

ISSN 2414-3146

Received 23 December 2016 Accepted 6 January 2017

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium

Keywords: crystal structure; hydrogen bonding; $\pi - \pi$ stacking; dihydroindole.

CCDC reference: 1526011

Structural data: full structural data are available from iucrdata.iucr.org

5-Fluoro-1-(prop-2-en-1-yl)-2,3-dihydro-1*H*-indole-2,3-dione

Fatim-Zahrae Qachchachi,^a Joel T. Mague,^b Youssef Kandri Rodi,^a Amal Haoudi,^a Younes Ouzidan^{a*} and El Mokhtar Essassi^c

^aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ^cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco. *Correspondence e-mail: younes.ouzidan@usmba.ac.ma

The asymmetric unit of the title compound, $C_{11}H_8FNO_2$, consists of two independent molecules having different conformations and associated through pairwise $C-H\cdots$ F hydrogen bonds. These units form 'stairstep' stacks along the *b*-axis direction *via* $\pi-\pi$ stacking interactions between dihydroindole moieties, with interplanar spacings of 3.578 (3) and 3.627 (3) Å. The stacks are tied together by weak $C-H\cdots$ O hydrogen bonds.

Structure description

Isatin (1*H*-indole-2,3- dione) derivatives are synthetically versatile substrates, which can be used for the synthesis of a large variety of heterocyclic compounds and as raw material for drug synthesis. Compounds containing an isatin moiety are most widely used as anti-Parkinsonian (Knölker & Reddy, 2002), antifungal (Granik *et al.*, 1978) and anticancer agents (Marko *et al.*, 2001). Additionally, isatin derivatives find applications in chemistry of transition metal catalysts for uniform polymerization and in luminescence chemistry (Grandberg *et al.*, 1968). It has been shown that isatins exhibit antitumor activity due to the formation of stable complexes with DNA (Aravinda *et al.*, 2009). For the biological activity of isatin derivatives, see: Ramachandran (2011); Smitha *et al.* (2008).

As a continuation of our research devoted to the synthesis of isatin derivatives (Qachchachi *et al.*, 2014), we report here the synthesis and structure of 1-allyl-5-fluoro-indoline-2,3-dione. The asymmetric unit consists of two independent molecules forming pseudo-centrosymmetric dimers associated through pairwise $C5-H5\cdots F2$ and $C16-H16\cdots F1$ hydrogen bonds (Table 1 and Fig. 1). These units form 'stairstep' stacks parallel

Figure 1

The asymmetric unit of the title compound, showing the atom-labeling scheme and 50% probability displacement ellipsoids. The $C-H\cdots F$ hydrogen bonds are shown as dotted lines.

to the *b* axis via π - π stacking interactions in which the N1,C1,C6–C8 ring associates with the C1–C6 ring of the corresponding molecule at *x*, 1 + *y*, *z* while the C1–C6 ring associates with the N1,C1,C6–C8 ring of the corresponding molecule at *x*, -1 + y, *z* (Fig. 2). In both instances, the interplanar spacing is 3.578 (3) Å and the dihedral angle between the planes is 1.5 (2)°. Concurrently, the other half of the asymmetric unit forms analogous stacking interactions with its counterparts generated by the same symmetry operations with

Figure 2

Detail of the π - π stacking in the crystal packing of the title compound (purple dotted lines). [Symmetry codes: (i) x, 1 + y, z; (ii) x, -1 + y, z.]

Figure 3

Crystal packing of the title compound viewed along the *b* axis. The C– $H \cdots F$ and C– $H \cdots O$ hydrogen bonds are shown, respectively, by orange and black dotted lines.

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C5-H5\cdots F2$	0.95	2.64	3.477 (6)	148
$C9-H9B\cdotsO1^{i}$	0.99	2.45	3.408 (7)	163
$C16-H16\cdots F1$	0.95	2.50	3.353 (5)	150

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2	
Experimenta	details.

