

Received 8 February 2017 Accepted 10 February 2017

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; chlorinated hydrocarbon; disorder.

CCDC reference: 1532083

Structural data: full structural data are available from iucrdata.iucr.org

1,3,5-Trichloro-2,4,6-tris(dichloromethyl)benzene

Natalie Tober, Dieter Schollmeyer and Heiner Detert*

University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany. *Correspondence e-mail: detert@uni-mainz.de

The asymmetric unit of the title compound, $C_9H_3Cl_9$, contains one molecule. Two slightly different conformations with nearly C_{3h} symmetry are mutually disordered in a 1:1 ratio. This disorder enhances the overall structural symmetry to D_{3h} .

Structure description

The title compound (Fig. 1) is a central intermediate for star-shaped conjugated oligomers (Demenev *et al.*, 2010; Detert *et al.*, 2010). A bromo derivative has been reported by Holst *et al.* (2011). This compound combines our interest in perchloro hydrocarbons (Detert *et al.*, 2009; Schollmeyer & Detert, 2017) and star-shaped discotic liquid crystals (Rieth *et al.*, 2014; Glang *et al.*, 2014).

The asymmetric unit contains one molecule of the title compound and two very similar conformations with nearly C_{3h} symmetry occur in a 1:1 ratio (Fig. 2). This disorder enhances the symmetry of the overall structure to D_{3h} . Assuming the D_{3h} symmetry for one nondisordered molecule, the space group will rise from $P4_3$ to $P4_32_12$. However, then the refinement is not stable and the molecular symmetry is in contradiction to the chemistry. Distances between H atoms and ring-bound Cl atoms are 2.262 Å for H7…Cl3 and also for H8…Cl6, but the spacing between H9 and Cl9 is 2.43 Å. Similarly, two C–H bonds are nearly coplanar with the ring (H8–C8–C3–C4 = -3° and H9–C9–C5–C6 = 3°), whereas H7–C7–C1–C2 is twisted by -9° .

Synthesis and crystallization

The title compound was prepared according to Veciana *et al.* (1993) and Taerum *et al.* (2009) with the modification that a steel bomb (2.2×25 cm) was used as reaction vessel. This allows scale-up to 3.0 g (16.5 mmol, 1.0 equivalent) 1,3,5-trichlorbenzene in 30 ml absolute chloroform with 2.7 g (19.8 mmol, 1.2 equivalents) AlCl₃, and frequent pressure reduction was not necessary. The temperature was regulated with ISOHEAT

Figure 1

The crystal structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

(typ: MIL-HT-H, P = 175 W) by a heat panel (JUMBO iTRON 16). The reaction mixture was heated slowly (over 3 h) to 383 K and held at 383 K for 67 h with magnetic stirring. After cooling to room temperature, the pressure was reduced through a swagelok valve (SS-41GS2). Purification was carried out according to Taerum *et al.* (2009). The title compound was obtained after column chromatography (SiO₂, petroleum ether) in 31.6% yield (2.2 g, 5.2 mmol) as colourless crystals (m.p. 453–457 K). Crystallization from acetonitrile and chloroform resulted in single crystals.

Figure 2

Perspective view of the two superposed orientations of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Table	1	
Experi	mental	details.

C ₉ H ₃ Cl ₉ 430.16 Tetragonal, <i>P</i> 4 ₃ 120 9.5435 (2), 15.9424 (4) 1452.01 (7) 4
C ₉ H ₃ Cl ₉ 430.16 Tetragonal, <i>P</i> 4 ₃ 120 9.5435 (2), 15.9424 (4) 1452.01 (7) 4
430.16 Tetragonal, <i>P</i> 4 ₃ 120 9.5435 (2), 15.9424 (4) 1452.01 (7) 4
Tetragonal, <i>P</i> 4 ₃ 120 9.5435 (2), 15.9424 (4) 1452.01 (7) 4
120 9.5435 (2), 15.9424 (4) 1452.01 (7) 4
9.5435 (2), 15.9424 (4) 1452.01 (7) 4
1452.01 (7) 4
4
Μο Κα
1.71
$0.43 \times 0.33 \times 0.13$
Stoe IPDS 2T
Integration (X-RED; Stoe & Cie, 1999)
0.496, 0.813
34268, 3561, 3429
0.018
0.667
0.055, 0.135, 1.11
3561
248
73
H-atom parameters constrained
1.11, -0.67
Flack x determined using 1575 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
-0.04 (3)

