ISSN 2414-3146

Received 19 December 2016 Accepted 2 January 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; Co^{II} complex; 1,1,1,5,5,5-hexafluoropentane-2,4-dionate; hydrogen bonding; hydrate compounds..

CCDC reference: 1525259

Structural data: full structural data are available from iucrdata.iucr.org

trans-Diaquabis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato- $\kappa^2 O, O'$)cobalt(II) dihydrate

Takumi Tominaga and Tomoyuki Mochida*

Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan. *Correspondence e-mail: tmochida@platinum.kobe-u.ac.jp

The Co^{II} atom in the mononuclear title compound, $[Co(C_5HF_6O_2)_2 (H_2O)_2] \cdot 2H_2O$, is situated on an inversion centre and exhibits a slightly distorted octahedral coordination sphere. In the crystal, molecules are arranged in layers parallel to (100), held together by $O-H \cdots O$ and $O-H \cdots F$ hydrogen bonds.

Structure description

Metal complexes with hfac⁻ ligands (hfac⁻ = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate, $C_5HF_6O_2$) can occur with various numbers of aqua ligands $[M(hfac)_2(H_2O)_n]$ (Maverick *et al.*, 2002). These compounds are useful precursors of numerous complexes used in supramolecular chemistry (Horikoshi *et al.*, 2005).

An isomer of the molecular entity cis-[Co(hfac)₂(H₂O)₂] (Petrukhina *et al.*, 2005) was now obtained as a dihydrate with a *trans*-configuration about the Co^{II} atom, representing the title compound [Co(hfac)₂(H₂O)₂]·2H₂O (Fig. 1). The metal cation is situated on an inversion centre, hence only half of the complex is present in the asymmetric unit. The symmetry-related hfac⁻ ligands chelate the Co^{II} atom in the equatorial plane, the slightly distorted coordination sphere being completed by two axially bound water molecules. The hydrogen atoms of the two solvate water molecules hydrogen-bond to the two O atom pairs of the hfac⁻ ligands, whereas the hydrogen atoms of the aqua ligands hydrogen-bond to the oxygen atoms of the solvate water molecules which leads to the formation of a two-dimensional network structure extending parallel to (100) (Table 1, Fig. 2). Additional intralayer O-H···F hydrogen bonds between the solvate water molecules and the F atoms of the hfac⁻ ligands are present (Table 1).

A search of the Cambridge Structural Database (Groom *et al.*, 2016) revealed no other examples of structurally characterized dihydrate crystals with formula $[M(hfac)_2(H_2O)_n]\cdot 2H_2O$. In the monohydrate crystals of *trans*- $[M(hfac)_2(H_2O)_2]\cdot H_2O$ [M

Table 1			
Hydrogen-bond g	eometry (Å,	ິ).	
D II I	B 77		

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
04 H5 02	0.88(3)	213(3)	2 853 (2)	140 (3)
04-11502	0.88(3)	2.13(3)	2.855(2)	140(3) 148(2)
$O4 = HJ \cdots F0$ $O4 = H4 = O1^{i}$	0.00(3)	2.32(3)	3.105(3)	140(3)
$O4 = H4 \cdots O1$ $O4 = H4 = E2^{i}$	0.77(3)	2.05(3)	2.700(2)	100(3)
$O_4 - \Pi_4 \cdots \Gamma_5$	0.77(3)	2.33(3)	3.080(3)	129 (3)
$03 - \pi 2 \cdots 04$	0.70(3)	2.00(3)	2.730(3)	175(3)
03-п1…04	0.84 (3)	1.85 (5)	2.087 (5)	175 (5)
0	(1) 1	. 1 . 1.	(") 11 1	1 1. (")

Symmetry codes: (11) $-z + \frac{1}{2};$ (111) x, y + 1, z.

= Zn (Adams et al., 1986), Mn (Dickman et al., 1997), and Cu (Maverick et al., 2002)], of which the Zn and Mn compounds are isotypic with each other, the solvate water molecule forms hydrogen bonds with two of the four oxygen atoms of the hfac⁻ ligands in the complex, whereas the other two oxygen atoms form hydrogen bonds with the aqua ligands of an

Figure 1

The molecular components in the title structure, with displacement ellipsoids drawn at the 50% probability level. Primed atoms are related to the non-primed atoms by the symmetry operation -x + 1, -y + 1, -z + 1.

Figure 2

Packing diagram of the title structure in a view along [100]. O-H···O interactions are illustrated as dashed lines.

