ISSN 2414-3146

Received 8 January 2017 Accepted 18 January 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; phenanthrene; imidazole; thiophene; C—H···N and C—H···Br hydrogen bonding; C—H··· π interactions.

CCDC reference: 1528232

Structural data: full structural data are available from iucrdata.iucr.org

2-(5-Bromothiophen-2-yl)-1-phenyl-1*H*-phenanthro[9,10-*d*]imidazole

T. Kavitha,^a Sivakalai Mayakrishnan,^b T. Paramasivam Perumal,^b Chandramouleeswaran Suvasini^a and Srinivasakannan Lakshmi^a*

^aResearch Department of Physics, S.D.N.B. Vaishnav College for Women, Chrompet, Chennai 600 044, India, and ^bOrganic & Bioorganic Chemistry, CSIR–Central Leather Research Institute, Adyar, Chennai 600 020, India. *Correspondence e-mail: lakssdnbvc@gmail.com

In the title molecule, $C_{25}H_{15}BrN_2S$, the phenanthrene system is slightly skewed, with a dihedral angle of 8.94 (16)° between the outer benzene rings. The imidazole ring makes dihedral angles of 15.18 (16), 2.94 (15) and 88.46 (16)°, respectively, with the thiophene ring, the central benzene ring of the phenanthrene unit and the phenyl ring attached to the latter unit. In the molecule, there are two $C-H\cdots\pi$ interactions present involving the phenyl ring. In the crystal, molecules are linked by $C-H\cdots N$ and $C-H\cdots Br$ hydrogen bonds, forming zigzag chains along the *a* axis. The chains are linked by $C-H\cdots\pi$ interactions, forming a three-dimensional supramolecular structure.

Structure description

1*H*-Phenathro[9,10-*d*]imidazole derivatives act as multi-functional agents for the treatment of Alzheimer's disease (Liu *et al.*, 2014). This unit has been identified as an excellent building block for tuning carrier injection properties as well as blue emission (Wang *et al.*, 2011). Imidazole derivatives are found to have diverse activities, such as anti-inflammatory, antimicrobial (Divya *et al.*, 2013), antibacterial, anticancer, antifungal, analgesic, anti-HIV and antituberculosis (Verma *et al.*, 2013). The presence of a 5-bromothiophen-2yl unit is found to enhance the antibacterial activity of piperazinyl quinolones (Foroumadi *et al.*, 2005) and antimicrobial activity in pyrazoline derivatives (Sasikala *et al.*, 2012).

In the title compound, illustrated in Fig. 1, the phenanthrene ring system is slightly skewed with a dihedral angle of $8.94 (16)^{\circ}$ between the outer benzene rings. The imidazole ring makes dihedral angles of 15.18 (16), 2.94 (15) and 88.46 (16)^{\circ}, respectively, with the thiophene ring, the central benzene ring (C6–C8/C13/C14/C19) of the

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The $C-H\cdots\pi$ interactions are shown as blue dashed arrows (see Table 1).

phenanthrene unit, and the phenyl ring (C20–C25). In the molecule, there are two C–H··· π interactions present involving the phenyl ring (Table 1 and Fig. 1).

In the crystal, molecules are linked by $C-H\cdots N$ and $C-H\cdots Br$ hydrogen bonds forming zigzag chains propagating along the *a*-axis direction (Table 1 and Fig. 2). The chains are linked by $C-H\cdots \pi$ interactions, forming a three-dimensional supramolecular structure (Table 1 and Fig. 3).

Synthesis and crystallization

9,10-Phenanthrenequinone (1 equiv.), aniline (1.2 equiv.), 5bromothiophene-2-carbaldehyde (1.5 equiv.) and ammonium

Figure 2 A partial view along the c axis, of the crystal packing of the title compound. The hydrogen bonds are shown as blue lines (see Table 1).

Table 1			
Hydrogen-bond	geometry	(Å,	°).