Computer programs: X-AREA (Stoe & Cie, 1999), X-RED (Stoe & Cie, 1999), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The site-occupancy factors [0.501 (6)/0.499 (6)] for the disordered atoms were refined using one common parameter. Disordered phenyl rings were refined assuming a regular six-membered ring with C–C = 1.39 Å. Their displacement parameters were refined using a RIGU restraint.

References

Demenev, A., Eichhorn, S. H., Taerum, T., Perepichka, D. F., Patwardhan, S., Grozema, F. C., Siebbeles, L. D. A. & Klenkler, R. (2010). *Chem. Mater.* **22**, 1420–1428.

Detert, H., Lehmann, M. & Meier, H. (2010). Materials, 3, 3218-3330.

- Detert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. pp. 1181-1190.
- Glang, S., Rieth, T., Borchmann, D., Fortunati, I., Signorini, R. & Detert, H. (2014). Eur. J. Org. Chem. pp. 3116–3126.
- Holst, C., Schollmeyer, D. & Meier, H. (2011). Z. Naturforsch. Teil B, 66, 935–938.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Rieth, T., Marszalek, T., Pisula, W. & Detert, H. (2014). *Chemistry*, **20**, 5000–5006.

Schollmeyer, D. & Detert, H. (2017). *Tetrahedron Lett.* **58**, 843–846. Sheldrick, G. M. (2015*a*). *Acta Cryst.* **A71**, 3–8.

CL4

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

- Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155. Stoe & Cie (1999). *X-AREA* and *X-RED*. Stoe & Cie, Darmstadt, Germany.
- Taerum, T., Lukoyanova, O., Wylie, R. G. & Perepichka, D. F. (2009). Org. Lett. 11, 3230–3233.
 Veciana, J., Rovira, C., Ventosa, N., Crespo, M. I. & Palacio, F. (1993). J. Am. Chem. Soc. 115, 57–64.

full crystallographic data

IUCrData (2017). 2, x170227 [https://doi.org/10.1107/S2414314617002279]

