

IUCrData

ISSN 2414-3146

Received 19 December 2016 Accepted 21 December 2016

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; bis-chalcone; *E* conformation.

CCDC reference: 1523974

Structural data: full structural data are available from iucrdata.iucr.org

(*E*)-1-(1,3-Benzodioxol-5-yl)-3-[4-(dimethylamino)phenyl]prop-2-en-1-one

Karthik Kumara,^a S. Naveen,^b A. Dileep Kumar,^c K. Ajay Kumar,^c N. K. Lokanath^a* and Ismail Warad^d*

^aDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, ^cDepartment of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 005, India, and ^dDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories. *Correspondence e-mail: lokanath@physics.uni-mysore.ac.in, khalil.i@najah.edu

In the title compound, $C_{18}H_{17}NO_3$, the olefinic double bond adopts an *E* conformation. The molecule is nearly planar as indicated by the dihedral angle of 3.11 (6)° between the benzodioxole and benzene rings. The carbonyl group lies in the plane of the olefinic double bond and the benzodioxole ring. The *trans* conformation of the C=C double bond in the central enone group is confirmed by the C=C-C-C torsion angle of -177.82 (14)°.

Structure description

Chalcones constitute the central core for the construction of a wide range of bioactive compounds (Ajay Kumar *et al.*, 2010). Chalcones and their derivatives demonstrate a wide range of biological activities, such as antioxidant, antifungal, antibacterial, cardio-protective. In view of the broad spectrum of applications associated with chalcones and as a part of our ongoing work on such molecules (Tejkiran *et al.*, 2016; Naveen *et al.*, 2016*a*), we report herein on the synthesis and crystal structure of the title compound.

The molecule (Fig. 1) is nearly planar, with a dihedral angle of $3.11 (6)^{\circ}$ between the benzodioxole and benzene rings that are bridged by the olefinic double bond. This value is less than that reported for the dihedral angle between the aromatic rings [19.13 (15)°] in the related chalcone derivative (*E*)-3-(2,3-dichlorophenyl)-1-(4-fluorophenyl)prop-2en-1-one (Naveen *et al.*, 2016*b*). The *trans* conformation about the C7=C8 double bond in the central enone group is confirmed by the C7=C8-C9-C10 torsion angle of $-177.82 (14)^{\circ}$. The carbonyl group at C9 lies in the plane of the olefinic double bond and the benzodioxole ring, as indicated by the O3-C9-C8-C7 and O3-C9-C10-C16

data reports

Table 1Experimental details.

Crystal data Chemical formula C₁₈H₁₇NO₃ 295.33 М., Crystal system, space group Monoclinic, P21/a Temperature (K) 293 11.915 (10), 10.8405 (10), *a*, *b*, *c* (Å) 12.184 (11) 101.922 (8) $V(Å^3)$ 1539.8 (19) Ζ 4 Μο Κα Radiation type $\mu \,({\rm mm}^{-1})$ 0.09 Crystal size (mm) $0.29 \times 0.27 \times 0.24$ Data collection Diffractometer Rigaku Saturn724+ CCD Absorption correction Multi-scan (NUMABS; Rigaku, 1999) 0.975, 0.979 T_{\min}, T_{\max} No. of measured, independent and 7186, 3479, 2629 observed $[I > 2\sigma(I)]$ reflections 0.029 Rint $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.650 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.049, 0.146, 1.04 No. of reflections 3479 No. of parameters 201 H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.18, -0.15

Computer programs: CrystalClear SM-Expert (Rigaku, 2011), SHELXS97 and SHELXL97 (Sheldrick, 208) and Mercury (Macrae et al., 2008).

torsion angles of 2.0 (2) $^{\circ}$ and 3.7 (2) $^{\circ}$, respectively. No classical hydrogen bonds are found in the structure.

