.0536 (15)	0.027 (5)*
C13	0.2049 (2)	1.0487 (2)	0.22742 (14)	0.0218 (4)
H13	0.117 (2)	1.150 (2)	0.2302 (14)	0.025 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C14	0.2662 (2)	0.9111 (2)	0.32521 (15)	0.0223 (4)	
H14	0.220 (2)	0.911 (2)	0.3975 (16)	0.028 (5)*	
C15	0.3926 (2)	0.7678 (2)	0.32182 (14)	0.0191 (3)	
H15	0.436 (2)	0.676 (2)	0.3905 (15)	0.024 (5)*	
C16	0.5624 (2)	0.1679 (2)	0.35767 (14)	0.0185 (3)	
H16A	0.515 (2)	0.177 (2)	0.4279 (16)	0.025 (5)*	
H16B	0.497 (2)	0.126 (2)	0.3197 (15)	0.026 (5)*	
C17	0.73753 (19)	0.0476 (2)	0.38441 (13)	0.0180 (3)	
C18	0.8993 (2)	-0.2297 (2)	0.50004 (16)	0.0238 (4)	
H18A	0.964 (2)	-0.185 (2)	0.5386 (15)	0.026 (5)*	
H18B	0.955 (2)	-0.249 (2)	0.4347 (16)	0.027 (5)*	
C19	0.8664 (2)	-0.3865 (2)	0.57850 (17)	0.0293 (4)	
H19A	0.977 (3)	-0.481 (3)	0.6116 (17)	0.039 (6)*	
H19B	0.801 (3)	-0.364 (2)	0.6446 (17)	0.039 (6)*	
H19C	0.799 (3)	-0.430 (2)	0.5386 (17)	0.039 (6)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0269 (6)	0.0215 (6)	0.0139 (6)	-0.0064 (5)	-0.0011 (4)	-0.0048 (5)
O2	0.0338 (7)	0.0224 (6)	0.0201 (6)	-0.0164 (5)	0.0009 (5)	-0.0072 (5)
O3	0.0228 (6)	0.0235 (7)	0.0349 (7)	-0.0082(5)	0.0108 (5)	-0.0087 (5)
04	0.0216 (6)	0.0148 (6)	0.0212 (6)	-0.0043 (4)	0.0010 (4)	-0.0018 (5)
N1	0.0224 (7)	0.0167 (7)	0.0116 (6)	-0.0089(5)	0.0002 (5)	-0.0042 (5)
N2	0.0217 (7)	0.0142 (7)	0.0142 (6)	-0.0080(5)	0.0010 (5)	-0.0020 (5)
C1	0.0159 (7)	0.0163 (8)	0.0150 (7)	-0.0040 (6)	0.0029 (5)	-0.0054 (6)
C2	0.0164 (7)	0.0174 (8)	0.0161 (7)	-0.0066 (6)	0.0012 (6)	-0.0048 (6)
C3	0.0177 (7)	0.0153 (8)	0.0112 (7)	-0.0070 (6)	0.0011 (5)	-0.0046 (6)
C4	0.0183 (7)	0.0176 (8)	0.0113 (7)	-0.0073 (6)	0.0006 (5)	-0.0031 (6)
C5	0.0216 (8)	0.0192 (8)	0.0209 (8)	-0.0065 (6)	0.0015 (6)	-0.0060 (7)
C6	0.0190 (8)	0.0295 (10)	0.0241 (9)	-0.0048 (7)	0.0028 (6)	-0.0085 (8)
C7	0.0197 (8)	0.0365 (11)	0.0258 (9)	-0.0144 (8)	0.0017 (7)	-0.0064 (8)
C8	0.0271 (9)	0.0302 (10)	0.0321 (10)	-0.0171 (8)	0.0018 (7)	-0.0130 (8)
C9	0.0218 (8)	0.0254 (9)	0.0237 (9)	-0.0103 (7)	0.0033 (6)	-0.0123 (7)
C10	0.0155 (7)	0.0146 (8)	0.0173 (8)	-0.0077 (6)	0.0012 (5)	-0.0051 (6)
C11	0.0216 (8)	0.0188 (8)	0.0166 (8)	-0.0087 (6)	0.0035 (6)	-0.0036 (7)
C12	0.0219 (8)	0.0173 (8)	0.0238 (9)	-0.0074 (6)	0.0002 (6)	-0.0019 (7)
C13	0.0179 (8)	0.0182 (8)	0.0311 (9)	-0.0058 (6)	0.0027 (7)	-0.0103 (7)
C14	0.0222 (8)	0.0260 (9)	0.0221 (9)	-0.0085 (7)	0.0054 (6)	-0.0119 (7)
C15	0.0217 (8)	0.0203 (8)	0.0154 (8)	-0.0069 (6)	0.0010 (6)	-0.0055 (7)
C16	0.0204 (8)	0.0153 (8)	0.0182 (8)	-0.0077 (6)	0.0027 (6)	-0.0014 (6)
C17	0.0224 (8)	0.0157 (8)	0.0176 (8)	-0.0064 (6)	0.0032 (6)	-0.0073 (6)
C18	0.0218 (8)	0.0188 (9)	0.0272 (9)	-0.0006 (7)	-0.0012 (7)	-0.0077 (7)
C19	0.0322 (10)	0.0221 (9)	0.0264 (10)	-0.0013 (8)	-0.0018 (8)	-0.0047 (8)