Crystal data	
Chemical formula	$C_{11}H_8FNO_2$
M _r	205.18
Crystal system, space group	Orthorhombic, $Pna2_1$
Temperature (K)	150
a, b, c (Å)	31.531 (3), 4.2752 (4), 14.1080 (13)
$V(Å^3)$	1901.8 (3)
Ζ	8
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.96
Crystal size (mm)	$0.27 \times 0.07 \times 0.06$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.76, 0.94
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13399, 3201, 2813
R _{int}	0.047
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.619
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.073, 0.189, 1.10
No. of reflections	3201
No. of parameters	272
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.86, -0.32
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.5 (4)

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*) and *DIAMOND* (Brandenburg & Putz, 2012).

the interplanar spacing being 3.627 (3) Å and the dihedral angle 2.0 (2)°. Fig. 3 shows the packing of the complete unit cell. For the structure of 1-octylindoline-2,3-dione, see: Qachchachi *et al.* (2013).

Synthesis and crystallization

To a solution of 5-fluoro-2,3-indoledione (0.5 g, 3.5 mmol) dissolved in DMF (20 ml) was added potassium carbonate (0.61 g, 4.4 mmol), a catalytic quantity of tetra-*n*-butyl-ammonium (0.1 g, 0.4 mmol) and 3-bromo-1-propene (0.2 ml, 3.6 mmol). The mixture was stirred for 48 h; the reaction was monitored by thin layer chromatography. The mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol solution to afford the title compound as red crystals in 86% yield (m.p.: 450 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The support of NSF-MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Aravinda, T., Bhojya Naik, H. S. & Prakash Naik, H. R. (2009). Int. J. Pept. Res. Ther. 15, 273–279.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Grandberg, I. I., Krokhina, N. F. & Kondrat'ev, M. N. (1968). *Pharm. Chem. J.* **2**, 372–376.
- Granik, V. G., Zhidkova, A. M., Kiselev, S. S., Glushkov, R. G., Polezhaeva, A. J. & Mashkovskii, M. D. (1978). *Pharm. Chem. J.* 12, 881–886.

Knölker, H. J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.

- Marko, D., Schätzle, S., Friedel, A., Genzlinger, A., Zankl, H., Meijer, L. & Eisenbrand, G. (2001). Br. J. Cancer, 84, 283–289.
- Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, 01801.
- Qachchachi, F.-Z., Ouazzani Chahdi, F., Misbahi, H., Bodensteiner, M. & El Ammari, L. (2014). *Acta Cryst.* E70, 0360.
- Ramachandran, S. (2011). Int. J. Res. Pharm. Chem, 1, 289-294.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Smitha, S., Pandeya, S. N., Stables, J. P. & Ganapathy, S. (2008). Sci. Pharm. 76, 621–636.

full crystallographic data

IUCrData (2017). **2**, x170028 [https://doi.org/10.1107/S2414314617000281]

5-Fluoro-1-(prop-2-en-1-yl)-2,3-dihydro-1H-indole-2,3-dione

Fatim-Zahrae Qachchachi, Joel T. Mague, Youssef Kandri Rodi, Amal Haoudi, Younes Ouzidan and El Mokhtar Essassi

5-Fluoro-1-(prop-2-en-1-yl)-2,3-dihydro-1*H*-indole-2,3-dione

Crystal data

C₁₁H₈FNO₂ $M_r = 205.18$ Orthorhombic, *Pna*2₁ a = 31.531 (3) Å b = 4.2752 (4) Å c = 14.1080 (13) Å V = 1901.8 (3) Å³ Z = 8F(000) = 848

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.189$ S = 1.103201 reflections 272 parameters 1 restraint Primary atom site location: structure-invariant direct methods $D_x = 1.433 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9630 reflections $\theta = 3.4-72.5^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$ T = 150 KColumn, orange $0.27 \times 0.07 \times 0.06 \text{ mm}$