Experimental details.	
Crystal data	
Chemical formula	$[Co(C_5HF_6O_2)_2(H_2O)]\cdot 2H_2O$
M _r	545.11
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	11.139 (7), 6.979 (4), 12.546 (8)
β (°)	102.221 (7)
$V(Å^3)$	953.2 (10)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.05
Crystal size (mm)	$0.15 \times 0.14 \times 0.10$
Data collection	
Diffractometer	Bruker APEXII CCD area detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2015)
T_{\min}, T_{\max}	0.83, 0.90
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	4980, 2085, 1897
R _{int}	0.033
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.641
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030, 0.080, 1.09
No. of reflections	2085
No. of parameters	158
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.46, -0.33

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), ORTEP for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

adjacent complex. In contrast, $cis-[M(hfac)_2(H_2O)_2]$ [M = Co (Petrukhina et al., 2005), Zn (Adams & Allen, 1986), Ni (Romero et al., 1992) and Mn (Troyanov et al., 1999)] form no crystals with additional solvate water molecules, and the crystals obtained are isotypic with each other. Thus, the cisand *trans*- $[M(hfac)_2(H_2O)_2]$ isomers occur as anhydrate and dihydrate crystals, respectively, for the Co, Zn, and Mn complexes.

Synthesis and crystallization

Slow evaporation of a dichloromethane solution of commercially available $Co(hfac)_2 \cdot nH_2O$ (12 mg) and a tetranuclear ruthenium complex produced pale orange platy crystals of the title compound (7 mg).

Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This work was financially supported by KAKENHI (grant number 16H04132).

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (award No. KAKENHI: 16H04132).

References

- Adams, R. P., Allen, H. C. Jr, Rychlewska, U. & Hodgson, D. J. (1986). Inorg. Chim. Acta, 119, 67–74.
- Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dickman, M. H. (1997). Acta Cryst. C53, 402-404.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Horikoshi, R., Mochida, T., Kurihara, M. & Mikuriya, M. (2005). *Cryst. Growth Des.* **5**, 243–249.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Maverick, A. W., Fronczek, F. R., Maverick, E. F., Billodeaux, D. R., Cygan, Z. T. & Isovitsch, R. A. (2002). *Inorg. Chem.* 41, 6488–6492.
- Petrukhina, M. A., Henck, C., Li, B., Block, E., Jin, J., Zhang, S. & Clerac, R. (2005). *Inorg. Chem.* 44, 77–84.
- Romero, R. R., Cervantes-Lee, F. & Porter, L. C. (1992). Acta Cryst. C48, 993–995.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Troyanov, S. I., Gorbenko, O. Yu. & Bosak, A. A. (1999). *Polyhedron*, **18**, 3505–3509.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). **2**, x170002 [https://doi.org/10.1107/S2414314617000025]

trans-Diaquabis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato- $\kappa^2 O,O'$)cobalt(II) dihydrate

F(000) = 538

 $\theta = 3.3 - 28.7^{\circ}$ $\mu = 1.05 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.033$

 $h = -13 \rightarrow 14$

 $l = -15 \rightarrow 16$

 $k = -8 \rightarrow 6$

 $D_{\rm x} = 1.899 {\rm Mg m^{-3}}$

Plate, clear light orange

 $0.15 \times 0.14 \times 0.10 \text{ mm}$

4980 measured reflections 2085 independent reflections

 $\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$

1897 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3472 reflections

Takumi Tominaga and Tomoyuki Mochida

trans-Diaquabis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato- $\kappa^2 O, O'$) cobalt(II) dihydrate

Crystal data

 $[Co(C_5HF_6O_2)_2(H_2O)] \cdot 2H_2O$ $M_r = 545.11$ Monoclinic, $P2_1/c$ a = 11.139 (7) Å b = 6.979 (4) Å c = 12.546 (8) Å $\beta = 102.221$ (7)° V = 953.2 (10) Å³ Z = 2