Geometric parameters (Å, °)

01—C1	1.2088 (17)	С8—Н8	0.943 (19)
O2—C2	1.2307 (18)	С9—Н9	0.978 (18)
O3—C17	1.2025 (19)	C10—C15	1.389 (2)
O4—C17	1.3325 (19)	C10—C11	1.396 (2)
O4—C18	1.4681 (19)	C11—C12	1.386 (2)
N1—C2	1.3378 (19)	C11—H11	0.975 (18)
N1—C3	1.4687 (18)	C12—C13	1.389 (2)
N1—H1	0.91 (2)	C12—H12	0.996 (18)
N2—C1	1.3760 (19)	C13—C14	1.383 (2)
N2—C2	1.4005 (19)	C13—H13	0.978 (18)
N2—C16	1.4433 (19)	C14—C15	1.392 (2)
C1—C3	1.543 (2)	C14—H14	0.973 (19)
C3—C10	1.533 (2)	C15—H15	0.954 (18)
C3—C4	1.533 (2)	C16—C17	1.515 (2)
C4—C9	1.387 (2)	C16—H16A	0.971 (18)
C4—C5	1.395 (2)	C16—H16B	0.958 (18)
C5—C6	1.392 (2)	C18—C19	1.497 (3)
С5—Н5	0.989 (18)	C18—H18A	0.977 (18)
C6—C7	1.383 (2)	C18—H18B	0.968 (19)
С6—Н6	0.985 (19)	C19—H19A	1.03 (2)
C7—C8	1.381 (3)	C19—H19B	1.02 (2)
С7—Н7	1.01 (2)	C19—H19C	0.99 (2)
C8—C9	1.393 (2)		
C17—O4—C18	116.34 (13)	C15—C10—C3	122.84 (13)
C2—N1—C3	113.27 (13)	C11—C10—C3	118.04 (14)
C2—N1—H1	122.0 (12)	C12—C11—C10	120.65 (15)
C3—N1—H1	124.3 (12)	C12—C11—H11	120.4 (10)
C1—N2—C2	111.55 (12)	C10—C11—H11	118.9 (10)
C1—N2—C16	124.09 (13)	C11—C12—C13	120.01 (15)
C2—N2—C16	123.48 (13)	C11—C12—H12	120.1 (10)
O1—C1—N2	125.56 (14)	C13—C12—H12	119.8 (10)
O1—C1—C3	127.87 (14)	C14—C13—C12	119.56 (16)
N2—C1—C3	106.56 (12)	C14—C13—H13	120.5 (10)
O2—C2—N1	128.79 (14)	C12—C13—H13	120.0 (10)
O2—C2—N2	123.61 (14)	C13—C14—C15	120.65 (16)
N1—C2—N2	107.59 (13)	C13—C14—H14	120.7 (11)
N1—C3—C10	109.98 (11)	C15—C14—H14	118.6 (11)
N1—C3—C4	110.84 (12)	C10-C15-C14	120.00 (15)
C10—C3—C4	113.22 (12)	C10—C15—H15	120.4 (11)
N1—C3—C1	100.42 (11)	C14—C15—H15	119.6 (11)
C10—C3—C1	111.28 (12)	N2-C16-C17	111.31 (13)
C4—C3—C1	110.38 (12)	N2—C16—H16A	109.3 (11)
C9—C4—C5	119.09 (14)	C17—C16—H16A	109.1 (10)
C9—C4—C3	121.76 (14)	N2—C16—H16B	107.2 (11)
C5—C4—C3	119.15 (13)	C17—C16—H16B	110.0 (11)