 $T_{\min} = 0.76, T_{\max} = 0.94$ 13399 measured reflections 3201 independent reflections 2813 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$ $\theta_{\text{max}} = 72.6^{\circ}, \theta_{\text{min}} = 2.8^{\circ}$ $h = -35 \rightarrow 38$ $k = -5 \rightarrow 5$ $l = -17 \rightarrow 14$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1367P)^2 + 0.156P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.86$ e Å⁻³ $\Delta\rho_{min} = -0.32$ e Å⁻³ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.5 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The model was refined as a 2-component inversion twin.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.36220 (9)	0.5663 (7)	0.6091 (3)	0.0471 (8)	
01	0.28379 (13)	1.1914 (11)	0.3187 (3)	0.0519 (10)	
O2	0.21272 (12)	1.5827 (9)	0.3844 (3)	0.0466 (9)	
N1	0.23084 (11)	1.3640 (9)	0.5286 (3)	0.0296 (8)	
C1	0.26289 (13)	1.1603 (10)	0.5611 (3)	0.0268 (9)	
C2	0.27104 (14)	1.0662 (10)	0.6529 (3)	0.0308 (9)	
H2	0.2540	1.1363	0.7041	0.037*	
C3	0.30516 (14)	0.8649 (10)	0.6680 (3)	0.0344 (10)	
Н3	0.3119	0.7975	0.7304	0.041*	
C4	0.32926 (12)	0.7631 (10)	0.5915 (4)	0.0320 (9)	
C5	0.32217 (13)	0.8575 (10)	0.4997 (3)	0.0323 (9)	
H5	0.3396	0.7889	0.4489	0.039*	
C6	0.28839 (13)	1.0576 (10)	0.4855 (3)	0.0291 (9)	
C7	0.27201 (14)	1.2069 (11)	0.4003 (3)	0.0320 (9)	
C8	0.23410 (14)	1.4111 (11)	0.4335 (4)	0.0348 (10)	
C9	0.19819 (13)	1.5140 (9)	0.5867 (4)	0.0323 (9)	
H9A	0.1905	1.7172	0.5578	0.039*	
H9B	0.2099	1.5561	0.6505	0.039*	
C10	0.15888 (13)	1.3173 (10)	0.5963 (4)	0.0371 (10)	
H10	0.1456	1.2464	0.5398	0.044*	
C11	0.14177 (16)	1.2374 (14)	0.6771 (5)	0.0514 (14)	
H11A	0.1542	1.3042	0.7349	0.062*	
H11B	0.1169	1.1123	0.6779	0.062*	
F2	0.38964 (10)	0.3522 (8)	0.3790 (3)	0.0540 (9)	
O3	0.46219 (11)	-0.2464 (9)	0.6830 (3)	0.0463 (9)	
O4	0.53563 (12)	-0.6362 (10)	0.6272 (3)	0.0541 (10)	
N2	0.52058 (11)	-0.4257 (8)	0.4808 (3)	0.0313 (8)	
C12	0.48881 (13)	-0.2282 (9)	0.4430 (3)	0.0255 (8)	
C13	0.48270 (14)	-0.1402 (10)	0.3493 (3)	0.0321 (9)	
H13	0.5010	-0.2114	0.3003	0.039*	
C14	0.44864 (15)	0.0568 (10)	0.3302 (4)	0.0373 (10)	
H14	0.4433	0.1198	0.2667	0.045*	
C15	0.42247 (13)	0.1622 (10)	0.4021 (4)	0.0353 (10)	
C16	0.42799 (13)	0.0785 (10)	0.4950 (4)	0.0343 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H16	0.4096	0.1516	0.5435	0.041*	
C17	0.46198 (13)	-0.1195 (10)	0.5149 (3)	0.0320 (9)	
C18	0.47587 (13)	-0.2635 (10)	0.6037 (4)	0.0325 (10)	
C19	0.51490 (15)	-0.4685 (11)	0.5751 (3)	0.0361 (10)	
C20	0.55462 (13)	-0.5753 (10)	0.4267 (4)	0.0351 (10)	
