

ISSN 2414-3146

Received 1 February 2017 Accepted 14 February 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; zwitterion; azo dyes; hydrogen bonding; $\pi - \pi$ stacking.

CCDC reference: 1532675

Structural data: full structural data are available from iucrdata.iucr.org

(*E*)-1-[2-(3,4-Dimethylphenyl)diazen-2-ium-1-yl]naphthalen-2-olate

Souheyla Chetioui,^a* Mehdi Boutebdja,^a Mhamed Boudraa,^a Rachid Touzani^{b,c} and Hocine Merazig^a

^aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université des Frères Mentouri Constantine, Constantine 25000, Algeria, ^bLaboratoire de Chimie Appliquée et Environnement, LCAE-URAC18, COSTE, Faculté des Sciences, Université Mohamed Premier, BP524, 60000, Oujda, Morocco, and ^cFaculté Pluridisciplinaire Nador BP 300, Selouane, 62702, Nador, Morocco. *Correspondence e-mail: souheilachetioui@yahoo.fr

The title zwitterion, $C_{18}H_{16}N_2O$, features an intramolecular $N-H\cdots O$ hydrogen bond. The dimethylbenzene ring is rotationally disordered about the N-C bond over two adjacent orientations in a 0.75:0.25 ratio. The dihedral angle between the major orientation of the benzene ring and the naphthalene ring system is 6.06 (2)°. In the crystal, aromatic π - π stacking occurs [shortest centroid-centroid distance = 3.574 (3) Å] and C-H···O interactions are also observed.

Structure description

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Navarro & Sanz (1999); Tao *et al.* (1999).

The title azo dye adopts the zwitterionic form in the crystal (Fig. 1), with proton transfer from the phenol group to the azo group, which allows for the formation of an intramolecular N-H···O hydrogen bond (Table 1). The dimethyl benzene ring is disordered by ~180° rotation about the N2–C11 bond over two adjacent orientations in a 0.75:0.25 ratio. The dihedral angle between the major orientation of the benzene ring and the naphthalene ring system is 6.06 (2)°.

In the crystal, molecules are linked by aromatic π - π stacking between the benzene rings and the naphthalene ring systems of adjacent molecules, the centroid-centroid distances of 3.574 (3) and 3.5754 (12) Å, respectively, between the C5–C10 and C11*B*–C16*B*(*x*, *y* – 1, *z*) rings and between the C5–C10 and C11*A*–C16*A*(*x*, *y* – 1, *z*) rings. C–

Figure 1

The molecular structure of the title compound, with 50% probability displacement ellipsoids.

H-O hydrogen bonds are also observed, forming chains running parallel to the *a*-axis direction (Table 1, Fig. 2).

Synthesis and crystallization

The title compound was synthesized according to a literature method (Wang *et al.*, 2003), *viz.* the diazotization of 3,4-dimethylaniline followed by a coupling reaction with 2-naphthol. Red prisms were obtained by slow evaporation of an acetone solution at room temperature (yield 88%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 2

The crystal packing of the title compound, viewed along the b-axis direction.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2\cdots O1$	0.86	1.82	2.5347 (15)	140
$C12A - H12A \cdots O1$	0.93	2.54	3.325 (2)	143

Symmetry code: (i) -x + 1, -y + 1, -z.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{18}H_{16}N_2O$
M _r	276.33
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	173
a, b, c (Å)	11.6326 (5), 6.1866 (2), 20.1712 (8)
β (°)	98.023 (2)
$V(Å^3)$	1437.44 (10)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.08
Crystal size (mm)	$0.15\times0.08\times0.08$
Data collection	
Diffractometer	Bruker APEXII CCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	13963, 3654, 2479
R _{int}	0.027
$(\sin^{\text{max}}\theta/\lambda)_{\text{max}}$ (Å ⁻¹)	0.672
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.121, 1.04
No. of reflections	3654
No. of parameters	254
No. of restraints	7
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.25, -0.23

Computer programs: APEX2 and SAINT (Bruker, 2006), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008).