Cg1 and Cg2 are the centroids of the C20-C25 and C8-C13 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C21 - H21 \cdots N1^{i}$	0.93	2.44	3.317 (4)	157
C25−H25···Br1 ⁱⁱ	0.93	2.93	3.828 (3)	164
$C3-H3\cdots Cg1$	0.93	2.99	3.716 (3)	136
$C9-H9\cdots Cg1$	0.93	2.94	3.789 (3)	153
$C15-H15\cdots Cg2^{iii}$	0.93	2.90	3.580 (4)	131

Symmetry codes: (i) -x - 1, -y, -z + 2; (ii) -x, -y, -z + 2; (iii) $x - \frac{1}{2}$, $-y - \frac{1}{2}$, $z - \frac{1}{2}$.

Table 2

Experimental details.

Crystal data	
Chemical formula	$C_{25}H_{15}BrN_2S$
M _r	455.36
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
a, b, c (Å)	9.2966 (4), 23.0723 (11), 9.8089 (4)
β (°)	109.663 (1)
$V(Å^3)$	1981.26 (15)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	2.19
Crystal size (mm)	$0.30 \times 0.25 \times 0.20$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
T_{\min}, T_{\max}	0.566, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	38101, 3481, 2628
R _{int}	0.037

 $\frac{R_{\text{int}}}{(\sin \theta/\lambda)_{\text{max}}} (\text{\AA}^{-1})$

Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.033, 0.098, 1.04
No. of reflections	3481
No. of parameters	262
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.38, -0.53
No. of parameters H-atom treatment $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³)	262 H-atom parameters constrained 0.38, -0.53

0.595

Computer programs: *APEX2* and *SAINT* (Bruker, 2004), *SHELXS97* (Sheldrick, 2008), *SHELXL2016* (Sheldrick, 2015), *ORTEP-3 for Windows* (Farrugia, 2012), *Mercury* (Macrae *et al.*, 2008), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

A view along the *c* axis, of the crystal packing of the title compound. The hydrogen bonds and $C-H\cdots\pi$ interactions are shown as dashed lines (see Table 1). For clarity, only the H atoms involved in these interactions have been included.

acetate (3.0 equiv.) in glacial acetic acid (10 ml) were refluxed for 24 h under a nitrogen atmosphere. After cooling to room temperature, the dark-yellow mixture was poured into a methanol solution with stirring. The separated solid was filtered off, washed with methanol and dried to give a white solid. A yellow powder was finally obtained after it was stirred in refluxing ethanol, subsequently filtered and dried in vacuum, yielding 2-(5-bromothiophen-2-yl)-1-phenyl-1*H*phenanthro[9,10-*d*]imidazole. Finally, the title compound was crystallized from dimethyl sulfoxide, giving colourless blocklike crystals on evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Divya, G., Saravanan, K., Santhiya, S., Chandralekha, K. & Lakshmi, S. (2013). *Acta Cryst.* E**69**, o1502.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Foroumadi, A., Emami, S., Mehni, M., Moshafi, M. H. & Shafiee, A. (2005). *Bioorg. Med. Chem. Lett.* **15**, 4536–4539.
- Liu, J., Qiu, J., Wang, M., Wang, L., Su, L., Gao, J., Gu, Q., Xu, J., Huang, S. L., Gu, L. Q., Huang, Z. S. & Li, D. (2014). *Biochim. Biophys. Acta*, **1840**, 2886–2903.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sasikala, R., Thirumurthy, K., Mayavel, P. & Thirunarayanan, G. (2012). Org. Med. Chem. Lett. 2: 20.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Verma, A., Joshi, S. & Singh, D. (2013). J. Chem. 2013 Article ID 329412, 12 pages.
- Wang, Z., Lu, P., Chen, S., Gao, Z., Shen, F., Zhang, W., Xu, Y., Kwok, H. S. & Ma, Y. (2011). J. Mater. Chem. 21, 5451–5456.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). **2**, x170089 [https://doi.org/10.1107/S241431461700089X]

