

ISSN 2414-3146

Received 21 December 2016 Accepted 29 December 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; hydrogen squarate; *N*,*N*-dibutylanilinium; molecular salt; hydrogen bonding.

CCDC reference: 1524945

Structural data: full structural data are available from iucrdata.iucr.org

N,N-Dibutylanilinium hydrogen squarate

Daron E. Janzen,^a* Rita S. Majerle^b and Katie L. Novosad^b

^aDepartment of Chemistry and Biochemistry, St. Catherine University, 2004 Randolph Avenue, St Paul, Minnesota 55105, USA, and ^bDepartment of Chemistry, Hamline University, 1536 Hewitt Avenue, Saint Paul, MN 55104, USA. *Correspondence e-mail: dejanzen@stkate.edu

The title molecular salt, $C_{14}H_{24}N^+ \cdot C_4HO_4^-$ [systematic name: *N*,*N*-dibutylbenzenaminium 2-hydroxy-3,4-dioxocyclobut-1-en-1-olate], is composed of a protonated *N*,*N*-dibutylaniline cation with a hydrogen squarate monoanion (common names). The disparate bond lengths within the squarate anion suggest delocalization of the negative charge over only part of the squarate moiety. In the crystal, the squarate anions are linked by pairs of O–H···O hydrogen bonds, forming inversion dimers with an $R_2^2(10)$ ring motif. The dimers are linked to the cations on either side by N–H···O hydrogen bonds, and weak C–H···O hydrogen bonds. These cation–anion–cation units are linked by further C–H···O hydrogen bonds, forming layers parallel to (102).

Structure description

Squaraine dyes have been studied extensively as materials for use in organic photovoltaic devices (Chen *et al.*, 2014, 2016; Feron *et al.*, 2016; Saccone *et al.*, 2016) as well as optical sensors (Sun *et al.*, 2016). The solid-state optical activity of these materials is highly dependent on intermolecular packing features. In the case of squaraine dyes, both van der Waals forces and possible hydrogen bonding play pivotal roles in the aggregation patterns of these materials (Kaczmarek-Kedziera & Kedziera, 2016). During the course of our studies of squaraine dyes, we synthesized a salt precursor to an asymmetrical squaraine. Herein, we report on the crystal structure of the title molecular salt, *N*,*N*-dibutylanilinium hydrogen squarate.

The structure of the title molecular salt is illustrated in Fig. 1. The asymmetric unit consists of an N,N-dibutyl anilinium cation with a hydrogen squarate anion. Positional disorder was modeled in one butyl group (C15–C18) over two positions with an appropriate mix of constraints and restraints. The pattern of observed C–C and C–O bond lengths in the squarate ring are consistent with the negative charge resonance-stabilized

Figure 1

A view of the molecular structure of the title salt, showing the atom labeling. Displacement ellipsoid are drawn at the 50% probability level. Minor disorder component atoms have been omitted for clarity.

at atoms O1 and O3 (Fig. 2). The C4–O4 bond distance of 1.216 (2) Å, is interpreted as a double bond, while the C3–O3 [1.255 (2) Å] and C1–O1 [1.249 (2) Å] bond lengths are indicative of bond orders between 1–2. Likewise, the C1–C2 [1.425 (2) Å] and C2–C3 [1.417 (2) Å] bond distances are shorter than bonds C1–C4 [1.490 (2) Å] and C3–C4 [1.492 (2) Å], consistent with the proposed dominant resonance structures (Fig. 2).

In the crystal, two unique intermolecular hydrogen bonds are present (Fig. 3, Table 1). The alcohol moiety (O2-H2) acts as a donor with an inversion-related hydrogen squarate O3 atom at (-x, -y + 1, -z + 2) as the acceptor. The inversion-related hydrogen squarate anions form an inversion dimer with an $R_2^2(10)$ ring motif. The protonated amine moiety (N1-H1) acts as a donor in a hydrogen bond with the acceptor O1 of the hydrogen squarate anion. Hence, the dimers are linked to the cations on either side by N-H···O hydrogen bonds (Fig. 3), and weak C15-H15A···O4 hydrogen bonds (Table 1). These cation-anion-anion-cation units are linked by C9-H9···O1ⁱⁱ hydrogen bonds, forming layers parallel to plane (102); see Table 1 and Fig. 4.