Funding information

Funding for this research was provided by: Ministère de l'Enseignement Supérieur et de la Recherche Scientifique; Direction Générale de la Recherche Scientifique et du Développement Technologique; University of Constantine.

References

- Bruker (2006). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Navarro, A. & Sanz, F. (1999). Dyes Pigments, 40, 131-139.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tao, J., Mao, G. & Daehne, L. (1999). J. Am. Chem. Soc. 121, 3475– 3485.
- Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigments, 57, 77–86.

full crystallographic data

IUCrData (2017). **2**, x170259 [https://doi.org/10.1107/S2414314617002590]

(E)-1-[2-(3,4-Dimethylphenyl)diazen-2-ium-1-yl]naphthalen-2-olate

Souheyla Chetioui, Mehdi Boutebdja, Mhamed Boudraa, Rachid Touzani and Hocine Merazig

F(000) = 584

 $\theta = 2.5 - 28.1^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

T = 173 K

Prism. red

 $R_{\rm int} = 0.027$

 $h = -15 \rightarrow 15$ $k = -8 \rightarrow 8$ $l = -27 \rightarrow 27$

 $D_{\rm x} = 1.277 {\rm Mg m^{-3}}$

 $0.15\times0.08\times0.08~mm$

 $\theta_{\rm max} = 28.5^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$

2479 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3155 reflections

(E)-1-[2-(3,4-Dimethylphenyl)diazen-2-ium-1-yl]naphthalen-2-olate

Crystal data

C₁₈H₁₆N₂O $M_r = 276.33$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.6326 (5) Å b = 6.1866 (2) Å c = 20.1712 (8) Å $\beta = 98.023$ (2)° V = 1437.44 (10) Å³ Z = 4