Data collection

Bruker APEXII CCD area detector diffractometer Bruker Helios multilayer confocal mirror monochromator Detector resolution: 8.3333 pixels mm⁻¹ phi an_diffrn_radiation_type scans Absorption correction: multi-scan (*SADABS*; Bruker, 2015) $T_{min} = 0.83, T_{max} = 0.90$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.030$	and constrained refinement
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0286P)^2 + 0.6401P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
2085 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
158 parameters	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.79557 (17)	0.8251 (3)	0.70389 (15)	0.0275 (4)	
C2	0.73400 (16)	0.6744 (3)	0.62063 (14)	0.0215 (4)	
C3	0.80755 (17)	0.5324 (3)	0.59026 (16)	0.0259 (4)	
H3	0.8933	0.5359	0.6201	0.031*	
C4	0.76128 (16)	0.3842 (3)	0.51766 (14)	0.0224 (4)	
C5	0.85596 (17)	0.2501 (3)	0.48259 (16)	0.0280 (4)	
Col	0.5	0.5	0.5	0.01650 (11)	
F1	0.77683 (13)	0.7802 (2)	0.80271 (10)	0.0447 (3)	
F2	0.91612 (11)	0.8405 (2)	0.71227 (11)	0.0430 (3)	
F3	0.74684 (13)	0.99850 (17)	0.67922 (12)	0.0421 (3)	
F4	0.88486 (14)	0.3160 (2)	0.39182 (12)	0.0557 (4)	
F5	0.95906 (12)	0.2319 (2)	0.55607 (13)	0.0543 (4)	
F6	0.81060 (12)	0.0745 (2)	0.46112 (13)	0.0465 (4)	
H1	0.508 (2)	0.769 (4)	0.362 (2)	0.038 (7)*	
H2	0.484 (3)	0.612 (5)	0.304 (2)	0.047 (8)*	
H4	0.481 (3)	0.085 (4)	0.366 (2)	0.042 (7)*	
H5	0.601 (3)	0.087 (5)	0.388 (2)	0.051 (8)*	
01	0.61928 (11)	0.69704 (18)	0.59076 (10)	0.0219 (3)	
O2	0.65242 (11)	0.34813 (19)	0.47266 (10)	0.0234 (3)	
O3	0.49099 (16)	0.6521 (2)	0.36142 (12)	0.0318 (3)	
04	0.53489 (14)	0.02958 (19)	0.35107 (11)	0.0238 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