2-(5-Bromothiophen-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole

T. Kavitha, Sivakalai Mayakrishnan, T. Paramasivam Perumal, Chandramouleeswaran Suvasini and Srinivasakannan Lakshmi

F(000) = 920

 $\theta = 4.4 - 47.5^{\circ}$ $\mu = 2.19 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.25 \times 0.20$ mm

 $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$

3481 independent reflections

2628 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.037$

 $h = -10 \rightarrow 11$

 $k = -27 \rightarrow 27$

 $l = -11 \rightarrow 11$

 $D_{\rm x} = 1.527 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5918 reflections

2-(5-Bromothiophen-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole

Crystal data

C₂₅H₁₅BrN₂S $M_r = 455.36$ Monoclinic, $P2_1/n$ a = 9.2966 (4) Å b = 23.0723 (11) Å c = 9.8089 (4) Å $\beta = 109.663$ (1)° V = 1981.26 (15) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Bruker Kappa AXEXII CCD scans Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.566, T_{max} = 0.746$ 38101 measured reflections

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.033$ Hydrogen site location: inferred from $wR(F^2) = 0.098$ neighbouring sites S = 1.04H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0479P)^2 + 1.1409P]$ 3481 reflections where $P = (F_0^2 + 2F_c^2)/3$ 262 parameters $(\Delta/\sigma)_{\rm max} = 0.007$ 0 restraints $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C24	-0.0791 (4)	-0.08057 (17)	1.4777 (3)	0.0664 (10)
H24	0.015529	-0.096518	1.528863	0.080*
BR1	-0.00847 (5)	0.17241 (2)	0.93171 (4)	0.07188 (17)
S2	-0.16978 (10)	0.05218 (3)	0.89706 (8)	0.0538 (2)
N2	-0.3378 (2)	-0.06860 (10)	1.0994 (2)	0.0410 (5)
C1	-0.0987 (3)	0.11209 (12)	1.0013 (3)	0.0475 (7)
N1	-0.3613 (3)	-0.05272 (10)	0.8668 (2)	0.0442 (6)
C20	-0.2781 (3)	-0.06280 (11)	1.2546 (3)	0.0404 (6)
C6	-0.4345 (3)	-0.10315 (11)	0.8778 (3)	0.0411 (6)