Data collection

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.044$ Hydrogen site location: inferred from $wR(F^2) = 0.121$ neighbouring sites S = 1.04H-atom parameters constrained 3654 reflections $w = 1/[\sigma^2(F_o^2) + (0.0491P)^2 + 0.2765P]$ 254 parameters where $P = (F_0^2 + 2F_c^2)/3$ 7 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ 0 constraints $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.53655 (9)	0.28137 (15)	0.04401 (5)	0.0423 (3)	
N1	0.71280 (9)	0.43066 (15)	0.14740 (5)	0.0306 (3)	
N2	0.69480 (9)	0.54119 (16)	0.09243 (6)	0.0330 (3)	
C1	0.75035 (12)	0.2025 (2)	0.26821 (7)	0.0410 (5)	
C2	0.77274 (15)	0.0808 (3)	0.32550 (8)	0.0542 (6)	
C3	0.71594 (15)	-0.1166 (3)	0.33086 (8)	0.0572 (6)	
C4	0.63748 (13)	-0.1890 (2)	0.27889 (8)	0.0450 (5)	
C5	0.61249 (11)	-0.0680(2)	0.21974 (7)	0.0331 (4)	
C6	0.53071 (11)	-0.1422 (2)	0.16480 (7)	0.0353 (4)	
C7	0.50626 (11)	-0.0288(2)	0.10759 (7)	0.0347 (4)	
C8	0.56216 (11)	0.17470 (19)	0.09888 (6)	0.0306 (4)	
C9	0.64717 (10)	0.25164 (18)	0.15195 (6)	0.0271 (3)	
C10	0.67092 (10)	0.13066 (19)	0.21396 (6)	0.0300 (4)	
C11A	0.75837 (19)	0.7234 (4)	0.08101 (11)	0.0240 (6)	0.750
C12A	0.73667 (19)	0.8278 (4)	0.01928 (10)	0.0317 (6)	0.750
C13A	0.7995 (2)	1.0103 (3)	0.00825 (12)	0.0358 (6)	0.750
C14A	0.8830 (2)	1.0934 (3)	0.05681 (16)	0.0308 (7)	0.750
C15A	0.9037 (2)	0.9908 (4)	0.11911 (16)	0.0308 (7)	0.750
C16A	0.8410 (3)	0.8045 (6)	0.13063 (13)	0.0296 (8)	0.750
C17A	0.94946 (19)	1.2939 (3)	0.04259 (12)	0.0460 (7)	0.750
C18A	0.98974 (19)	1.0814 (3)	0.17419 (11)	0.0488 (7)	0.750
C17B	0.9986 (5)	1.2864 (9)	0.0922 (4)	0.0434 (19)	0.250
C11B	0.7842 (8)	0.7320 (16)	0.1026 (4)	0.0278 (12)	0.250
C12B	0.8620 (9)	0.7828 (16)	0.1558 (4)	0.029 (2)	0.250
C13B	0.9316 (6)	0.9638 (11)	0.1505 (4)	0.0309 (19)	0.250
C14B	0.9186 (6)	1.0878 (11)	0.0925 (4)	0.0277 (19)	0.250
C15B	0.8400 (7)	1.0352 (11)	0.0381 (4)	0.0278 (12)	0.250
C16B	0.7699 (5)	0.8488 (11)	0.0447 (3)	0.0278 (12)	0.250
C18B	0.8259 (5)	1.1641 (8)	-0.0252 (3)	0.0397 (17)	0.250
H1	0.78830	0.33380	0.26540	0.0490*	
H16A	0.85510	0.73500	0.17190	0.0360*	0.750
H17A	0.94450	1.39880	0.07720	0.0690*	0.750
H17B	0.91670	1.35310	0.00010	0.0690*	0.750
H17C	1.02930	1.25720	0.04140	0.0690*	0.750
H18A	0.96720	1.22560	0.18440	0.0730*	0.750
H18B	1.06530	1.08450	0.16020	0.0730*	0.750
H18C	0.99190	0.99230	0.21330	0.0730*	0.750
H2	0.64080	0.49950	0.06150	0.0400*	
H2A	0.82600	0.12990	0.36100	0.0650*	
H3	0.73160	-0.19840	0.36980	0.0690*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H4	0.60010	-0.32030	0.28270	0.0540*		
H6	0.49320	-0.27330	0.16880	0.0420*		
H7	0.45240	-0.08290	0.07320	0.0420*		