Synthesis and crystallization

A mixture of 4-(dimethylamino)benzaldehyde (5 mmol), 1-(benzo[d][1,3]dioxol-5-yl)ethanone (5 mmol) and sodium hydroxide (5 mmol) in ethyl alcohol (25 ml) was stirred at room temperature for 3 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was poured into ice-cold water and kept in the refrigerator for 18 h. The solid formed was filtered, and washed with cold hydrochloric acid (5%). Single crystals

Figure 1 The molecular structure of the title compound, showing the atomnumbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

suitable for X-ray diffraction studies were obtained from methyl alcohol and a few drops of acetonitrile by slow evaporation of the solvents (yield 88%, m.p. $93-94^{\circ}$ C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

The authors are grateful to the National Facility, Department of Studies in Physics, University of Mysore, India, for providing the single-crystal X-ray diffractometer facility.

References

- Ajay Kumar, K., Govindaraju, M. & Vasantha Kumar, G. (2010). Indian J. Heterocycl. Chem. 20, 183–184.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Naveen, S., Dileep Kumar, A., Ajay Kumar, K., Manjunath, H. R., Lokanath, N. K. & Warad, I. (2016*a*). *IUCrData*, **1**, x161800.
- Naveen, S., Prabhudeva, M. G., Ajay Kumar, K., Lokanath, N. K. & Abdoh, M. (2016b). *IUCrData*, 1, x161974.
- Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tejkiran, P. J., Brahma Teja, M. S., Sai Siva Kumar, P., Sankar, P., Philip, R., Naveen, S., Lokanath, N. K. & Nageswara Rao, G. (2016). J. Photochem. Photobiol. Chem. A, 324, 33–39.

full crystallographic data

IUCrData (2017). **2**, x162029 [https://doi.org/10.1107/S2414314616020290]

(E)-1-(1,3-Benzodioxol-5-yl)-3-[4-(dimethylamino)phenyl]prop-2-en-1-one

Karthik Kumara, S. Naveen, A. Dileep Kumar, K. Ajay Kumar, N. K. Lokanath and Ismail Warad

F(000) = 624

 $\theta = 3.3 - 27.5^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Rectangle, brown

 $0.29\times0.27\times0.24~mm$

7186 measured reflections

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$

3479 independent reflections

2629 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.029$

 $h = -13 \rightarrow 15$

 $k = -14 \rightarrow 11$

 $l = -15 \rightarrow 14$

 $D_{\rm x} = 1.274 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2629 reflections

(E)-1-(1,3-Benzodioxol-5-yl)-3-[4-(dimethylamino)phenyl]prop-2-en-1-one

Crystal data

C₁₈H₁₇NO₃ $M_r = 295.33$ Monoclinic, $P2_1/a$ Hall symbol: -P 2yab a = 11.915 (10) Å b = 10.8405 (10) Å c = 12.184 (11) Å $\beta = 101.922 (8)^{\circ}$ $V = 1539.8 (19) \text{ Å}^3$ Z = 4