H20A	0.5436	-0.6369	0.3637	0.042*	
H20B	0.5636	-0.7680	0.4600	0.042*	
C21	0.59237 (14)	-0.3680 (10)	0.4134 (4)	0.0377 (11)	
H21	0.6048	-0.2783	0.4683	0.045*	
C22	0.60947 (17)	-0.3015 (16)	0.3314 (5)	0.0569 (16)	
H22A	0.5979	-0.3870	0.2749	0.068*	
H22B	0.6335	-0.1677	0.3283	0.068*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U ¹²	<i>U</i> ¹³	U^{23}
F1	0.0423 (15)	0.0477 (15)	0.0515 (19)	0.0148 (12)	-0.0090 (14)	0.0057 (13)
O1	0.055 (2)	0.079 (3)	0.022 (2)	0.018 (2)	0.0040 (16)	0.0009 (17)
O2	0.050(2)	0.056 (2)	0.033 (2)	0.0138 (17)	-0.0089 (17)	0.0035 (16)
N1	0.0287 (16)	0.0353 (18)	0.025 (2)	0.0031 (14)	0.0008 (14)	-0.0018 (14)
C1	0.0263 (19)	0.0320 (19)	0.022 (2)	-0.0063 (15)	-0.0031 (16)	-0.0022 (16)
C2	0.031 (2)	0.0341 (19)	0.027 (2)	-0.0034 (16)	0.0029 (17)	-0.0009 (17)
C3	0.037 (2)	0.036 (2)	0.030 (3)	-0.0063 (17)	-0.0061 (19)	0.0079 (18)
C4	0.0248 (19)	0.038 (2)	0.033 (3)	0.0034 (16)	-0.0020 (18)	0.0000 (18)
C5	0.031 (2)	0.0353 (19)	0.031 (2)	-0.0015 (16)	0.0010 (18)	0.0005 (17)
C6	0.0294 (19)	0.0333 (19)	0.024 (2)	-0.0012 (16)	0.0004 (17)	-0.0032 (16)
C7	0.035 (2)	0.040 (2)	0.021 (2)	0.0041 (17)	-0.0011 (19)	-0.0005 (18)
C8	0.035 (2)	0.042 (2)	0.028 (2)	0.0022 (18)	-0.0030 (18)	0.0015 (18)
C9	0.0276 (19)	0.0323 (19)	0.037 (3)	0.0016 (16)	0.0012 (18)	-0.0080 (18)
C10	0.0266 (19)	0.037 (2)	0.047 (3)	0.0012 (16)	-0.004 (2)	-0.007(2)
C11	0.035 (3)	0.062 (3)	0.057 (4)	-0.006 (2)	0.015 (3)	0.000 (3)
F2	0.0416 (15)	0.0552 (17)	0.065 (2)	0.0140 (13)	-0.0024 (16)	0.0120 (16)
O3	0.043 (2)	0.071 (2)	0.0246 (19)	-0.0072 (17)	0.0022 (15)	-0.0020 (16)
O4	0.047 (2)	0.065 (2)	0.050 (3)	0.0056 (18)	-0.0079 (18)	0.020 (2)
N2	0.0299 (17)	0.0325 (17)	0.031 (2)	0.0008 (14)	-0.0008 (15)	0.0043 (15)
C12	0.0266 (19)	0.0279 (18)	0.022 (2)	-0.0018 (15)	0.0007 (16)	0.0006 (14)
C13	0.033 (2)	0.0325 (19)	0.031 (2)	-0.0047 (16)	0.0009 (18)	0.0009 (18)
C14	0.038 (2)	0.039 (2)	0.035 (2)	-0.0023 (18)	-0.001 (2)	0.0113 (19)
C15	0.026 (2)	0.038 (2)	0.042 (3)	-0.0021 (16)	-0.0081 (19)	0.005 (2)
C16	0.0306 (19)	0.0346 (19)	0.038 (3)	-0.0020 (17)	0.0015 (19)	-0.0027 (17)
C17	0.031 (2)	0.0333 (19)	0.031 (2)	-0.0041 (16)	0.0012 (18)	-0.0031 (17)
C18	0.029 (2)	0.044 (2)	0.025 (2)	-0.0069 (16)	-0.0004 (19)	0.0019 (18)
C19	0.037 (2)	0.043 (2)	0.029 (2)	-0.0033 (18)	-0.0045 (17)	0.0037 (19)
C20	0.031 (2)	0.0313 (19)	0.043 (3)	0.0017 (16)	0.0002 (19)	-0.0058 (18)
C21	0.027 (2)	0.033 (2)	0.053 (3)	0.0015 (17)	-0.003 (2)	-0.003 (2)
C22	0.039 (3)	0.068 (4)	0.063 (4)	-0.009 (2)	0.009 (3)	-0.005 (3)