1,3,5-Trichloro-2,4,6-tris(dichloromethyl)benzene

Natalie Tober, Dieter Schollmeyer and Heiner Detert

1,3,5-Trichloro-2,4,6-tris(dichloromethyl)benzene

Crystal data	
C ₉ H ₃ Cl ₉ $M_r = 430.16$ Tetragonal, P4 ₃ a = 9.5435 (2) Å c = 15.9424 (4) Å V = 1452.01 (7) Å ³ Z = 4 F(000) = 840	$D_x = 1.968 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 56414 reflections $\theta = 2.5-28.2^{\circ}$ $\mu = 1.71 \text{ mm}^{-1}$ T = 120 K Block, colourless $0.43 \times 0.33 \times 0.13 \text{ mm}$
Data collection	
Stoe IPDS 2T diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Detector resolution: 6.67 pixels mm ⁻¹ rotation method scans Absorption correction: integration (X-RED; Stoe & Cie, 1999) $T_{min} = 0.496, T_{max} = 0.813$	34268 measured reflections 3561 independent reflections 3429 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -21 \rightarrow 21$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.135$ S = 1.11 3561 reflections 248 parameters 73 restraints Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0519P)^2 + 3.8476P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.11 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.67 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack <i>x</i> determined using 1575 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons <i>et</i> <i>al.</i> , 2013) Absolute structure parameter: -0.04 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.5937 (17)	0.1944 (16)	-0.0704 (8)	0.034 (4)	0.501 (6)
C2	0.5029 (16)	0.0821 (18)	-0.0594 (9)	0.027 (3)	0.501 (6)
C3	0.5150 (15)	-0.0029 (15)	0.0110 (10)	0.024 (3)	0.501 (6)
C4	0.6180 (16)	0.0245 (14)	0.0704 (8)	0.018 (3)	0.501 (6)
C5	0.7089 (14)	0.1368 (15)	0.0594 (8)	0.026 (3)	0.501 (6)
C6	0.6967 (15)	0.2218 (13)	-0.0110 (9)	0.030 (4)	0.501 (6)
C1A	0.6360 (16)	0.2079 (15)	-0.0608 (9)	0.030 (3)	0.499 (6)
C2A	0.5235 (16)	0.1174 (18)	-0.0722 (9)	0.023 (3)	0.499 (6)
C3A	0.4956 (15)	0.0141 (15)	-0.0130 (10)	0.024 (3)	0.499 (6)
C4A	0.5803 (17)	0.0014 (14)	0.0576 (9)	0.026 (3)	0.499 (6)
C5A	0.6928 (15)	0.0919 (17)	0.0689 (8)	0.031 (4)	0.499 (6)
C6A	0.7206 (13)	0.1952 (15)	0.0097 (10)	0.029 (3)	0.499 (6)
C7	0.5684 (19)	0.2814 (16)	-0.1497 (10)	0.042 (4)	0.501 (6)
H7	0.4779	0.2467	-0.1736	0.050*	0.501 (6)
C7A	0.6720 (15)	0.3144 (14)	-0.1321 (9)	0.033 (3)	0.499 (6)
H7A	0.7628	0.3585	-0.1153	0.040*	0.499 (6)
Cl1	0.7014 (2)	0.2405 (2)	-0.22796 (11)	0.0453 (4)	
Cl2	0.5463 (3)	0.4547 (2)	-0.13480 (17)	0.0650 (7)	
C13	0.3692 (5)	0.0489 (5)	-0.1302 (3)	0.0491 (13)	0.501 (6)
Cl3A	0.4128 (3)	0.1317 (4)	-0.15464 (19)	0.0310 (9)	0.499 (6)
C8	0.4159 (15)	-0.1286 (16)	0.0251 (12)	0.042 (4)	0.501 (6)
H8	0.4500	-0.1737	0.0779	0.050*	0.501 (6)
C8A	0.3712 (15)	-0.0836 (15)	-0.0272 (12)	0.041 (4)	0.499 (6)
H8A	0.3261	-0.0495	-0.0800	0.049*	0.499 (6)
Cl4	0.2420 (2)	-0.0756 (2)	0.0476 (2)	0.0665 (8)	
C15	0.4243 (2)	-0.2580 (2)	-0.0493 (2)	0.0662 (8)	
Cl6	0.6317 (4)	-0.0872 (3)	0.15285 (19)	0.0312 (9)	0.501 (6)
Cl6A	0.5491 (5)	-0.1308 (5)	0.1285 (3)	0.0486 (13)	0.499 (6)
C9A	0.8142 (14)	0.1718 (15)	0.1307 (9)	0.034 (3)	0.501 (6)
H9A	0.8586	0.2626	0.1141	0.041*	0.501 (6)
C9	0.7810 (16)	0.0677 (19)	0.1479 (10)	0.041 (3)	0.499 (6)
H9	0.7469	-0.0227	0.1722	0.050*	0.499 (6)
Cl7	0.7406 (2)	0.2015 (2)	0.22621 (11)	0.0454 (4)	
C18	0.9548 (2)	0.0463 (3)	0.13319 (16)	0.0649 (7)	
C19	0.8193 (6)	0.3484 (5)	-0.0272 (4)	0.0571 (14)	0.501 (6)
Cl9A	0.8484 (5)	0.3195 (6)	0.0255 (4)	0.0561 (14)	0.499 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic	displ	acement	parame	ters	(A^2)