H12A	0.68040	0.77500	-0.01410	0.0380*	0.750	
H13A	0.78520	1.07920	-0.03310	0.0430*	0.750	
H12B	0.86920	0.70040	0.19470	0.0340*	0.250	
H13B	0.98730	1.00200	0.18630	0.0370*	0.250	
H16B	0.71430	0.80710	0.00940	0.0330*	0.250	
H17D	0.95230	1.41420	0.08330	0.0650*	0.250	
H17E	1.04770	1.26890	0.05800	0.0650*	0.250	
H17F	1.04580	1.29960	0.13500	0.0650*	0.250	
H18D	0.79660	1.30500	-0.01680	0.0600*	0.250	
H18E	0.77250	1.09190	-0.05850	0.0600*	0.250	
H18F	0.89980	1.17800	-0.04090	0.0600*	0.250	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0527 (6)	0.0378 (5)	0.0358 (5)	-0.0014 (5)	0.0037 (4)	0.0018 (4)
N1	0.0310 (6)	0.0229 (5)	0.0405 (6)	0.0030 (4)	0.0137 (5)	0.0008 (4)
N2	0.0350 (6)	0.0236 (5)	0.0429 (6)	0.0000 (4)	0.0146 (5)	0.0035 (5)
C1	0.0379 (8)	0.0428 (8)	0.0426 (8)	-0.0006 (6)	0.0067 (6)	0.0035 (6)
C2	0.0505 (10)	0.0671 (11)	0.0436 (9)	0.0047 (8)	0.0014 (7)	0.0092 (8)
C3	0.0562 (10)	0.0673 (11)	0.0509 (9)	0.0157 (9)	0.0169 (8)	0.0304 (8)
C4	0.0427 (8)	0.0402 (8)	0.0569 (9)	0.0067 (7)	0.0239 (7)	0.0183 (7)
C5	0.0315 (7)	0.0277 (6)	0.0442 (7)	0.0046 (5)	0.0197 (6)	0.0058 (6)
C6	0.0343 (7)	0.0210 (6)	0.0554 (9)	-0.0021 (5)	0.0233 (6)	-0.0022 (6)
C7	0.0338 (7)	0.0283 (6)	0.0438 (7)	-0.0032 (5)	0.0121 (6)	-0.0086 (6)
C8	0.0338 (7)	0.0256 (6)	0.0347 (7)	0.0023 (5)	0.0132 (5)	-0.0022 (5)
С9	0.0282 (6)	0.0207 (6)	0.0346 (6)	0.0012 (5)	0.0124 (5)	-0.0003 (5)
C10	0.0287 (6)	0.0268 (6)	0.0368 (7)	0.0044 (5)	0.0132 (5)	0.0029 (5)
C11A	0.0219 (11)	0.0186 (8)	0.0329 (13)	0.0009 (8)	0.0090 (8)	0.0007 (10)
C12A	0.0317 (11)	0.0314 (9)	0.0328 (11)	0.0002 (8)	0.0078 (8)	0.0052 (9)
C13A	0.0395 (12)	0.0331 (10)	0.0369 (11)	0.0019 (9)	0.0127 (9)	0.0109 (9)
C14A	0.0312 (13)	0.0248 (11)	0.0390 (14)	0.0043 (9)	0.0146 (10)	0.0043 (11)
C15A	0.0263 (12)	0.0271 (12)	0.0398 (14)	0.0049 (9)	0.0070 (11)	-0.0004 (12)
C16A	0.0292 (16)	0.0276 (11)	0.0326 (15)	0.0044 (10)	0.0065 (13)	0.0048 (13)
C17A	0.0479 (12)	0.0290 (9)	0.0653 (14)	-0.0034 (9)	0.0227 (11)	0.0082 (10)
C18A	0.0447 (12)	0.0417 (11)	0.0579 (13)	-0.0088 (10)	-0.0004 (10)	0.0026 (10)
C17B	0.038 (3)	0.026 (3)	0.067 (4)	-0.010 (2)	0.010 (3)	0.001 (3)
C11B	0.024 (2)	0.030(2)	0.028 (2)	0.0008 (17)	-0.0014 (16)	-0.0009 (19)
C12B	0.023 (4)	0.023 (3)	0.039 (5)	-0.004 (3)	0.001 (4)	0.000 (4)
C13B	0.018 (3)	0.034 (3)	0.039 (4)	-0.002 (3)	-0.002 (3)	-0.005 (3)
C14B	0.032 (3)	0.022 (3)	0.032 (4)	0.002 (2)	0.015 (3)	0.011 (3)
C15B	0.024 (2)	0.030 (2)	0.028 (2)	0.0008 (17)	-0.0014 (16)	-0.0009 (19)
C16B	0.024 (2)	0.030 (2)	0.028 (2)	0.0008 (17)	-0.0014 (16)	-0.0009 (19)
C18B	0.045 (3)	0.027 (3)	0.052 (3)	-0.001 (2)	0.024 (3)	0.014 (2)