Data collection

Rigaku Saturn724+ CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 28.5714 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (NUMABS; Rigaku, 1999) $T_{\min} = 0.975, T_{\max} = 0.979$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.146$	neighbouring sites
S = 1.04	H-atom parameters constrained
3479 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0758P)^2 + 0.1951P]$
201 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
O3	0.37832 (9)	0.20251 (12)	-0.19163 (9)	0.0595 (4)
O4	0.51384 (9)	0.08096 (12)	0.22013 (9)	0.0590 (4)
05	0.70923 (10)	0.11039 (14)	0.26761 (9)	0.0721 (5)
N1	0.65091 (13)	0.44829 (15)	-0.73998 (12)	0.0652 (5)
C1	0.61229 (13)	0.40498 (13)	-0.64936 (12)	0.0479 (4)
C2	0.68837 (13)	0.37874 (15)	-0.54635 (13)	0.0535 (5)
C3	0.64905 (13)	0.33658 (15)	-0.45519 (12)	0.0505 (5)
C4	0.53234 (12)	0.31754 (13)	-0.45929 (11)	0.0436 (4)
C5	0.45761 (12)	0.34319 (14)	-0.56122 (12)	0.0487 (4)
C6	0.49551 (13)	0.38484 (14)	-0.65357 (12)	0.0501 (4)
C7	0.48650 (13)	0.27767 (13)	-0.36412 (12)	0.0464 (4)
C8	0.54391 (13)	0.25066 (14)	-0.26054 (12)	0.0480 (4)
C9	0.48377 (12)	0.21340 (13)	-0.17243 (12)	0.0445 (4)
C10	0.55141 (12)	0.18863 (13)	-0.05724 (11)	0.0428 (4)
C11	0.66948 (13)	0.20478 (17)	-0.02721 (13)	0.0570 (5)
C12	0.73073 (14)	0.1804 (2)	0.08137 (14)	0.0676 (6)
C13	0.66965 (13)	0.13966 (15)	0.15751 (12)	0.0528 (5)
C14	0.61240 (15)	0.07070 (16)	0.30885 (13)	0.0581 (5)
C15	0.55270 (12)	0.12316 (12)	0.12871 (11)	0.0435 (4)
C16	0.49093 (11)	0.14651 (13)	0.02312 (11)	0.0427 (4)
C23	0.57384 (18)	0.46946 (17)	-0.84656 (14)	0.0659 (6)
C24	0.7710 (2)	0.4674 (3)	-0.7342 (2)	0.0959 (10)
H2	0.76670	0.39040	-0.54050	0.0640*
H3	0.70140	0.32020	-0.38890	0.0610*
Н5	0.37930	0.33160	-0.56660	0.0580*
H6	0.44280	0.39990	-0.71990	0.0600*
H7	0.40710	0.26980	-0.37650	0.0560*
H8	0.62360	0.25560	-0.24410	0.0580*
H11	0.70880	0.23260	-0.08090	0.0680*
H12	0.80970	0.19150	0.10090	0.0810*
H14A	0.60300	0.12160	0.37180	0.0700*
H14B	0.62250	-0.01420	0.33410	0.0700*
H16	0.41190	0.13500	0.00510	0.0510*
H23A	0.54370	0.39200	-0.87780	0.0990*
H23B	0.61470	0.50890	-0.89700	0.0990*
H23C	0.51190	0.52150	-0.83570	0.0990*
H24A	0.79840	0.53100	-0.68050	0.1440*
H24B	0.78310	0.49180	-0.80660	0.1440*
H24C	0.81180	0.39220	-0.71160	0.1440*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