C6—C5—C4	120.39 (16)	H16A—C16—H16B	109.8 (15)
С6—С5—Н5	121.0 (11)	O3—C17—O4	125.56 (15)
C4—C5—H5	118.6 (11)	O3—C17—C16	125.00 (15)
C7—C6—C5	120.01 (17)	04-C17-C16	109.44 (13)
C7—C6—H6	121.3(11)	04-C18-C19	106.36 (15)
C5-C6-H6	118.7(11)	O4-C18-H18A	108.30(12)
C8-C7-C6	119.93 (16)	C19— $C18$ — $H18A$	1120(11)
C8-C7-H7	119.3 (11)	O4-C18-H18B	108.4(11)
C6-C7-H7	120.8 (11)	C19-C18-H18B	100.4(11) 112.7(10)
C_{7} C_{8} C_{9}	120.0(11) 120.20(17)	$H_{18A} = C_{18} = H_{18B}$	112.7(10) 108.9(15)
C7 C8 H8	120.29(17) 121.1(12)		100.9(13) 100.9(11)
$C_{1} = C_{2} = H_{2}$	121.1(12) 118.6(12)	C18 C10 H10P	109.9(11) 112.2(11)
C_{4} C_{9} C_{8}	110.0(12) 120.27(16)	H10A C10 H10P	112.2(11) 108.1(16)
C4 = C9 = C8	120.27(10)	$\begin{array}{cccc} \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} \\$	100.1(10)
C^{8} C^{9} U^{9}	119.2(10) 120.5(10)		111.1(12) 100.2(16)
$C_{0} - C_{9} - H_{9}$	120.3(10)	HI9A - C19 - H19C	109.3(10) 106.1(17)
C13—C10—C11	119.11 (14)	Н19В—С19—Н19С	100.1 (17)
C2—N2—C1—O1	-172.06 (14)	C4—C5—C6—C7	0.1 (2)
C16—N2—C1—O1	-2.5 (2)	C5—C6—C7—C8	0.8 (3)
C2—N2—C1—C3	8.07 (16)	C6—C7—C8—C9	-0.5 (3)
C16—N2—C1—C3	177.66 (13)	C5—C4—C9—C8	1.4 (2)
C3—N1—C2—O2	-178.70 (15)	C3—C4—C9—C8	-178.82 (14)
C3—N1—C2—N2	1.34 (17)	C7—C8—C9—C4	-0.6 (3)
C1—N2—C2—O2	173.90 (14)	N1—C3—C10—C15	126.47 (15)
C16—N2—C2—O2	4.2 (2)	C4—C3—C10—C15	-108.93 (16)
C1—N2—C2—N1	-6.13 (17)	C1—C3—C10—C15	16.09 (19)
C16—N2—C2—N1	-175.80(13)	N1—C3—C10—C11	-52.87(17)
C2—N1—C3—C10	-114.14 (14)	C4—C3—C10—C11	71.73 (17)
C2—N1—C3—C4	119.90 (14)	C1-C3-C10-C11	-163.25(13)
C2-N1-C3-C1	3.23 (16)	C15-C10-C11-C12	1.1 (2)
01-C1-C3-N1	173.53 (15)	C_{3} — C_{10} — C_{11} — C_{12}	-179.49(13)
N2-C1-C3-N1	-6.61(14)	C10-C11-C12-C13	-13(2)
01-C1-C3-C10	-70.07(19)	$C_{11} - C_{12} - C_{13} - C_{14}$	0.3(2)
N_{2} C1 C3 C10	109 79 (13)	C12-C13-C14-C15	0.9(2)
01-C1-C3-C4	56.5 (2)	C_{11} C_{10} C_{15} C_{14}	0.1(2)
N_{2} C1 C3 C4	-12362(13)	C_{3} C_{10} C_{15} C_{14}	-179.25(14)
$N_1 - C_3 - C_4 - C_9$	138 84 (14)	C_{13} C_{14} C_{15} C_{10}	-11(2)
C10-C3-C4-C9	14 70 (19)	C1-N2-C16-C17	-70.75(19)
C1 - C3 - C4 - C9	-110.80(16)	C_{2} N2 C_{16} C_{17}	97 63 (17)
N1-C3-C4-C5	-41 42 (18)	C18 - 04 - C17 - 03	2,5(2)
C10-C3-C4-C5	-165.55(13)	$C_{18} - O_{4} - C_{17} - C_{16}$	-176.91(13)
C1 - C3 - C4 - C5	68.94 (17)	N_2 —C16—C17—O3	-4.4 (2)
C9-C4-C5-C6	-1.2(2)	N2-C16-C17-O4	174.99 (12)
C_{3} C_{4} C_{5} C_{6}	179.04 (14)	C17 - O4 - C18 - C19	-17690(12)
	1, 2,01 (11)		1,0.20 (14)

Hydrogen-bond geometry (Å, °)

Cal and Cal and the	contraids of the C	1 C 0 and C 10	C15 hangana minag	magna activiality
Cg2 and Cg5 are the	centrolds of the C	+-C9 and C10-	CIS Denzene rings.	respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1—H1···O2 ⁱ	0.91 (2)	1.91 (2)	2.8203 (17)	172.6 (17)
C15—H15…O1 ⁱⁱ	0.954 (18)	2.591 (18)	3.332 (2)	134.8 (14)
C16—H16A····O4 ⁱⁱⁱ	0.971 (18)	2.653 (19)	3.415 (2)	135.7 (13)
C18—H18A···O3 ^{iv}	0.977 (18)	2.658 (19)	3.633 (2)	175.9 (14)
$C7$ — $H7$ ··· $Cg3^{v}$	1.01 (2)	2.976 (18)	3.6661 (19)	126.6 (13)
C12—H12··· $Cg2^{vi}$	0.996 (18)	2.701 (18)	3.6673 (19)	163.1 (18)
C19—H19A…Cg2	1.03 (2)	2.83 (2)	3.572 (2)	129.0 (16)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*, -*z*+1; (iv) -*x*+2, -*y*, -*z*+1; (v) *x*+1, *y*, *z*; (vi) -*x*+1, -*y*+2, -*z*.