While numerous other protonated amine salts of hydrogen squarate have been reported, only a few involve a cation with

Figure 2

Intramolecular details (Å) of the hydrogen squarate anion and relevant resonance structures in the title compound.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

, , ,				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O3^i$	0.91 (2)	1.68 (2)	2.543 (2)	157 (2)
$N1-H1\cdots O1$	0.95 (2)	1.74 (2)	2.688 (2)	172 (2)
$C15 - H15A \cdots O4$	0.99	2.60	3.469 (5)	147
C9−H9···O1 ⁱⁱ	0.95	2.53	3.222 (2)	130

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

no other hydrogen-bond donors or acceptors, only the hydrogen squarate anion and no solvent. Examples include 4-phenylpyridinium hydrogen squarate (Kolev *et al.*, 2004) and 2-methylpyridinium hydrogen squarate (Korkmaz & Bulut, 2014), which have a similar hydrogen-bonding pattern with the $R_2^2(10)$ motif and capping N–H donors/squarate oxygen

Intermolecular hydrogen-bonding (dashed lines; see Table 1). Minor disorder component atoms (C15'–C18' and attached H atoms) have been omitted for clarity [symmetry code: (i) -x, -y + 1, -z + 2].

A view along the *c* axis of the crystal packing of the title salt. The hydrogen bonds are shown as dashed lines (see Table 1). For clarity, only the H atoms involved in hydrogen bonding have been included, and the minor disorder component atoms (C15'–C18' and attached H atoms) have been omitted.

Table 2Experimental details.

No. of reflections

No. of parameters

H-atom treatment

 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å⁻³)

No. of restraints

Crystal data Chemical formula $C_{14}H_{24}N^+ \cdot C_4HO_4^-$ 319.40 М., Crystal system, space group Monoclinic, P21/c Temperature (K) 173 *a*, *b*, *c* (Å) 16.922 (3) $\beta (^{\circ})$ V (Å³) 106 214 (8) 1813.9 (5) Z 4 Μο Κα Radiation type $\mu \,({\rm mm}^{-1})$ 0.08 Crystal size (mm) Data collection Diffractometer Absorption correction 1998) 0.826, 0.988 T_{\min}, T_{\max} No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections 0.042 R_{int} $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.595 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$

173 173 10.3476 (16), 10.7877 (17), 16.922 (3) 106.214 (8) 1813.9 (5) 4 Mo $K\alpha$ 0.08 0.33 × 0.23 × 0.15 Rigaku XtaLAB mini Multi-scan (*REQAB*; Rigaku, 1998) 0.826, 0.988 14670, 3196, 2316 0.042 0.595 0.044, 0.108, 1.03 3196 232 5 H atoms treated by a mixture of independent and constrained

Computer programs: CrystalClear (Rigaku, 2011), CrystalStructure (Rigaku, 2014), SIR2004 (Burla et al., 2005), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

refinement

0.12, -0.16

acceptor $[D_1^1(2)]$ motifs. Others, such as pyridinium hydrogen squarate (Modec, 2015) pack with a $C_1^1(5)$ chain motif of hydrogen squarate anions with dimer $D_1^1(2)$ motifs on the periphery of the hydrogen-bonded chains of hydrogen squarate anions. A more complex $R_4^4(2)$ tetramer hydrogenbonded ring motif is found in the structure of 1,2,3,4-tetrahydroisoquinolinium hydrogen squarate (Kolev *et al.*, 2007).