C8	-0.4921 (3)	-0.16417 (12)	1.0589 (3)	0.0418 (7)
C5	-0.3052 (3)	-0.03288 (12)	1.0006 (3)	0.0418 (6)
C13	-0.5749 (3)	-0.20196 (12)	0.9446 (3)	0.0432 (7)
C7	-0.4228 (3)	-0.11464 (11)	1.0187 (3)	0.0396 (6)
C4	-0.2256 (3)	0.02220 (12)	1.0335 (3)	0.0410 (6)
C19	-0.5249 (3)	-0.13826 (12)	0.7599 (3)	0.0426 (7)
C9	-0.4840 (4)	-0.17749 (12)	1.2015 (3)	0.0492 (7)
H9	-0.432874	-0.152529	1.276629	0.059*
C2	-0.1179 (3)	0.10985 (13)	1.1311 (3)	0.0499 (7)
H2	-0.087128	0.138927	1.200569	0.060*
C14	-0.5959 (3)	-0.18781 (12)	0.7933 (3)	0.0429 (7)
C21	-0.3609 (3)	-0.03426 (13)	1.3267 (3)	0.0484 (7)
H21	-0.456502	-0.018883	1.276119	0.058*
C18	-0.5507 (3)	-0.12308 (13)	0.6154 (3)	0.0522 (7)
H18	-0.500921	-0.091129	0.594274	0.063*
C3	-0.1900 (3)	0.05827 (13)	1.1492 (3)	0.0498 (7)
Н3	-0.211301	0.049664	1.233028	0.060*
C12	-0.6381 (4)	-0.25200 (13)	0.9816 (4)	0.0558 (8)
H12	-0.689606	-0.277845	0.908785	0.067*
C25	-0.1370 (3)	-0.08590 (14)	1.3285 (3)	0.0540 (8)
H25	-0.081184	-0.104828	1.279000	0.065*
C17	-0.6483 (4)	-0.15479 (14)	0.5052 (3)	0.0583 (8)
H17	-0.667786	-0.143578	0.409577	0.070*
C10	-0.5507 (4)	-0.22676 (14)	1.2310 (4)	0.0578 (8)
H10	-0.544689	-0.235002	1.325530	0.069*
C15	-0.6928 (4)	-0.21939 (14)	0.6760 (3)	0.0548 (8)
H15	-0.741404	-0.252239	0.694186	0.066*
C22	-0.2998 (4)	-0.02878 (14)	1.4756 (3)	0.0536 (8)
H22	-0.354303	-0.009112	1.525202	0.064*
C11	-0.6266 (4)	-0.26412 (14)	1.1203 (4)	0.0630 (9)
H11	-0.670272	-0.297820	1.140891	0.076*
C23	-0.1604 (4)	-0.05193 (15)	1.5505 (3)	0.0600 (9)
H23	-0.120647	-0.048303	1.650726	0.072*
C16	-0.7178 (4)	-0.20332 (15)	0.5359 (3)	0.0608 (9)
H16	-0.782361	-0.225350	0.460634	0.073*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C24	0.059 (2)	0.087 (3)	0.0433 (19)	0.0244 (19)	0.0035 (16)	-0.0002 (17)
BR1	0.1031 (3)	0.0497 (2)	0.0836 (3)	-0.01989 (18)	0.0588 (2)	-0.01601 (17)
S2	0.0765 (6)	0.0446 (4)	0.0456 (4)	-0.0110 (4)	0.0274 (4)	-0.0082 (3)