U^{23}
) -0.006 (5)
) 0.000 (5)
) 0.000 (5)
0.001 (4)
0.001 (5)
5 5

C6	0.043 (8)	0.026 (6)	0.020 (7)	0.004 (6)	0.003 (5)	0.006 (5)
C1A	0.036 (8)	0.030 (6)	0.024 (7)	-0.009 (5)	-0.002 (5)	-0.002 (5)
C2A	0.028 (6)	0.018 (7)	0.023 (6)	0.002 (5)	0.000 (5)	-0.003 (4)
C3A	0.019 (5)	0.030 (7)	0.023 (8)	0.000 (5)	-0.003 (5)	-0.004 (5)
C4A	0.024 (8)	0.032 (7)	0.022 (7)	0.008 (5)	-0.002 (5)	0.002 (6)
C5A	0.029 (7)	0.047 (10)	0.017 (6)	0.001 (6)	0.005 (5)	0.004 (6)
C6A	0.028 (6)	0.037 (8)	0.022 (7)	0.002 (6)	-0.002 (5)	0.000 (5)
C7	0.059 (10)	0.035 (7)	0.030 (7)	0.012 (7)	0.007 (6)	-0.001 (5)
C7A	0.037 (7)	0.032 (6)	0.031 (7)	-0.022 (5)	0.007 (5)	0.001 (5)
Cl1	0.0480 (10)	0.0552 (11)	0.0328 (9)	-0.0015 (8)	0.0136 (8)	0.0089 (7)
Cl2	0.103 (2)	0.0362 (10)	0.0560 (14)	0.0163 (10)	0.0161 (13)	0.0138 (9)
C13	0.045 (2)	0.064 (3)	0.038 (2)	0.002 (2)	-0.0137 (17)	-0.0075 (19)
Cl3A	0.0238 (14)	0.0446 (19)	0.0247 (14)	-0.0102 (13)	-0.0052 (11)	-0.0027 (13)
C8	0.032 (7)	0.032 (7)	0.062 (11)	-0.002 (5)	-0.018 (7)	-0.014 (7)
C8A	0.029 (6)	0.031 (7)	0.062 (11)	-0.003 (5)	0.012 (7)	0.020 (7)
Cl4	0.0398 (10)	0.0459 (11)	0.114 (2)	-0.0037 (8)	0.0262 (12)	0.0030 (12)
C15	0.0459 (11)	0.0401 (10)	0.113 (2)	-0.0039 (8)	-0.0033 (12)	-0.0263 (12)
Cl6	0.045 (2)	0.0239 (14)	0.0249 (14)	-0.0102 (13)	0.0030 (13)	0.0046 (11)
Cl6A	0.064 (3)	0.045 (2)	0.037 (2)	0.002 (2)	0.0071 (19)	0.0139 (17)
C9A	0.033 (6)	0.039 (7)	0.030 (7)	-0.022 (5)	-0.001 (5)	-0.007 (5)
C9	0.036 (7)	0.057 (10)	0.031 (7)	0.008 (7)	0.004 (6)	-0.007 (6)
Cl7	0.0553 (11)	0.0479 (10)	0.0328 (9)	-0.0013 (8)	-0.0093 (7)	-0.0136 (8)
C18	0.0360 (10)	0.102 (2)	0.0565 (14)	0.0165 (10)	-0.0139 (9)	-0.0162 (13)
C19	0.072 (3)	0.047 (2)	0.051 (3)	-0.022 (2)	0.020 (3)	0.0154 (19)
Cl9A	0.047 (2)	0.071 (3)	0.051 (3)	-0.021 (2)	-0.0149 (19)	-0.020 (3)

Geometric parameters (Å, °)

C1—C2	1.3900	C5A—C6A	1.3900
C1—C6	1.3900	C5A—C9	1.532 (19)
C1—C7	1.531 (18)	C6A—Cl9A	1.719 (9)
C2—C3	1.3900	C7—C12	1.684 (15)
C2—Cl3	1.732 (9)	C7—C11	1.822 (16)
C3—C4	1.3900	С7—Н7	1.0000
C3—C8	1.544 (17)	C7A—Cl1	1.706 (14)
C4—C5	1.3900	C7A—Cl2	1.799 (16)
C4—Cl6	1.697 (9)	C7A—H7A	1.0000
С5—С6	1.3900	C8—C15	1.714 (16)
С5—С9А	1.553 (16)	C8—C14	1.772 (15)
C6—C19	1.701 (10)	C8—H8	1.0000
C1A—C2A	1.3900	C8A—Cl4	1.718 (15)
C1A—C6A	1.3900	C8A—C15	1.775 (15)
C1A—C7A	1.563 (16)	C8A—H8A	1.0000
C2A—C3A	1.3900	C9A—Cl7	1.701 (14)
C2A—Cl3A	1.692 (9)	C9A—C18	1.799 (16)
C3A—C4A	1.3900	С9А—Н9А	1.0000
C3A—C8A	1.527 (17)	C9—C18	1.688 (15)
C4A—C5A	1.3900	C9—C17	1.827 (16)