Geometric parameters (Å, °)

01	1.2873 (15)	C15A—C18A	1.497 (4)	
N1—N2	1.2946 (15)	C15A—C16A	1.401 (4)	
N1—C9	1.3555 (15)	C15B—C16B	1.429 (10)	
N2—C11A	1.385 (3)	C15B—C18B	1.495 (10)	
N2—C11B	1.568 (10)	C1—H1	0.9300	
N2—H2	0.8600	C2—H2A	0.9300	
C1—C2	1.373 (2)	С3—Н3	0.9300	
C1—C10	1.4023 (18)	C4—H4	0.9300	
C2—C3	1.400 (3)	С6—Н6	0.9300	
C3—C4	1.366 (2)	С7—Н7	0.9300	
C4—C5	1.404 (2)	C12A—H12A	0.9300	
C5—C10	1.4171 (17)	C12B—H12B	0.9300	
C5—C6	1.4316 (19)	C13A—H13A	0.9300	
C6—C7	1.3465 (19)	C13B—H13B	0.9300	
С7—С8	1.4390 (17)	C16A—H16A	0.9300	
C8—C9	1.4335 (17)	C16B—H16B	0.9300	
C9—C10	1.4507 (17)	C17A—H17C	0.9600	
C11A—C12A	1.394 (3)	C17A—H17A	0.9600	
C11A—C16A	1.382 (4)	C17A—H17B	0.9600	
C11B—C16B	1.364 (11)	C17B—H17E	0.9600	
C11B—C12B	1.341 (12)	C17B—H17F	0.9600	
C12A—C13A	1.380 (3)	C17B—H17D	0.9600	
C12B—C13B	1.395 (12)	C18A—H18C	0.9600	
C13A—C14A	1.379 (4)	C18A—H18A	0.9600	
C13B—C14B	1.390 (11)	C18A—H18B	0.9600	
C14A—C17A	1.510(3)	C18B—H18D	0.9600	
C14A—C15A	1.398 (4)	C18B—H18E	0.9600	
C14B—C17B	1.542 (9)	C18B—H18F	0.9600	
C14B—C15B	1.366 (11)			
N2—N1—C9	117.66 (10)	C2—C1—H1	120.00	
N1—N2—C11A	123.10 (13)	C10—C1—H1	120.00	
N1—N2—C11B	105.1 (3)	C1—C2—H2A	120.00	
C11B—N2—H2	136.00	C3—C2—H2A	120.00	
N1—N2—H2	118.00	С2—С3—Н3	120.00	
C11A—N2—H2	118.00	С4—С3—Н3	120.00	
C2-C1-C10	120.65 (13)	C3—C4—H4	120.00	
C1—C2—C3	120.47 (15)	C5—C4—H4	119.00	
C2—C3—C4	119.93 (15)	С5—С6—Н6	119.00	
C3—C4—C5	120.95 (13)	С7—С6—Н6	119.00	
C6—C5—C10	119.27 (12)	С6—С7—Н7	119.00	
C4—C5—C6	121.55 (12)	С8—С7—Н7	120.00	
C4—C5—C10	119.18 (12)	C11A—C12A—H12A	120.00	
C5—C6—C7	122.30 (12)	C13A—C12A—H12A	120.00	
C6—C7—C8	121.03 (12)	C11B—C12B—H12B	121.00	
O1—C8—C7	119.95 (11)	C13B—C12B—H12B	121.00	