Synthesis and crystallization

Under an argon atmosphere, squaric acid (1.5 g, 13.5 mmol) and *N*,*N*-dibutylanaline (6 ml, 26 mmol) were dissolved in a mixture of toluene (20 ml) and 1-butanol (20 ml). The reaction mixture was heated at 353 K with constant stirring for 8 h. During this time period, the solution turned a golden brown color. About 35 ml of azeotropic distillate was collected using a short path distillation setup with multiple flask take-off. The solution was purged with Ar and left to cool to rt (15 h). The solution was then reheated using an oil bath at 388 K for 6 h then allowed to cool to rt and stirred for 48 h under Ar. No additional color change was observed. Crystals grown from the reaction mixture were removed from the mother liquor three days after heating. The crystals were washed with 15 ml of hexanes, collected by vacuum filtration and stored in a vial

at rt (yield 2.92 g, 9.2 mmol, 70%). ¹H NMR (600 MHz, CD₃OD): 8.03 (*s*, 1H), 7.23 (*br s*, 2H), 6.85 (*br s*, 2H), 6.70 (*br s*, 1H), 2.92 (*t*, 2H), 2.74 (*t*, 2H), 1.53 (*p*, 4H), 1.34 (*m*, 4H), 0.92 (*t*, 6H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Positional disorder was modeled in one of the butyl groups over two conformations (C15–C18: C15'–C18'), which have a refined occupancy ratio of 0.825 (3): 0.175 (3). The 1,2 and 1,3 bond distances of the disordered components were restrained to be the same within standard uncertainties of 0.02 and 0.04 Å, respectively. The displacement parameters of the pairwise carbon atoms of the disordered components were constrained to be equal.

Acknowledgements

The authors acknowledge St. Catherine University, the NSF-MRI award No. 1125975 'MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Molecular Structure Facility' and the 3M/Ronald A. Mitsch Endowed Fund in Chemistry at Hamline University.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (award No. 1125975).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Chen, G., Sasabe, H., Sasaki, Y., Katagiri, H., Wang, X.-F., Sano, T., Hong, Z., Yang, Y. & Kido, J. (2014). *Chem. Mater.* **26**, 1356–1364.
- Chen, Y., Zhu, Y., Yang, D., Zhao, S., Zhang, L., Yang, L., Wu, J., Huang, Y., Xu, Z. & Lu, Z. (2016). *Chem. Eur. J.* **22**, 14527–14530.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Feron, K., Cave, J., Thameel, M., O'Sullivan, C., Kroon, R., Andersson, M., Zhou, X., Fell, C., Belcher, W., Walker, A. & Dastoor, P. (2016). *Appl. Mater. Interfaces*, 8, 20928–20937.
- Kaczmarek-Kedziera, A. & Kedziera, D. (2016). *Theor. Chem. Acc.* 135, Article 214.
- Kolev, T., Shivachev, B., Petrova, R., Ivanov, I., Atanasova, S. & Statkova, S. (2007). *Acta Cryst.* E63, 03353–03354.
- Kolev, T., Wortmann, R., Spiteller, M., Sheldrick, W. S. & Heller, M. (2004). Acta Cryst. E60, 0956–0957.
- Korkmaz, U. & Bulut, A. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 130, 376–385.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). *J. Appl. Cryst.* **41**, 466–470.
- Modec, B. (2015). J. Mol. Struct. 1099, 54-57.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Saccone, D., Galliano, S., Barbero, N., Quagliotto, P., Viscardi, G. & Barolo, C. (2016). Eur. J. Org. Chem. 2016, 2244–2259.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sun, W., Guo, S., Hu, C., Fan, J. & Peng, X. (2016). Chem. Rev. 116, 7768–7817.

full crystallographic data

IUCrData (2017). 2, x162065 [https://doi.org/10.1107/S2414314616020654]

N,N-Dibutylanilinium hydrogen squarate

Daron E. Janzen, Rita S. Majerle and Katie L. Novosad

(I)