data reports

C4A—Cl6A	1.720 (9)	С9—Н9	1.0000
C2C1C6	120.0	C1—C7—Cl2	115.8 (12)
C2—C1—C7	115.1 (12)	C1—C7—C11	109.8 (11)
C6—C1—C7	124.9 (12)	Cl2—C7—Cl1	113.2 (10)
C3—C2—C1	120.0	C1—C7—H7	105.7
C3—C2—Cl3	118.7 (9)	Cl2—C7—H7	105.7
C1—C2—Cl3	121.2 (9)	Cl1—C7—H7	105.7
C2—C3—C4	120.0	C1A—C7A—C11	114.8 (10)
C2-C3-C8	121.3 (11)	C1A - C7A - C12	110.8 (11)
C4-C3-C8	1187(11)	C11 - C7A - C12	113 3 (8)
$C_{5}-C_{4}-C_{3}$	120.0	C1A - C7A - H7A	105 7
C_{5} C_{4} C_{16}	122.3 (8)	C11 - C7A - H7A	105.7
$C_3 - C_4 - C_{16}$	122.3(0) 117.7(8)	C12 - C7A - H7A	105.7
C6-C5-C4	120.0	$C_3 = C_8 = C_{15}$	105.7 115.5(13)
C6-C5-C9A	120.0	C_{3} C_{8} C_{14}	113.3(13) 112.4(11)
$C_0 = C_2 = C_3 A$	121.3(10) 118.5(10)	$C_{3} - C_{8} - C_{14}$	112.4(11) 112.9(7)
$C_{4} = C_{3} = C_{3} A$	120.0	C_{13} C_{2} C_{2} C_{2} C_{14}	112.9 (7)
$C_{5} = C_{6} = C_{10}$	120.0	$C_3 = C_0 = H_0$	104.9
C_{3}	118.7 (9)		104.9
C1 - C6 - C19	121.1 (9)	C14 - C8 - H8	104.9
$C_2A - C_1A - C_0A$	120.0	C3A = C8A = C14	115.3 (13)
C2A—CIA—C/A	118.6 (10)	C3A - C8A - C15	112.3 (11)
C6A—C1A—C/A	121.1 (10)	Cl4—C8A—Cl5	112.6 (7)
C3A—C2A—C1A	120.0	СЗА—С8А—Н8А	105.1
C3A—C2A—Cl3A	117.7 (8)	Cl4—C8A—H8A	105.1
C1A—C2A—Cl3A	122.2 (8)	Cl5—C8A—H8A	105.1
C4A—C3A—C2A	120.0	C5—C9A—C17	115.0 (10)
C4A—C3A—C8A	121.3 (11)	C5—C9A—C18	110.9 (10)
C2A—C3A—C8A	118.7 (11)	Cl7—C9A—Cl8	113.5 (8)
C3A—C4A—C5A	120.0	С5—С9А—Н9А	105.5
C3A—C4A—Cl6A	119.7 (9)	С17—С9А—Н9А	105.5
C5A—C4A—Cl6A	120.3 (9)	C18—C9A—H9A	105.5
C6A—C5A—C4A	120.0	C5A—C9—C18	116.3 (11)
C6A—C5A—C9	124.0 (12)	C5A—C9—C17	109.9 (11)
C4A—C5A—C9	116.0 (12)	C18—C9—C17	112.8 (9)
C5A—C6A—C1A	120.0	С5А—С9—Н9	105.6
C5A—C6A—Cl9A	121.7 (9)	С18—С9—Н9	105.6
C1A—C6A—Cl9A	118.0 (9)	С17—С9—Н9	105.6
C6-C1-C2-C3	0.0	C3A—C4A—C5A—C6A	0.0
C7—C1—C2—C3	-179.1 (14)	Cl6A—C4A—C5A—C6A	177.6 (12)
C6-C1-C2-Cl3	177.6 (14)	C3A—C4A—C5A—C9	-179.1 (14)
C7—C1—C2—Cl3	-1.6 (12)	Cl6A—C4A—C5A—C9	-1.5 (12)
C1—C2—C3—C4	0.0	C4A—C5A—C6A—C1A	0.0
Cl3—C2—C3—C4	-177.6 (13)	C9—C5A—C6A—C1A	179.0 (15)
C1—C2—C3—C8	-179.9 (15)	C4A—C5A—C6A—Cl9A	174.0 (12)
Cl3—C2—C3—C8	2.5 (13)	C9—C5A—C6A—Cl9A	-7.0 (14)
C2—C3—C4—C5	0.0	C2A—C1A—C6A—C5A	0.0