O1—C8—C9	121.64 (11)	C12A—C13A—H13A	119.00
С7—С8—С9	118.41 (11)	C14A—C13A—H13A	119.00
N1—C9—C10	116.02 (10)	C14B—C13B—H13B	120.00
C8—C9—C10	120.07 (10)	C12B—C13B—H13B	120.00
N1—C9—C8	123.86 (11)	C15A—C16A—H16A	120.00
C1—C10—C9	122.33 (11)	C11A—C16A—H16A	120.00
C1—C10—C5	118.82 (11)	C11B—C16B—H16B	120.00
C5—C10—C9	118.85 (11)	C15B—C16B—H16B	120.00
N2-C11A-C12A	119.43 (19)	H17A—C17A—H17B	110.00
N2-C11A-C16A	120.6 (2)	H17A—C17A—H17C	110.00
C12A— $C11A$ — $C16A$	120.0(2)	C14A—C17A—H17A	109.00
N2-C11B-C12B	120.0(2) 130.0(8)	C14A— $C17A$ — $H17B$	109.00
C12B— $C11B$ — $C16B$	123.3(9)	C14A - C17A - H17C	109.00
N_{2} C11B C16B	125.5(9) 106.7(6)	H17B-C17A-H17C	109.00
$C_{11}A = C_{12}A = C_{13}A$	100.7(0) 119.3(2)	C14B-C17B-H17D	110.00
C11B - C12B - C13B	117.5 (2)	H17D-C17B-H17E	109.00
C_{12} C_{13} C_{14}	117.3(0) 121.8(2)	H17D $C17B$ $H17E$	110.00
C12R = C13R = C14R	121.0(2) 120.8(7)	H17E C17E H17E	100.00
C12B - C13B - C14B	120.0(7)	$\Pi / E - C I / B - \Pi I / F$	109.00
C15A = C14A = C15A	119.0(2)	C14D - C17D - H17E	109.00
C12A = C14A = C17A	121.0(2) 120.0(2)	C14D - C17D - D17F	100.00
C12D $C14D$ $C17D$	120.0(2)		109.00
C13B - C14B - C17B	110.0(7)	H18A - C18A - H18B	109.00
C13B - C14B - C15B	121.8 (7)	H18A - C18A - H18C	110.00
CI5B—CI4B—CI7B	121.6 (7)	C15A - C18A - H18A	109.00
CI4A—CI5A—CI6A	119.6 (2)	CI5A—CI8A—HI8B	110.00
CI4A—CI5A—CI8A	120.7 (2)	CI5A—CI8A—HI8C	109.00
CI6A—CI5A—CI8A	119.7 (3)	CI5B—CI8B—HI8D	109.00
C14B—C15B—C16B	116.4 (7)	C15B—C18B—H18E	109.00
C14B—C15B—C18B	122.7 (6)	C15B—C18B—H18F	109.00
C16B—C15B—C18B	120.9 (6)	H18D—C18B—H18E	110.00
C11A—C16A—C15A	120.3 (3)	H18D—C18B—H18F	109.00
C11B—C16B—C15B	120.3 (7)	H18E—C18B—H18F	109.00
C9—N1—N2—C11A	-178.13 (15)	O1—C8—C9—N1	-4.99 (19)
N2—N1—C9—C8	2.05 (17)	O1—C8—C9—C10	177.92 (11)
N2—N1—C9—C10	179.25 (10)	C7—C8—C9—N1	174.01 (11)
N1—N2—C11A—C12A	177.29 (17)	C7—C8—C9—C10	-3.08(17)
N1—N2—C11A—C16A	-4.1 (3)	N1—C9—C10—C1	4.86 (17)
C10-C1-C2-C3	-0.4(2)	N1—C9—C10—C5	-174.62 (11)
C2-C1-C10-C5	1.2 (2)	C8—C9—C10—C1	-177.83(12)
C2-C1-C10-C9	-178.34(13)	C8-C9-C10-C5	2.69 (17)
C1 - C2 - C3 - C4	-0.1(3)	N2—C11A—C12A—C13A	179.48 (19)
C2-C3-C4-C5	-0.1(2)	C16A - C11A - C12A - C13A	0.8 (4)
C_{3} — C_{4} — C_{5} — C_{6}	179.81 (14)	N2-C11A-C16A-C15A	-179.0(2)
C_{3} — C_{4} — C_{5} — C_{10}	0.8 (2)	C12A— $C11A$ — $C16A$ — $C15A$	-0.4(4)
C4-C5-C6-C7	-179.60(13)	C11A - C12A - C13A - C14A	-0.4(3)
C10-C5-C6-C7	-0.6(2)	C12A— $C13A$ — $C14A$ — $C15A$	-0.6(3)
C4-C5-C10-C1	-1.30(19)	C12A— $C13A$ — $C14A$ — $C17A$	$-179 \ 8 \ (2)$
	1.00(1)		1, 2, O (4)

C4—C5—C10—C9	178.20 (12)	C13A—C14A—C15A—C16A	1.1 (4)
C6—C5—C10—C1	179.63 (12)	C13A—C14A—C15A—C18A	-177.2 (2)
C6—C5—C10—C9	-0.87 (18)	C17A—C14A—C15A—C16A	-179.7 (2)
C5—C6—C7—C8	0.1 (2)	C17A—C14A—C15A—C18A	2.0 (3)
C6—C7—C8—O1	-179.29 (12)	C14A—C15A—C16A—C11A	-0.6 (4)
C6—C7—C8—C9	1.69 (19)	C18A—C15A—C16A—C11A	177.7 (2)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N2—H2…O1	0.86	1.82	2.5347 (15)	140
C12A— $H12A$ ····O1 ⁱ	0.93	2.54	3.325 (2)	143

Symmetry code: (i) -x+1, -y+1, -z.