N2	0.0465 (13)	0.0412 (13)	0.0323 (12)	-0.0010 (10)	0.0091 (10)	0.0014 (10)
C1	0.0513 (17)	0.0407 (16)	0.0529 (18)	-0.0024 (13)	0.0207 (14)	-0.0059 (13)
N1	0.0505 (13)	0.0432 (13)	0.0356 (13)	-0.0054 (11)	0.0103 (11)	-0.0002 (10)
C20	0.0459 (16)	0.0388 (15)	0.0338 (15)	-0.0002 (12)	0.0098 (13)	0.0017 (11)
C6	0.0447 (16)	0.0376 (15)	0.0400 (16)	0.0003 (12)	0.0130 (13)	0.0007 (12)
C8	0.0417 (15)	0.0414 (16)	0.0432 (16)	0.0082 (12)	0.0156 (13)	0.0035 (12)
C5	0.0446 (15)	0.0412 (15)	0.0363 (16)	0.0028 (12)	0.0090 (13)	0.0029 (12)
C13	0.0438 (16)	0.0367 (15)	0.0501 (18)	0.0041 (12)	0.0170 (13)	0.0003 (13)
C7	0.0417 (15)	0.0375 (15)	0.0377 (15)	0.0059 (12)	0.0108 (12)	0.0006 (12)
C4	0.0430 (15)	0.0436 (15)	0.0333 (15)	0.0024 (12)	0.0087 (12)	0.0009 (12)
C19	0.0467 (16)	0.0411 (16)	0.0403 (16)	0.0022 (12)	0.0147 (13)	-0.0024 (12)
С9	0.0618 (19)	0.0431 (17)	0.0454 (18)	0.0076 (14)	0.0214 (15)	0.0056 (13)
C2	0.0569 (18)	0.0435 (16)	0.0478 (18)	-0.0058 (14)	0.0154 (15)	-0.0119 (14)
C14	0.0424 (15)	0.0418 (15)	0.0468 (17)	0.0041 (12)	0.0179 (13)	-0.0043 (13)
C21	0.0454 (16)	0.0545 (18)	0.0445 (17)	0.0099 (14)	0.0140 (14)	0.0053 (14)
C18	0.0617 (19)	0.0497 (18)	0.0464 (18)	-0.0052 (15)	0.0200 (15)	-0.0035 (14)
C3	0.0543 (18)	0.0558 (18)	0.0386 (17)	-0.0044 (14)	0.0150 (14)	-0.0025 (14)
C12	0.062 (2)	0.0440 (17)	0.061 (2)	-0.0049 (15)	0.0193 (16)	0.0027 (15)
C25	0.0552 (18)	0.062 (2)	0.0440 (18)	0.0158 (15)	0.0154 (15)	-0.0030 (15)
C17	0.072 (2)	0.062 (2)	0.0424 (18)	-0.0024 (17)	0.0209 (16)	-0.0116 (15)
C10	0.071 (2)	0.0533 (19)	0.056 (2)	0.0093 (16)	0.0302 (17)	0.0149 (16)
C15	0.0569 (19)	0.0488 (18)	0.064 (2)	-0.0123 (15)	0.0265 (16)	-0.0134 (15)
C22	0.064 (2)	0.0571 (19)	0.0458 (18)	0.0046 (16)	0.0258 (16)	-0.0014 (15)
C11	0.072 (2)	0.0482 (19)	0.076 (2)	-0.0021 (17)	0.0337 (19)	0.0145 (18)
C23	0.066 (2)	0.072 (2)	0.0368 (17)	0.0058 (18)	0.0105 (16)	-0.0017 (15)
C16	0.070 (2)	0.066 (2)	0.0446 (19)	-0.0132 (18)	0.0172 (16)	-0.0212 (16)