C8—C3—C4—C5	179.9 (15)	C7A—C1A—C6A—C5A	-174.7 (15)
C2—C3—C4—Cl6	-177.5 (12)	C2A—C1A—C6A—C19A	-174.2 (11)
C8—C3—C4—Cl6	2.4 (13)	C7A—C1A—C6A—C19A	11.0 (14)
C3—C4—C5—C6	0.0	C2-C1-C7-Cl2	125.8 (11)
Cl6—C4—C5—C6	177.4 (12)	C6—C1—C7—Cl2	-53.3 (18)
C3—C4—C5—C9A	174.9 (14)	C2-C1-C7-Cl1	-104.4 (11)
Cl6—C4—C5—C9A	-7.8 (13)	C6-C1-C7-Cl1	76.5 (14)
C4—C5—C6—C1	0.0	C2A—C1A—C7A—C11	-55.8 (14)
C9A—C5—C6—C1	-174.7 (14)	C6A—C1A—C7A—C11	119.0 (11)
C4—C5—C6—Cl9	-174.2 (11)	C2A—C1A—C7A—Cl2	74.1 (12)
C9A—C5—C6—C19	11.1 (13)	C6A—C1A—C7A—Cl2	-111.2 (11)
C2-C1-C6-C5	0.0	C2—C3—C8—C15	62.3 (14)
C7—C1—C6—C5	179.0 (15)	C4—C3—C8—Cl5	-117.6 (12)
C2—C1—C6—Cl9	174.0 (12)	C2-C3-C8-Cl4	-69.3 (15)
C7—C1—C6—Cl9	-6.9 (15)	C4—C3—C8—Cl4	110.8 (11)
C6A—C1A—C2A—C3A	0.0	C4A—C3A—C8A—Cl4	62.0 (15)
C7A—C1A—C2A—C3A	174.8 (15)	C2A—C3A—C8A—C14	-117.9 (11)
C6A—C1A—C2A—Cl3A	177.5 (14)	C4A—C3A—C8A—C15	-68.9 (15)
C7A—C1A—C2A—Cl3A	-7.7 (13)	C2A—C3A—C8A—C15	111.2 (11)
C1A—C2A—C3A—C4A	0.0	C6—C5—C9A—Cl7	118.7 (10)
Cl3A—C2A—C3A—C4A	-177.6 (13)	C4—C5—C9A—Cl7	-56.1 (14)
C1A—C2A—C3A—C8A	179.9 (15)	C6—C5—C9A—Cl8	-110.8 (10)
Cl3A—C2A—C3A—C8A	2.3 (13)	C4—C5—C9A—Cl8	74.4 (11)
C2A—C3A—C4A—C5A	0.0	C6A—C5A—C9—C18	-53.2 (17)
C8A—C3A—C4A—C5A	-179.9 (15)	C4A—C5A—C9—C18	125.8 (11)
C2A—C3A—C4A—Cl6A	-177.6 (12)	C6A—C5A—C9—Cl7	76.5 (13)
C8A—C3A—C4A—Cl6A	2.5 (14)	C4A—C5A—C9—Cl7	-104.5 (11)