data reports

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
03	0.0409 (6)	0.0826 (8)	0.0527 (6)	-0.0020 (5)	0.0045 (5)	0.0061 (5)
O4	0.0485 (6)	0.0820 (8)	0.0468 (6)	-0.0035 (5)	0.0107 (5)	0.0075 (5)
05	0.0517 (7)	0.1137 (11)	0.0457 (6)	-0.0125 (7)	-0.0020 (5)	0.0123 (6)
N1	0.0612 (9)	0.0786 (10)	0.0588 (8)	-0.0033 (7)	0.0197 (7)	0.0107 (7)
C1	0.0506 (8)	0.0465 (7)	0.0479 (8)	-0.0007 (6)	0.0133 (6)	-0.0004 (6)
C2	0.0375 (7)	0.0663 (9)	0.0561 (9)	-0.0027 (7)	0.0086 (6)	-0.0024 (7)
C3	0.0411 (7)	0.0617 (9)	0.0462 (8)	0.0008 (7)	0.0030 (6)	-0.0015 (6)
C4	0.0408 (7)	0.0475 (7)	0.0417 (7)	0.0010 (6)	0.0066 (5)	-0.0026 (5)
C5	0.0389 (7)	0.0569 (8)	0.0486 (8)	-0.0012 (6)	0.0049 (6)	0.0015 (6)
C6	0.0459 (8)	0.0570 (8)	0.0444 (7)	0.0005 (6)	0.0025 (6)	0.0032 (6)
C7	0.0421 (7)	0.0507 (8)	0.0459 (7)	-0.0004 (6)	0.0077 (6)	-0.0023 (6)
C8	0.0440 (7)	0.0542 (8)	0.0455 (7)	0.0025 (6)	0.0086 (6)	-0.0004 (6)
C9	0.0428 (7)	0.0461 (7)	0.0437 (7)	0.0006 (6)	0.0067 (6)	-0.0038 (6)
C10	0.0400 (7)	0.0438 (7)	0.0437 (7)	0.0003 (6)	0.0067 (6)	-0.0047 (5)
C11	0.0431 (8)	0.0799 (11)	0.0485 (8)	-0.0087 (7)	0.0106 (6)	0.0042 (7)
C12	0.0395 (8)	0.1049 (14)	0.0553 (9)	-0.0146 (8)	0.0024 (7)	0.0091 (9)
C13	0.0432 (8)	0.0673 (9)	0.0442 (8)	-0.0049 (7)	0.0002 (6)	0.0005 (7)
C14	0.0597 (10)	0.0676 (10)	0.0443 (8)	-0.0061 (8)	0.0045 (7)	0.0022 (7)
C15	0.0439 (7)	0.0445 (7)	0.0430 (7)	-0.0008 (6)	0.0113 (6)	-0.0034 (5)
C16	0.0362 (7)	0.0460 (7)	0.0454 (7)	0.0014 (5)	0.0070 (5)	-0.0046 (6)
C23	0.0866 (13)	0.0609 (10)	0.0524 (9)	0.0040 (9)	0.0192 (9)	0.0070 (7)
C24	0.0721 (14)	0.132 (2)	0.0898 (15)	-0.0227 (13)	0.0314 (12)	0.0242 (14)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

О3—С9	1.235 (2)	C12—C13	1.365 (3)
O4—C14	1.427 (2)	C13—C15	1.377 (2)
O4—C15	1.370 (2)	C15—C16	1.367 (2)
O5—C13	1.364 (2)	C2—H2	0.9300
O5—C14	1.417 (3)	С3—Н3	0.9300
N1—C1	1.364 (2)	C5—H5	0.9300
N1—C23	1.446 (3)	С6—Н6	0.9300
N1—C24	1.433 (3)	C7—H7	0.9300
C1—C2	1.417 (2)	C8—H8	0.9300
C1—C6	1.399 (3)	C11—H11	0.9300
C2—C3	1.370 (2)	C12—H12	0.9300
C3—C4	1.397 (2)	C14—H14A	0.9700
C4—C5	1.398 (2)	C14—H14B	0.9700
C4—C7	1.446 (2)	C16—H16	0.9300
C5—C6	1.373 (2)	C23—H23A	0.9600
C7—C8	1.338 (2)	C23—H23B	0.9600
С8—С9	1.465 (2)	C23—H23C	0.9600
C9—C10	1.491 (2)	C24—H24A	0.9600
C10—C11	1.390 (2)	C24—H24B	0.9600
C10—C16	1.406 (2)	C24—H24C	0.9600