Crystal data $C_{14}H_{24}N^+ \cdot C_4HO_4^ M_r = 319.40$ Monoclinic, $P2_1/c$ a = 10.3476 (16) Å b = 10.7877 (17) Å c = 16.922 (3) Å $\beta = 106.214$ (8)° V = 1813.9 (5) Å³ Z = 4

Data collection

Rigaku XtaLAB mini diffractometer Detector resolution: 6.849 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*REQAB*; Rigaku, 1998) $T_{\min} = 0.826$, $T_{\max} = 0.988$ 14670 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.108$ S = 1.033196 reflections 232 parameters 5 restraints Primary atom site location: structure-invariant direct methods F(000) = 688.00 $D_x = 1.170 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 11464 reflections $\theta = 3.1-25.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 173 KPrism, colorless $0.33 \times 0.23 \times 0.15 \text{ mm}$

3196 independent reflections 2316 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.042$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 3.1^\circ$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -20 \rightarrow 20$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0475P)^2 + 0.2934P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.12$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C15	0.1766 (5)	0.1587 (3)	0.6843 (2)	0.0419 (8)	0.825 (3)
H15A	0.0963	0.1820	0.7019	0.050*	0.825 (3)
H15B	0.1480	0.0975	0.6391	0.050*	0.825 (3)
C16	0.2311 (3)	0.2736 (2)	0.65204 (15)	0.0488 (7)	0.825 (3)
H16A	0.2802	0.3252	0.6993	0.059*	0.825 (3)
H16B	0.2959	0.2477	0.6219	0.059*	0.825 (3)
C17	0.1218 (2)	0.3504 (2)	0.59581 (15)	0.0573 (7)	0.825 (3)
H17A	0.0700	0.3930	0.6289	0.069*	0.825 (3)
H17B	0.0594	0.2950	0.5563	0.069*	0.825 (3)
C18	0.1776 (4)	0.4460 (3)	0.5486 (2)	0.0762 (10)	0.825 (3)
H18D	0.2266	0.4041	0.5144	0.091*	0.825 (3)
H18E	0.2390	0.5015	0.5875	0.091*	0.825 (3)
H18F	0.1034	0.4944	0.5135	0.091*	0.825 (3)
C15′	0.153 (3)	0.1345 (16)	0.6716 (15)	0.0419 (8)	0.175 (3)
H15C	0.1599	0.0826	0.6248	0.050*	0.175 (3)
H15D	0.0652	0.1164	0.6822	0.050*	0.175 (3)
C16′	0.1585 (14)	0.2707 (11)	0.6498 (8)	0.0488 (7)	0.175 (3)
H16C	0.0710	0.2946	0.6114	0.059*	0.175 (3)
H16D	0.1712	0.3206	0.7005	0.059*	0.175 (3)
C17′	0.2693 (12)	0.3028 (11)	0.6109 (8)	0.0573 (7)	0.175 (3)
H17C	0.2808	0.2332	0.5753	0.069*	0.175 (3)
H17D	0.3548	0.3127	0.6548	0.069*	0.175 (3)
C18′	0.2419 (19)	0.4208 (15)	0.5596 (12)	0.0762 (10)	0.175 (3)
H18A	0.2033	0.4836	0.5882	0.091*	0.175 (3)
H18B	0.1783	0.4029	0.5060	0.091*	0.175 (3)
H18C	0.3263	0.4519	0.5516	0.091*	0.175 (3)
H1	0.2875 (17)	0.1574 (17)	0.7987 (11)	0.051 (5)*	
H2	0.148 (2)	0.525 (2)	1.0022 (14)	0.074 (7)*	
01	0.28289 (11)	0.26494 (11)	0.87454 (7)	0.0467 (3)	
O2	0.20270 (13)	0.47939 (13)	0.97961 (9)	0.0567 (4)	
O3	-0.10897 (11)	0.37798 (11)	0.93017 (8)	0.0465 (3)	
O4	-0.02637 (13)	0.16806 (14)	0.81630 (9)	0.0669 (4)	
N1	0.27710 (14)	0.10014 (13)	0.75448 (9)	0.0394 (4)	
C1	0.17434 (16)	0.29656 (15)	0.88734 (10)	0.0375 (4)	
C2	0.13305 (16)	0.39029 (15)	0.93441 (10)	0.0372 (4)	