Geometric parameters (Å, °)

F1—C4	1.360 (5)	F2—C15	1.355 (5)
O1—C7	1.212 (6)	O3—C18	1.202 (6)
O2—C8	1.213 (6)	O4—C19	1.217 (6)
N1—C8	1.362 (6)	N2—C19	1.356 (6)
N1—C1	1.411 (5)	N2—C12	1.414 (5)
N1—C9	1.463 (5)	N2—C20	1.464 (6)
C1—C2	1.380 (6)	C12—C13	1.388 (7)
C1—C6	1.406 (6)	C12—C17	1.400 (6)
C2—C3	1.394 (6)	C13—C14	1.391 (6)
C2—H2	0.9500	C13—H13	0.9500
C3—C4	1.389 (7)	C14—C15	1.383 (7)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.375 (7)	C15—C16	1.370(7)
C5—C6	1.381 (6)	C16—C17	1.394 (6)
С5—Н5	0.9500	C16—H16	0.9500
C6—C7	1.456 (6)	C17—C18	1.463 (7)
C7—C8	1.552 (6)	C18—C19	1.564 (6)
C9—C10	1.504 (6)	C20—C21	1.496 (6)
С9—Н9А	0.9900	C20—H20A	0.9900
С9—Н9В	0.9900	C20—H20B	0.9900
C10-C11	1.306 (8)	C21—C22	1.307 (8)
C10—H10	0.9500	C21—H21	0.9500
C11—H11A	0.9500	C22—H22A	0.9500
C11—H11B	0.9500	C22—H22B	0.9500
C8—N1—C1	110.9 (4)	C19—N2—C12	110.9 (4)
C8—N1—C9	122.7 (4)	C19—N2—C20	123.4 (4)
C1—N1—C9	126.4 (4)	C12—N2—C20	125.7 (4)
C2—C1—C6	120.9 (4)	C13—C12—C17	121.1 (4)
C2-C1-N1	128.2 (4)	C13—C12—N2	128.2 (4)
C6—C1—N1	110.9 (4)	C17—C12—N2	110.7 (4)
C1—C2—C3	117.9 (4)	C12—C13—C14	117.1 (4)
C1—C2—H2	121.1	C12—C13—H13	121.4
C3—C2—H2	121.1	C14—C13—H13	121.4
C4—C3—C2	119.8 (4)	C15—C14—C13	121.0 (5)
С4—С3—Н3	120.1	C15—C14—H14	119.5
С2—С3—Н3	120.1	C13—C14—H14	119.5
F1-C4-C5	118.5 (4)	F2-C15-C16	118.9 (4)
F1—C4—C3	118.0 (4)	F2	118.3 (5)
C5—C4—C3	123.4 (4)	C16—C15—C14	122.7 (4)
C4—C5—C6	116.4 (4)	C15—C16—C17	116.7 (4)
C4—C5—H5	121.8	C15—C16—H16	121.7
C6—C5—H5	121.8	C17—C16—H16	121.7
C5—C6—C1	121.6 (4)	C16—C17—C12	121.4 (4)
C5—C6—C7	131.7 (4)	C16—C17—C18	131.1 (4)
C1—C6—C7	106.7 (4)	C12—C17—C18	107.4 (4)