T 711					
U^{**}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0239 (9)	0.0314 (10)	0.0260 (9)	-0.0047 (8)	0.0026 (7)	-0.0066 (8)
0.0218 (8)	0.0226 (9)	0.0197 (8)	-0.0037 (7)	0.0035 (6)	-0.0016 (7)
0.0197 (8)	0.0304 (10)	0.0260 (9)	-0.0010 (7)	0.0018 (7)	-0.0044 (8)
0.0212 (8)	0.0244 (9)	0.0221 (8)	0.0024 (7)	0.0054 (7)	-0.0007 (7)
0.0217 (9)	0.0298 (10)	0.0322 (10)	0.0035 (8)	0.0052 (7)	-0.0047 (8)
0.01709 (18)	0.01662 (18)	0.01582 (17)	-0.00037 (11)	0.00357 (12)	-0.00182 (11)
0.0567 (8)	0.0541 (9)	0.0234 (6)	-0.0155 (7)	0.0089 (6)	-0.0115 (6)
0.0248 (6)	0.0510 (8)	0.0512 (8)	-0.0109 (6)	0.0037 (5)	-0.0231 (6)
0.0424 (8)	0.0254 (7)	0.0518 (9)	-0.0030 (5)	-0.0048 (6)	-0.0113 (5)
0.0596 (9)	0.0653 (10)	0.0540 (9)	0.0242 (8)	0.0388 (8)	0.0114 (8)
0.0313 (7)	0.0642 (10)	0.0592 (9)	0.0217 (7)	-0.0089 (6)	-0.0226 (8)
0.0346 (7)	0.0317 (7)	0.0748 (10)	0.0046 (6)	0.0148 (6)	-0.0181 (7)
0.0214 (6)	0.0209 (6)	0.0226 (6)	-0.0017 (5)	0.0028 (5)	-0.0047 (5)
0.0199 (6)	0.0241 (7)	0.0261 (6)	0.0006 (5)	0.0044 (5)	-0.0065 (5)
0.0598 (10)	0.0190 (7)	0.0172 (7)	-0.0053 (7)	0.0099 (6)	-0.0018 (5)
0.0297 (7)	0.0202 (6)	0.0214 (6)	0.0008 (6)	0.0056 (6)	-0.0034 (5)
	0.0239 (9) 0.0218 (8) 0.0197 (8) 0.0212 (8) 0.0217 (9) 0.01709 (18) 0.0567 (8) 0.0248 (6) 0.0248 (6) 0.0424 (8) 0.0596 (9) 0.0313 (7) 0.0346 (7) 0.0214 (6) 0.0199 (6) 0.0598 (10) 0.0297 (7)	0.00.0239 (9)0.0314 (10)0.0218 (8)0.0226 (9)0.0197 (8)0.0304 (10)0.0212 (8)0.0244 (9)0.0217 (9)0.0298 (10)0.01709 (18)0.01662 (18)0.0567 (8)0.0541 (9)0.0248 (6)0.0510 (8)0.0424 (8)0.0254 (7)0.0596 (9)0.0653 (10)0.0313 (7)0.0642 (10)0.0346 (7)0.0317 (7)0.0214 (6)0.0209 (6)0.0199 (6)0.0241 (7)0.0297 (7)0.0202 (6)	0.02 0.02 0.02 0.0239 (9) 0.0314 (10) 0.0260 (9) 0.0218 (8) 0.0226 (9) 0.0197 (8) 0.0197 (8) 0.0304 (10) 0.0260 (9) 0.0212 (8) 0.0244 (9) 0.0221 (8) 0.0217 (9) 0.0298 (10) 0.0322 (10) 0.01709 (18) 0.01662 (18) 0.01582 (17) 0.0567 (8) 0.0541 (9) 0.0234 (6) 0.0248 (6) 0.0510 (8) 0.0512 (8) 0.0424 (8) 0.0254 (7) 0.0518 (9) 0.0596 (9) 0.0653 (10) 0.0540 (9) 0.0313 (7) 0.0642 (10) 0.0592 (9) 0.0346 (7) 0.0317 (7) 0.0748 (10) 0.0214 (6) 0.0229 (6) 0.0226 (6) 0.0199 (6) 0.0241 (7) 0.0261 (6) 0.0297 (7) 0.0202 (6) 0.0214 (6)	O^{11} O^{12} O^{13} O^{12} $0.0239(9)$ $0.0314(10)$ $0.0260(9)$ $-0.0047(8)$ $0.0218(8)$ $0.0226(9)$ $0.0197(8)$ $-0.0037(7)$ $0.0197(8)$ $0.0304(10)$ $0.0260(9)$ $-0.0010(7)$ $0.0212(8)$ $0.0244(9)$ $0.0221(8)$ $0.0024(7)$ $0.0217(9)$ $0.0298(10)$ $0.0322(10)$ $0.0035(8)$ $0.01709(18)$ $0.01662(18)$ $0.01582(17)$ $-0.00037(11)$ $0.0567(8)$ $0.0541(9)$ $0.0234(6)$ $-0.0155(7)$ $0.0248(6)$ $0.0510(8)$ $0.0512(8)$ $-0.0109(6)$ $0.0424(8)$ $0.0254(7)$ $0.0518(9)$ $-0.0030(5)$ $0.0596(9)$ $0.0653(10)$ $0.0592(9)$ $0.0217(7)$ $0.0313(7)$ $0.0642(10)$ $0.0592(9)$ $0.0217(7)$ $0.0346(7)$ $0.0209(6)$ $0.0226(6)$ $-0.0017(5)$ $0.0199(6)$ $0.0241(7)$ $0.0261(6)$ $0.0006(5)$ $0.0297(7)$ $0.0202(6)$ $0.0214(6)$ $0.0008(6)$	0.1 0.2 0.2 0.1 0.1 $0.0239 (9)$ $0.0314 (10)$ $0.0260 (9)$ $-0.0047 (8)$ $0.0026 (7)$ $0.0218 (8)$ $0.0226 (9)$ $0.0197 (8)$ $-0.0037 (7)$ $0.0035 (6)$ $0.0197 (8)$ $0.0304 (10)$ $0.0260 (9)$ $-0.0010 (7)$ $0.0018 (7)$ $0.0212 (8)$ $0.0244 (9)$ $0.0221 (8)$ $0.0024 (7)$ $0.0054 (7)$ $0.0217 (9)$ $0.0298 (10)$ $0.0322 (10)$ $0.0035 (8)$ $0.0052 (7)$ $0.01709 (18)$ $0.01662 (18)$ $0.01582 (17)$ $-0.00037 (11)$ $0.00357 (12)$ $0.0567 (8)$ $0.0541 (9)$ $0.0234 (6)$ $-0.0155 (7)$ $0.0089 (6)$ $0.0248 (6)$ $0.0510 (8)$ $0.0512 (8)$ $-0.0109 (6)$ $0.0037 (5)$ $0.0424 (8)$ $0.0254 (7)$ $0.0518 (9)$ $-0.0030 (5)$ $-0.0048 (6)$ $0.0596 (9)$ $0.0653 (10)$ $0.0540 (9)$ $0.0217 (7)$ $-0.0089 (6)$ $0.0313 (7)$ $0.0642 (10)$ $0.0592 (9)$ $0.0217 (7)$ $-0.0089 (6)$ $0.0214 (6)$ $0.0209 (6)$ $0.0226 (6)$ $-0.0017 (5)$ $0.0028 (5)$ $0.0199 (6)$ $0.0241 (7)$ $0.0261 (6)$ $0.0006 (5)$ $0.0044 (5)$ $0.0598 (10)$ $0.0190 (7)$ $0.0172 (7)$ $-0.0053 (7)$ $0.0099 (6)$ $0.0297 (7)$ $0.0202 (6)$ $0.0214 (6)$ $0.0008 (6)$ $0.0056 (6)$