C3	-0.00209 (16)	0.34850 (15)	0.91360 (10)	0.0370 (4)	
C4	0.03317 (17)	0.25007 (16)	0.86125 (11)	0.0429 (4)	
C5	0.40968 (17)	0.08575 (15)	0.73863 (11)	0.0389 (4)	
C6	0.51639 (18)	0.15324 (16)	0.78593 (12)	0.0464 (4)	
H6	0.5047	0.2071	0.8278	0.056*	
C7	0.64118 (19)	0.14138 (18)	0.77141 (13)	0.0545 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H7	0.7161	0.1866	0.8038	0.065*
C8	0.6563 (2)	0.06392 (18)	0.71004 (14)	0.0568 (5)
H8	0.7420	0.0557	0.7004	0.068*
C9	0.54816 (19)	-0.00196 (17)	0.66235 (13)	0.0528 (5)
H9	0.5594	-0.0543	0.6196	0.063*
C10	0.42343 (18)	0.00821 (16)	0.67682 (11)	0.0440 (4)
H10	0.3486	-0.0375	0.6447	0.053*
C11	0.22876 (17)	-0.01779 (15)	0.78457 (11)	0.0424 (4)
H11A	0.2135	-0.0813	0.7407	0.051*
H11B	0.1418	-0.0020	0.7965	0.051*
C12	0.32913 (18)	-0.06664 (17)	0.86129 (11)	0.0467 (5)
H12A	0.3594	0.0024	0.9006	0.056*
H12B	0.4088	-0.0991	0.8465	0.056*
C13	0.2707 (2)	-0.16874 (18)	0.90269 (12)	0.0531 (5)
H13A	0.1949	-0.1348	0.9210	0.064*
H13B	0.2347	-0.2353	0.8623	0.064*
C14	0.3739 (3)	-0.2230 (2)	0.97576 (14)	0.0786 (7)
H14A	0.3313	-0.2861	1.0018	0.094*
H14B	0.4109	-0.1571	1.0155	0.094*
H14C	0.4466	-0.2610	0.9574	0.094*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
C15	0.037 (2)	0.0443 (18)	0.0425 (18)	0.0049 (13)	0.0073 (15)	-0.0079 (14)
C16	0.0466 (17)	0.0463 (12)	0.0529 (14)	0.0004 (13)	0.0130 (15)	-0.0023 (10)
C17	0.0616 (15)	0.0567 (15)	0.0521 (15)	0.0122 (12)	0.0136 (12)	0.0023 (12)
C18	0.094 (3)	0.0636 (19)	0.0656 (19)	0.0076 (19)	0.013 (2)	0.0120 (14)
C15′	0.037 (2)	0.0443 (18)	0.0425 (18)	0.0049 (13)	0.0073 (15)	-0.0079 (14)
C16′	0.0466 (17)	0.0463 (12)	0.0529 (14)	0.0004 (13)	0.0130 (15)	-0.0023 (10)
C17′	0.0616 (15)	0.0567 (15)	0.0521 (15)	0.0122 (12)	0.0136 (12)	0.0023 (12)
C18′	0.094 (3)	0.0636 (19)	0.0656 (19)	0.0076 (19)	0.013 (2)	0.0120 (14)
01	0.0361 (7)	0.0524 (8)	0.0574 (8)	-0.0073 (6)	0.0225 (6)	-0.0147 (6)
O2	0.0412 (8)	0.0627 (9)	0.0724 (10)	-0.0127 (7)	0.0261 (7)	-0.0309 (7)
03	0.0341 (7)	0.0515 (8)	0.0558 (8)	0.0015 (5)	0.0159 (6)	-0.0114 (6)
O4	0.0427 (8)	0.0726 (10)	0.0898 (11)	-0.0151 (7)	0.0260 (7)	-0.0417 (8)
N1	0.0397 (8)	0.0376 (8)	0.0434 (9)	0.0006 (6)	0.0158 (7)	-0.0051 (7)
C1	0.0357 (9)	0.0398 (9)	0.0400 (10)	-0.0018 (7)	0.0156 (8)	-0.0004 (7)
C2	0.0367 (9)	0.0398 (9)	0.0365 (9)	-0.0029 (7)	0.0125 (7)	-0.0026 (7)
C3	0.0351 (9)	0.0396 (9)	0.0376 (9)	0.0033 (7)	0.0122 (7)	0.0019 (7)
C4	0.0365 (10)	0.0444 (10)	0.0495 (11)	-0.0026 (8)	0.0148 (8)	-0.0079 (9)
C5	0.0383 (10)	0.0370 (9)	0.0439 (10)	0.0016 (8)	0.0155 (8)	0.0034 (8)
C6	0.0472 (11)	0.0425 (10)	0.0502 (11)	-0.0039 (8)	0.0150 (9)	0.0019 (8)
C7	0.0425 (11)	0.0502 (12)	0.0696 (14)	-0.0068 (9)	0.0136 (10)	0.0116 (10)
C8	0.0438 (12)	0.0527 (12)	0.0816 (15)	0.0084 (9)	0.0304 (11)	0.0201 (11)
C9	0.0539 (12)	0.0485 (11)	0.0639 (13)	0.0134 (9)	0.0296 (10)	0.0074 (9)
C10	0.0427 (10)	0.0431 (10)	0.0483 (11)	0.0046 (8)	0.0163 (8)	-0.0006 (8)
C11	0.0378 (10)	0.0411 (10)	0.0512 (11)	-0.0049 (8)	0.0173 (8)	-0.0051 (8)