O1—C7—C6	130.7 (4)	O3—C18—C17	131.6 (4)
O1—C7—C8	123.6 (4)	O3—C18—C19	123.8 (4)
C6—C7—C8	105.7 (4)	C17—C18—C19	104.5 (4)
O2—C8—N1	127.6 (5)	O4—C19—N2	126.9 (5)
O2—C8—C7	126.6 (5)	O4—C19—C18	126.7 (5)
N1—C8—C7	105.8 (4)	N2—C19—C18	106.3 (4)
N1—C9—C10	112.7 (3)	N2-C20-C21	113.0 (3)
N1—C9—H9A	109.1	N2—C20—H20A	109.0
С10—С9—Н9А	109.1	C21—C20—H20A	109.0
N1—C9—H9B	109.1	N2-C20-H20B	109.0
C10-C9-H9B	109.1	C21—C20—H20B	109.0
H9A - C9 - H9B	107.8	$H_{20}A - C_{20} - H_{20}B$	107.8
C11 - C10 - C9	124.5 (5)	$C^{22} - C^{21} - C^{20}$	124.6(5)
$C_{11} - C_{10} - H_{10}$	117.8	C22 = C21 = C20 C22 = C21 = H21	117 7
C_{0} C_{10} H_{10}	117.8	$C_{22} = C_{21} = H_{21}$	117.7
C_{10} C_{11} H_{11A}	117.8	$C_{20} = C_{21} = H_{21}$	117.7
	120.0	$C_{21} = C_{22} = H_{22}R$	120.0
	120.0		120.0
HIIA—CII—HIIB	120.0	H22A—C22—H22B	120.0
	177.2 (4)		177.0 (4)
$C_8 = N_1 = C_1 = C_2$	1//.3 (4)	C19 - N2 - C12 - C13	-1/.0(4)
C9-N1-C1-C2	-1.9 (7)	C_{20} N2 C_{12} C_{13}	1.2 (7)
C8—NI—CI—C6	-1.5(5)	C19—N2—C12—C17	3.3 (5)
C9—N1—C1—C6	1/9.3 (4)	C20—N2—C12—C17	-1/8.5 (4)
C6—C1—C2—C3	-0.4(6)	C17—C12—C13—C14	-0.7 (6)
N1—C1—C2—C3	-179.1 (4)	N2—C12—C13—C14	179.6 (4)
C1—C2—C3—C4	-0.8(6)	C12—C13—C14—C15	0.8 (6)
C2—C3—C4—F1	-179.8 (4)	C13—C14—C15—F2	-179.6 (4)
C2—C3—C4—C5	1.9 (7)	C13—C14—C15—C16	-0.7 (7)
F1—C4—C5—C6	-179.9 (4)	F2-C15-C16-C17	179.4 (4)
C3—C4—C5—C6	-1.7 (6)	C14—C15—C16—C17	0.5 (6)
C4—C5—C6—C1	0.4 (6)	C15—C16—C17—C12	-0.5 (6)
C4—C5—C6—C7	178.9 (4)	C15—C16—C17—C18	-177.0 (4)
C2-C1-C6-C5	0.6 (6)	C13—C12—C17—C16	0.6 (6)
N1—C1—C6—C5	179.5 (4)	N2-C12-C17-C16	-179.7 (4)
C2-C1-C6-C7	-178.2 (4)	C13—C12—C17—C18	177.9 (4)
N1—C1—C6—C7	0.7 (5)	N2-C12-C17-C18	-2.4(5)
C5—C6—C7—O1	0.8 (9)	C16—C17—C18—O3	-1.3(8)
C1—C6—C7—O1	179.4 (5)	C12—C17—C18—O3	-178.2(5)
C5—C6—C7—C8	-178.4(4)	C16—C17—C18—C19	177.7 (4)
C1—C6—C7—C8	0.3 (5)	C12—C17—C18—C19	0.8 (4)
C1 - N1 - C8 - O2	-1767(5)	C12 = N2 = C19 = O4	1765(5)
C9 - N1 - C8 - O2	2.5 (8)	$C_{20} = N_{2} = C_{19} = O_{4}$	-1.8(7)
C1 - N1 - C8 - C7	1.6(5)	$C_{12} = N_{2} = C_{19} = C_{18}$	-26(5)
C9-N1-C8-C7	-179.2(4)	C_{20} N_{2} C_{19} C_{18}	1791(3)
$01 - (7 - (8 - 0)^2)$	-21(8)	03-C18-C19-04	11(8)
C6-C7-C8-O2	177 1 (5)	C17 - C18 - C19 - O4	-1780(5)
01 - C7 - C8 - N1	179.6 (5)	$O_3 = C_{18} = C_{19} = O_7$	-170.8(3)
C6 C7 C8 N1	-1.1.(5)	$C_{17} C_{18} C_{10} N_2$	1 1 (5)
U-U/-U/-NI	1.1 (3)	U1/	1.1 (J)

data reports

C8—N1—C9—C10	91.9 (5)	C19—N2—C20—C21	-97.0 (5)
C1—N1—C9—C10	-89.0 (5)	C12—N2—C20—C21	85.0 (5)
N1—C9—C10—C11	125.9 (5)	N2-C20-C21-C22	-126.1 (6)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D···A	D—H···A	
C5—H5…F2	0.95	2.64	3.477 (6)	148	
C9—H9 <i>B</i> ···O1 ⁱ	0.99	2.45	3.408 (7)	163	
C16—H16…F1	0.95	2.50	3.353 (5)	150	

Symmetry code: (i) -x+1/2, y+1/2, z+1/2.