C11—C12	1.398 (3)		
C14—O4—C15	106.17 (12)	С3—С2—Н2	119.00
C13—O5—C14	106.13 (12)	С2—С3—Н3	119.00
C1—N1—C23	121.59 (15)	С4—С3—Н3	119.00
C1—N1—C24	120.68 (16)	C4—C5—H5	119.00
C23—N1—C24	117.63 (16)	С6—С5—Н5	119.00
N1—C1—C2	121.66 (15)	C1—C6—H6	120.00
N1—C1—C6	121.55 (14)	С5—С6—Н6	120.00
C2—C1—C6	116.78 (13)	С4—С7—Н7	116.00
C1—C2—C3	121.45 (14)	С8—С7—Н7	116.00
C2—C3—C4	121.67 (14)	С7—С8—Н8	119.00
C3—C4—C5	116.68 (13)	С9—С8—Н8	119.00
C3—C4—C7	123.62 (13)	C10-C11-H11	119.00
C5—C4—C7	119.66 (13)	C12—C11—H11	119.00
C4—C5—C6	122.45 (14)	C11—C12—H12	121.00
C1—C6—C5	120.96 (14)	C13—C12—H12	121.00
C4—C7—C8	128.14 (15)	O4—C14—H14A	110.00
С7—С8—С9	121.29 (14)	O4—C14—H14B	110.00
O3—C9—C8	121.32 (13)	O5—C14—H14A	110.00
O3—C9—C10	119.46 (13)	O5—C14—H14B	110.00
C8—C9—C10	119.22 (13)	H14A—C14—H14B	108.00
C9—C10—C11	123.09 (13)	C10-C16-H16	121.00
C9—C10—C16	117.30 (13)	C15—C16—H16	121.00
C11—C10—C16	119.61 (13)	N1—C23—H23A	109.00
C10-C11-C12	121.85 (15)	N1—C23—H23B	110.00
C11—C12—C13	117.19 (15)	N1—C23—H23C	109.00
O5—C13—C12	128.23 (15)	H23A—C23—H23B	109.00
O5—C13—C15	110.28 (13)	H23A—C23—H23C	109.00
C12—C13—C15	121.50 (14)	H23B—C23—H23C	109.00
O4—C14—O5	108.10 (12)	N1—C24—H24A	109.00
O4—C15—C13	109.30 (12)	N1—C24—H24B	109.00
O4—C15—C16	128.32 (13)	N1—C24—H24C	109.00
C13—C15—C16	122.38 (13)	H24A—C24—H24B	110.00
C10—C16—C15	117.48 (13)	H24A—C24—H24C	109.00
C1—C2—H2	119.00	H24B—C24—H24C	110.00
C15—O4—C14—O5	1.21 (17)	C4—C5—C6—C1	-0.7 (2)
C14—O4—C15—C13	-0.31 (16)	C4—C7—C8—C9	178.89 (14)
C14—O4—C15—C16	179.25 (14)	C7—C8—C9—O3	2.0 (2)
C14—O5—C13—C12	-178.77 (18)	C7—C8—C9—C10	-177.82 (14)
C14—O5—C13—C15	1.48 (18)	O3—C9—C10—C11	-176.62 (15)
C13—O5—C14—O4	-1.65 (18)	O3—C9—C10—C16	3.7 (2)
C23—N1—C1—C2	177.02 (15)	C8—C9—C10—C11	3.2 (2)
C24—N1—C1—C2	0.8 (3)	C8—C9—C10—C16	-176.56 (13)
C23—N1—C1—C6	-3.3 (2)	C9—C10—C11—C12	-179.77 (16)
C24—N1—C1—C6	-179.52 (19)	C16—C10—C11—C12	-0.1 (3)
N1—C1—C2—C3	179.25 (15)	C9—C10—C16—C15	179.72 (13)

C_{1} C_{1} C_{2} C_{3}	-0.5 (2)	C11 C10 C16 C15	0.0(2)
$C_0 - C_1 - C_2 - C_3$	-0.3(2)	CII-CI0-CI0-CI3	0.0(2)
N1—C1—C6—C5	-178.90 (15)	C10-C11-C12-C13	0.0 (3)
C2-C1-C6-C5	0.8 (2)	C11—C12—C13—O5	-179.69 (17)
C1—C2—C3—C4	-0.1 (3)	C11—C12—C13—C15	0.0 (3)
C2—C3—C4—C5	0.2 (2)	O5—C13—C15—O4	-0.75 (18)
C2—C3—C4—C7	-177.57 (15)	O5—C13—C15—C16	179.66 (14)
C3—C4—C5—C6	0.1 (2)	C12—C13—C15—O4	179.48 (16)
C7—C4—C5—C6	178.02 (14)	C12—C13—C15—C16	-0.1 (2)
C3—C4—C7—C8	-1.3 (2)	O4—C15—C16—C10	-179.42 (14)
C5—C4—C7—C8	-179.10 (15)	C13—C15—C16—C10	0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
С7—Н7…О3	0.93	2.46	2.804 (3)	102