data reports

C12	0.0468 (11)	0.0461 (11)	0.0493 (11)	-0.0068 (8)	0.0167 (9)	-0.0018 (8)
C13	0.0624 (13)	0.0469 (11)	0.0546 (12)	-0.0112 (9)	0.0240 (10)	-0.0042 (9)
C14	0.0995 (19)	0.0695 (15)	0.0639 (15)	-0.0205 (13)	0.0182 (13)	0.0144 (12)

Geometric parameters (A, ^o)

C15—N1	1.484 (4)	N1—C5	1.478 (2)
C15—C16	1.525 (4)	N1—C11	1.507 (2)
C15—H15A	0.9900	N1—H1	0.953 (19)
C15—H15B	0.9900	C1—C2	1.425 (2)
C16—C17	1.506 (3)	C1—C4	1.490 (2)
C16—H16A	0.9900	C2—C3	1.417 (2)
C16—H16B	0.9900	C3—C4	1.492 (2)
C17—C18	1.514 (4)	C5—C6	1.377 (2)
C17—H17A	0.9900	C5—C10	1.377 (2)
C17—H17B	0.9900	C6—C7	1.386 (3)
C18—H18D	0.9800	С6—Н6	0.9500
C18—H18E	0.9800	C7—C8	1.375 (3)
C18—H18F	0.9800	С7—Н7	0.9500
C15′—C16′	1.520 (16)	C8—C9	1.380 (3)
C15′—N1	1.66 (2)	C8—H8	0.9500
С15′—Н15С	0.9900	C9—C10	1.384 (2)
C15'—H15D	0.9900	С9—Н9	0.9500
C16'—C17'	1.513 (13)	C10—H10	0.9500
C16'—H16C	0.9900	C11—C12	1.513 (2)
C16'—H16D	0.9900	C11—H11A	0.9900
C17'—C18'	1.521 (14)	C11—H11B	0.9900
С17′—Н17С	0.9900	C12—C13	1.519 (2)
C17′—H17D	0.9900	C12—H12A	0.9900
C18'—H18A	0.9800	C12—H12B	0.9900
C18'—H18B	0.9800	C13—C14	1.508 (3)
C18'—H18C	0.9800	C13—H13A	0.9900
O1—C1	1.2492 (19)	C13—H13B	0.9900
O2—C2	1.312 (2)	C14—H14A	0.9800
O2—H2	0.91 (2)	C14—H14B	0.9800
O3—C3	1.2555 (18)	C14—H14C	0.9800
O4—C4	1.216 (2)		
N1-C15-C16	112.7 (3)	C11—N1—H1	104.9 (11)
N1-C15-H15A	109.0	C15′—N1—H1	114.1 (14)
C16—C15—H15A	109.0	O1—C1—C2	135.67 (16)
N1—C15—H15B	109.0	O1—C1—C4	135.33 (15)
C16—C15—H15B	109.0	C2—C1—C4	88.99 (13)
H15A—C15—H15B	107.8	O2—C2—C3	136.17 (15)
C17—C16—C15	112.7 (3)	O2—C2—C1	130.13 (15)
C17—C16—H16A	109.0	C3—C2—C1	93.70 (13)
C15—C16—H16A	109.0	O3—C3—C2	137.20 (16)
C17—C16—H16B	109.0	O3—C3—C4	133.60 (15)