Geometric parameters (Å, °)

C24—C23	1.372 (5)	C9—C10	1.371 (4)
C24—C25	1.384 (4)	С9—Н9	0.9300
C24—H24	0.9300	C2—C3	1.406 (4)
BR1—C1	1.869 (3)	C2—H2	0.9300
S2—C1	1.714 (3)	C14—C15	1.403 (4)
S2—C4	1.733 (3)	C21—C22	1.383 (4)
N2—C5	1.381 (3)	C21—H21	0.9300
N2—C7	1.399 (3)	C18—C17	1.367 (4)
N2-C20	1.441 (3)	C18—H18	0.9300
C1—C2	1.345 (4)	С3—Н3	0.9300
N1—C5	1.320 (3)	C12—C11	1.358 (5)
N1—C6	1.370 (3)	C12—H12	0.9300
C20—C25	1.376 (4)	С25—Н25	0.9300

C20—C21	1 376 (4)	C17—C16	1 376 (5)
C6-C7	1 375 (4)	C17—H17	0.9300
C6-C19	1.375(1) 1 430(4)	C10-C11	1380(5)
C8-C9	1.409(4)	C10H10	0.9300
C_{8} C_{13}	1.405 (4)	C_{15}	1.366(4)
C_{8}	1.423(4)	C15C16	1.300(4)
C_{0}	1.451(4)	C13—n15	0.9300
C_{3}	1.431(4)	C_{22} C_{23} C	1.300 (4)
	1.397 (4)	C22—H22	0.9300
	1.468 (4)		0.9300
C4—C3	1.356 (4)	С23—Н23	0.9300
C19—C18	1.400 (4)	C16—H16	0.9300
C19—C14	1.413 (4)		
C23—C24—C25	120.5 (3)	С3—С2—Н2	124.1
C23—C24—H24	119.7	C15—C14—C19	116.8 (3)
C25—C24—H24	119.7	C15-C14-C13	123.0(3)
C1 - S2 - C4	90.96 (14)	C_{19} C_{14} C_{13}	12010(2)
C_{5} N2 C_{7}	105 8 (2)	C_{20} C_{21} C_{22}	1190(3)
$C_{5} = N_{2} = C_{20}$	1260(2)	C_{20} C_{21} C_{22}	120.5
C7 N2 C20	120.0(2) 127.7(2)	C_{20} C_{21} H_{21}	120.5
$C_{1}^{2} = C_{2}^{2}$	127.7(2) 112.7(2)	$C_{22} = C_{21} = M_{21}$	120.5 120.6(3)
$C_2 = C_1 = S_2$	112.7(2) 126.4(2)	$C_{17} = C_{18} = C_{19}$	120.0(3)
$C_2 = C_1 = BK_1$	120.4(2) 120.87(17)	$C_{10} = C_{10} = H_{10}$	119.7
$S_2 - C_1 - BR_1$	120.87(17)	C19—C18—H18	119.7
CS—NI—C6	104.9 (2)	$C_4 - C_3 - C_2$	114.0 (3)
$C_{25} = C_{20} = C_{21}$	121.0 (3)	C4—C3—H3	123.0
C25—C20—N2	118.7 (3)	С2—С3—Н3	123.0
C21—C20—N2	120.3 (2)	C11—C12—C13	122.1 (3)
N1—C6—C7	111.7 (2)	C11—C12—H12	118.9
N1—C6—C19	126.1 (2)	C13—C12—H12	118.9
C7—C6—C19	122.0 (3)	C20—C25—C24	119.0 (3)
C9—C8—C13	118.8 (3)	C20—C25—H25	120.5
C9—C8—C7	124.7 (3)	С24—С25—Н25	120.5
C13—C8—C7	116.5 (2)	C18—C17—C16	119.9 (3)
N1—C5—N2	112.6 (2)	С18—С17—Н17	120.1
N1—C5—C4	121.7 (2)	С16—С17—Н17	120.1
N2—C5—C4	125.7 (2)	C9-C10-C11	120.0 (3)
C12—C13—C8	117.7 (3)	C9—C10—H10	120.0
C12—C13—C14	121.4 (3)	C11—C10—H10	120.0
C8—C13—C14	120.8 (3)	C16—C15—C14	122.0 (3)
C6—C7—N2	105.1 (2)	С16—С15—Н15	119.0
C6—C7—C8	122.7 (2)	C14—C15—H15	119.0
N2-C7-C8	132.1 (2)	C23—C22—C21	120.7 (3)
$C_{3}-C_{4}-C_{5}$	1333(3)	C23—C22—H22	119.6
$C_3 - C_4 - S_2$	110.4 (2)	C21—C22—H22	119.6
C5-C4-S2	116.2 (2)	C12-C11-C10	120 4 (3)
C18 - C19 - C14	120.2 (3)	C12—C11—H11	119.8
C18 - C19 - C6	123.2(3) 122.1(3)	C10_C11_H11	119.8
C_{14} C_{19} C_{6}	1177(3)	C^{22} C^{23} C^{24}	110 8 (3)
	11/1/(3)	022 023 027	117.0 (3)