Geometric parameters (Å, °)

C1—F2	1.329 (2)	C5—F6	1.331 (3)	
C1—F3	1.336 (3)	Co1—O3 ⁱ	2.0215 (17)	
C1—F1	1.337 (2)	Co1—O3	2.0215 (17)	
C1—C2	1.538 (3)	Co1—O1	2.0766 (14)	
C2—O1	1.263 (2)	Co1—O1 ⁱ	2.0766 (14)	
C2—C3	1.389 (3)	Co1—O2	2.0904 (15)	
C3—C4	1.402 (3)	Co1—O2 ⁱ	2.0904 (15)	
С3—Н3	0.95	O3—H1	0.84 (3)	
C4—O2	1.250 (2)	O3—H2	0.76 (3)	
C4—C5	1.542 (3)	O4—H4	0.77 (3)	
C5—F5	1.318 (2)	O4—H5	0.88 (3)	
C5—F4	1.330 (3)			
F2—C1—F3	107.40 (17)	O3 ⁱ —Co1—O3	180.0	
F2—C1—F1	107.40 (16)	O3 ⁱ —Co1—O1	88.09 (7)	
F3—C1—F1	106.94 (16)	O3—Co1—O1	91.91 (7)	
F2—C1—C2	114.03 (16)	O3 ⁱ —Co1—O1 ⁱ	91.91 (7)	
F3—C1—C2	111.18 (16)	O3—Co1—O1 ⁱ	88.09 (7)	
F1—C1—C2	109.57 (16)	O1—Co1—O1 ⁱ	180.00 (5)	
O1—C2—C3	128.77 (17)	O3 ⁱ —Co1—O2	88.89 (6)	
O1—C2—C1	113.18 (16)	O3—Co1—O2	91.11 (6)	
C3—C2—C1	118.03 (16)	O1—Co1—O2	88.74 (6)	
C2—C3—C4	123.17 (17)	O1 ⁱ —Co1—O2	91.26 (6)	
С2—С3—Н3	118.4	O3 ⁱ —Co1—O2 ⁱ	91.11 (6)	
С4—С3—Н3	118.4	O3—Co1—O2 ⁱ	88.89 (6)	
O2—C4—C3	129.04 (17)	O1—Co1—O2 ⁱ	91.26 (6)	
O2—C4—C5	113.93 (16)	O1 ⁱ —Co1—O2 ⁱ	88.74 (6)	
C3—C4—C5	116.96 (16)	O2—Co1—O2 ⁱ	180.00 (7)	
F5—C5—F4	107.42 (18)	C2	124.71 (12)	
F5—C5—F6	106.87 (17)	C4—O2—Co1	124.59 (12)	
F4—C5—F6	107.21 (17)	Co1—O3—H1	122.6 (18)	
F5—C5—C4	113.96 (17)	Co1—O3—H2	127 (2)	
F4—C5—C4	109.78 (17)	H1—O3—H2	110 (3)	
F6—C5—C4	111.30 (16)	H4—O4—H5	105 (3)	

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O4—H5…O2	0.88 (3)	2.13 (3)	2.853 (2)	140 (3)
O4—H5…F6	0.88 (3)	2.32 (3)	3.105 (3)	148 (3)
O4—H4···O1 ⁱ	0.77 (3)	2.03 (3)	2.766 (2)	160 (3)
O4—H4····F3 ⁱ	0.77 (3)	2.55 (3)	3.086 (3)	129 (3)

				data reports
O3—H2…O4 ⁱⁱ	0.76 (3)	2.00 (3)	2.756 (3)	175 (3)
O3—H1…O4 ⁱⁱⁱ	0.84 (3)	1.85 (3)	2.687 (3)	175 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) *x*, *y*+1, *z*.