C15 C1(U1(D	100.0	C^{2} C^{2} C^{4}	90.10(12)
$U_{10} = U_{10} = H_{10}B$	109.0	$C_2 = C_3 = C_4$	89.19 (13)
H10A - C10 - H10B	107.8	04 - C4 - C1	135.34(10)
C16 - C17 - C18	112.2 (2)	04-04-03	130.38 (10)
C16-C1/-H1/A	109.2	C1 - C4 - C3	88.08 (13)
С18—С17—Н17А	109.2	0-05-06	121.77 (16)
С16—С17—Н17В	109.2	C10—C5—N1	119.98 (15)
C18—C17—H17B	109.2	C6—C5—N1	118.24 (15)
H17A—C17—H17B	107.9	C5—C6—C7	118.91 (18)
C17—C18—H18D	109.5	С5—С6—Н6	120.5
C17—C18—H18E	109.5	С7—С6—Н6	120.5
H18D—C18—H18E	109.5	C8—C7—C6	119.85 (19)
C17—C18—H18F	109.5	С8—С7—Н7	120.1
H18D—C18—H18F	109.5	С6—С7—Н7	120.1
H18E—C18—H18F	109.5	C7—C8—C9	120.68 (18)
C16'—C15'—N1	110.3 (13)	С7—С8—Н8	119.7
C16'—C15'—H15C	109.6	С9—С8—Н8	119.7
N1—C15′—H15C	109.6	C8—C9—C10	119.98 (18)
C16'—C15'—H15D	109.6	С8—С9—Н9	120.0
N1-C15'-H15D	109.6	C10-C9-H9	120.0
H_{15C} $C_{15'}$ H_{15D}	108.1	C_{5}	118 81 (18)
$C_{17'} - C_{16'} - C_{15'}$	114.4(15)	C_{5} C_{10} H_{10}	120.6
C17' = C16' = C15'	108 7	C_{9} C_{10} H_{10}	120.0
$C_{17} = C_{10} = 110C$	108.7	$N_1 = C_{11} = C_{12}$	120.0 111 78 (14)
C13 - C16 - H16C	108.7	NI = CI1 = UI1A	111.70 (14)
C17 - C16 - H16D	108.7	NI-CII-HIIA	109.3
$C15^{-}$ $C16^{-}$ $H16D$	108.7	CI2—CII—HIIA	109.3
HI6C—CI6′—HI6D	107.6	NI-CII-HIIB	109.3
C16'—C17'—C18'	113.3 (11)	C12—C11—H11B	109.3
C16'—C17'—H17C	108.9	H11A—C11—H11B	107.9
C18′—C17′—H17C	108.9	C11—C12—C13	112.46 (15)
C16'—C17'—H17D	108.9	C11—C12—H12A	109.1
C18′—C17′—H17D	108.9	C13—C12—H12A	109.1
H17C—C17′—H17D	107.7	C11—C12—H12B	109.1
C17'—C18'—H18A	109.5	C13—C12—H12B	109.1
C17'—C18'—H18B	109.5	H12A—C12—H12B	107.8
H18A—C18′—H18B	109.5	C14—C13—C12	112.17 (16)
C17′—C18′—H18C	109.5	C14—C13—H13A	109.2
H18A—C18′—H18C	109.5	С12—С13—Н13А	109.2
H18B—C18′—H18C	109.5	C14—C13—H13B	109.2
C2—O2—H2	109.6 (14)	C12—C13—H13B	109.2