C10—C9—C8	120.9 (3)	C22—C23—H23	120.1
C10—C9—H9	119.6	C_{24} C_{23} H_{23}	120.1
С8—С9—Н9	119.6	C15-C16-C17	120.5 (3)
C1 - C2 - C3	111.9 (3)	C_{15} C_{16} H_{16}	119.7
C1 - C2 - H2	124.1	C17 - C16 - H16	119.7
	12 1.1		117.7
C4—S2—C1—C2	-0.7 (2)	N1—C6—C19—C14	-177.7 (3)
C4—S2—C1—BR1	179.99 (18)	C7—C6—C19—C14	-3.6 (4)
C5—N2—C20—C25	-83.7 (4)	C13—C8—C9—C10	1.9 (4)
C7—N2—C20—C25	87.2 (3)	C7—C8—C9—C10	-178.3 (3)
C5—N2—C20—C21	95.8 (3)	S2—C1—C2—C3	0.8 (3)
C7—N2—C20—C21	-93.2 (3)	BR1—C1—C2—C3	180.0 (2)
C5—N1—C6—C7	-0.4 (3)	C18—C19—C14—C15	-0.9 (4)
C5—N1—C6—C19	174.3 (3)	C6-C19-C14-C15	175.6 (3)
C6—N1—C5—N2	0.4 (3)	C18—C19—C14—C13	-176.9 (3)
C6—N1—C5—C4	-176.6 (2)	C6-C19-C14-C13	-0.4 (4)
C7—N2—C5—N1	-0.3 (3)	C12—C13—C14—C15	7.1 (4)
C20—N2—C5—N1	172.2 (2)	C8-C13-C14-C15	-171.4 (3)
C7—N2—C5—C4	176.6 (3)	C12-C13-C14-C19	-177.1 (3)
C20—N2—C5—C4	-10.9 (4)	C8-C13-C14-C19	4.4 (4)
C9—C8—C13—C12	-2.9 (4)	C25—C20—C21—C22	0.3 (4)
C7—C8—C13—C12	177.2 (2)	N2-C20-C21-C22	-179.2 (3)
C9—C8—C13—C14	175.6 (3)	C14—C19—C18—C17	2.1 (4)
C7—C8—C13—C14	-4.3 (4)	C6-C19-C18-C17	-174.2 (3)
N1—C6—C7—N2	0.2 (3)	C5—C4—C3—C2	-176.5 (3)
C19—C6—C7—N2	-174.7 (2)	S2—C4—C3—C2	-0.2 (3)
N1—C6—C7—C8	178.7 (2)	C1—C2—C3—C4	-0.4 (4)
С19—С6—С7—С8	3.8 (4)	C8-C13-C12-C11	2.1 (4)
C5—N2—C7—C6	0.1 (3)	C14—C13—C12—C11	-176.4 (3)
C20—N2—C7—C6	-172.3 (2)	C21—C20—C25—C24	0.6 (5)
C5—N2—C7—C8	-178.2 (3)	N2-C20-C25-C24	-179.9 (3)
C20—N2—C7—C8	9.4 (4)	C23—C24—C25—C20	-0.9 (5)
C9—C8—C7—C6	-179.5 (3)	C19—C18—C17—C16	-2.4 (5)
C13—C8—C7—C6	0.3 (4)	C8—C9—C10—C11	0.1 (5)
C9—C8—C7—N2	-1.5 (5)	C19—C14—C15—C16	0.0 (4)
C13—C8—C7—N2	178.3 (3)	C13—C14—C15—C16	175.9 (3)
N1-C5-C4-C3	161.8 (3)	C20-C21-C22-C23	-0.9 (5)
N2-C5-C4-C3	-14.9 (5)	C13—C12—C11—C10	-0.1 (5)
N1-C5-C4-S2	-14.3 (4)	C9-C10-C11-C12	-1.0 (5)
N2-C5-C4-S2	169.0 (2)	C21—C22—C23—C24	0.5 (5)
C1—S2—C4—C3	0.5 (2)	C25—C24—C23—C22	0.4 (6)
C1—S2—C4—C5	177.5 (2)	C14—C15—C16—C17	-0.3 (5)
N1-C6-C19-C18	-1.4 (4)	C18—C17—C16—C15	1.5 (5)
C7—C6—C19—C18	172.8 (3)		

Hydrogen-bond geometry (Å, °)

C _a 1	and Ca2 a	re the	centroide	of the	C20_C	25 and	C8_C13	ringe	respectively
Cgr	anu Cgz a	ie me	centrolus	or the	C20-C	25 and	0-015	ings,	respectively

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
C21—H21…N1 ⁱ	0.93	2.44	3.317 (4)	157
C25—H25···Br1 ⁱⁱ	0.93	2.93	3.828 (3)	164
C3—H3… <i>Cg</i> 1	0.93	2.99	3.716 (3)	136
C9—H9…Cg1	0.93	2.94	3.789 (3)	153
С15—Н15…Сд2 ^{ііі}	0.93	2.90	3.580 (4)	131

Symmetry codes: (i) -*x*-1, -*y*, -*z*+2; (ii) -*x*, -*y*, -*z*+2; (iii) *x*-1/2, -*y*-1/2, *z*-1/2.