C5—N1—C15	112.2 (2)	H13A—C13—H13B	107.9
C_{5} N1- C_{11}	112.6 (13)	C13 - C14 - H14A	109.5
C15 N1 $-C11$	112.00 (13)	C13 $C14$ $H14R$	109.5
C_5 N1 $C_{15'}$	113.30(17) 114.2(11)	HIAA CIA HIAB	109.5
C_{3} N1 C_{15}	114.2(11) 102.8(6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{1} = N_{1} = C_{1}$	102.0(0) 107.7(11)	$U_{1J} = U_{14} = \Pi_{14} U_{14} = \Pi_{14} U_{14} = U_{14$	109.5
$C_{15} = N_{1} = M_{1}$	10/./(11)	$\Pi HA - U H - \Pi HU $	109.5
UIJ—NI—HI	104.0 (11)	п14Б—U14—H14U	109.3
N1-C15-C16-C17	-165.9 (3)	C2—C3—C4—O4	-178.1 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-166.5 (3) 75 (2) 156.9 (15) -47.2 (4) -176.7 (3) -149 (6) -77.4 (19) 6 (4) 160.2 (15) 2.3 (3) -178.97 (19) -177.3 (2) 1.47 (14) -1.0 (4) 178.6 (2) 179.0 (2) -1.47 (14) -1.47 (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.62 (19) 1.40 (13) 113.9 (2) -115.94 (17) 127.2 (7) -64.9 (2) 65.3 (2) -51.6 (7) -0.8 (3) -179.56 (15) 0.6 (3) 0.3 (3) -0.9 (3) 0.2 (3) 178.92 (15) 0.7 (3) 56.46 (19) 174.2 (2)
C1 - C2 - C3 - C3 $C1 - C2 - C3 - C3$ $O2 - C2 - C3 - C4$ $C1 - C2 - C3 - C4$ $O1 - C1 - C4 - O4$ $O1 - C1 - C4 - O4$ $O1 - C1 - C4 - C3$ $C2 - C1 - C4 - C3$ $O3 - C3 - C4 - O4$	1.0 (4) $178.6 (2)$ $179.0 (2)$ $-1.47 (14)$ $-3.1 (4)$ $178.1 (2)$ $177.4 (2)$ $-1.39 (13)$ $1.9 (4)$	N1-C5-C10-C9 C8-C9-C10-C5 C5-N1-C11-C12 C15-N1-C11-C12 C15'-N1-C11-C12 N1-C11-C12-C13 C11-C12-C13-C14	178.92 (15) 0.7 (3) 56.46 (19) -174.3 (3) 179.9 (11) 167.88 (15) 176.11 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	D··· A	D—H··· A
02—H2…O3 ⁱ	0.91 (2)	1.68 (2)	2.543 (2)	157 (2)
N1—H1…O1	0.95 (2)	1.74 (2)	2.688 (2)	172 (2)
C15—H15A····O4	0.99	2.60	3.469 (5)	147
С9—Н9…О1 ^{іі}	0.95	2.53	3.222 (2)	130

Symmetry codes: (i) -*x*, -*y*+1, -*z*+2; (ii) -*x*+1, *y*-1/2, -*z*+3/2.