

ISSN 2414-3146

Received 7 September 2016
Accepted 9 February 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; X-ray diffraction; single-crystal growth; chlorspodiosite; isotypism.

CCDC reference: 1531965

Structural data: full structural data are available from iucrdata.iucr.org

$\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$

Robert Haberkorn,* Jessica Bauer and Guido Kickelbick

Universität des Saarlandes, Anorganische Festkörperchemie, Campus C4.1, 66123 Saarbrücken, Germany. *Correspondence e-mail: haberkorn@mx.uni-saarland.de

Single crystals of dibarium vanadate (V) bromide, $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$, were grown from a melt of $\mathrm{Ba}_{3}\left(\mathrm{VO}_{4}\right)_{2}$ and BaBr_{2}. $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ crystallizes in the space group Pbcm and is isotypic with the structure of chlorspodiosite, $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$. Although the ionic radii in chlorspodiosite are different from those in dibarium vanadate bromide, the structures are very similar to one another. The V atom is coordinated by four O atoms, forming a slightly distorted tetrahedron. The Ba atoms occupy two different sites and are coordinated by six O atoms and three or four Br atoms, depending on the site occupied.

Structure description

This work is part of investigations or reinvestigations of compounds with the general formula $A_{2} B_{4} X(A=$ alkaline earth metal; $B=\mathrm{P}$, As, V or other pentavalent atoms; $X=$ halogen atom). The intention behind the current work is to understand conditions of the stability of the different structure types and to search for new structure types with this general formula.

The title compound $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ crystallizes isotypically with chlorspodiosite, $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$ (Mackay, 1953), despite of different ionic radii and the existence of other structure types with the same general formula (Haberkorn et al., 2014). The crystal structure of $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$ was published by Greenblatt et al. (1967). For an easier comparison of both structures, the atomic sites were normalized and sorted in the same manner as for the title compound (cf. Refinement section). The normalized atomic positions of $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$ and $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ are given within the Supporting information. The relative distances $d / d_{\text {Shannon }}$ between the cations and the surrounding anions of both compounds are given in Tables 1 and 2, respectively. There are also 'ideal' distances $d_{\text {Shannon }}$ provided, calculated from the sum of the corresponding ionic radii (Shannon, 1976) using $r_{\mathrm{Ca}^{2+},[8]}=$ $1.12 \AA, r_{\mathrm{Ba}^{2+},[8]}=1.42 \AA, r_{\mathrm{P}^{5+},[4]}=0.29 \AA, r_{\mathrm{V}^{5+},[4]}=0.355 \AA, r_{\mathrm{O}^{2-,[3-4]}}=1.37 \AA, r_{\mathrm{Cl}^{1-,[6]}}=$ $1.81 \AA$, and $r_{\mathrm{Br}^{1},[6]}=1.96 \AA$.

Table 1
Selected relative interatomic distances in $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$.

Central atom	ligand	$d_{1} / d_{\text {Shannon }}$	$d_{2} / d_{\text {Shannon }}$	$d_{3} / d_{\text {Shannon }}$	$d_{4} / d_{\text {Shannon }}$	$d_{\text {Shannon }}$ (A)
Ca 1	O^{2-}	2×0.943	2×1.001	2×1.016	2×1.677	2.49
	Cl^{1-}	2×0.957	2×1.482	2×1.602		2.93
Ca 2	O^{2-}	2×0.967	2×0.973	2×1.066	2×1.595	2.49
	Cl^{1-}	1×0.947	1×1.023	1×1.424	1×1.486	2.93
P	O^{2-}	2×0.923	2×0.934	2×2.083		1.66

Values of $d_{\text {Shannon }}$ were calculated from the sum of the corresponding ionic radii (Shannon, 1976).

Table 2
Selected relative interatomic distances in $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$.

Central atom	ligand	$d_{1} / d_{\text {Shannon }}$	$d_{2} / d_{\text {Shannon }}$	$d_{3} / d_{\text {Shannon }}$	$d_{4} / d_{\text {Shannon }}$	$d_{\text {Shannon }}$ (A)
Ba 1	O^{2-}	2×0.981	2×0.983	2×0.993	2×1.665	2.79
	Br^{1-}	2×1.048	2×1.182	2×1.794		3.38
Ba 2	O^{2-}	2×0.964	2×0.965	2×1.022	2×1.566	2.79
	Br^{1-}	1×0.986	1×1.078	1×1.108	1×1.578	3.38
V	O^{2-}	2×0.992	2×0.999	2×2.165		1.73

Values of $d_{\text {Shannon }}$ were calculated from the sum of the corresponding ionic radii (Shannon, 1976).

Four O atoms form in a similar manner marginally distorted tetrahedra around B for both compounds (Fig. 1).

The cation A occupies two different sites, one at Wyckoff position $4 c$ (site symmetry 2. ; Ca 1 and Ba 1), the other at Wyckoff position $4 d$ (.. m; Ca2 and Ba 2). For Ca at the $4 d$ sites (Ca2) in $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$ six O atoms form a distorted trigonal prism capped by two Cl atoms. Ca at the $4 c$ site (Ca 1) is also coordinated by two Cl atoms and six O atoms. The eight atoms form an irregular polyhedron. Additional Cl atoms are much more distant and do not belong to the coordination polyhedra of Ca 1 and Ca 2 .
Ba^{2+} requires more than twice the volume in comparison with Ca^{2+}. Hence, the coordination numbers of the A-sites

Figure 1
The crystal structure of $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ with VO_{4} anions displayed as coordination polyhedra.

Table 3
Similarity of $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$ to some isotypic compounds.

Compound	$\mathrm{Ca}_{2} \mathrm{CrO}_{4} \mathrm{Cl}$	$\mathrm{Ca}_{2} \mathrm{VO}_{4} \mathrm{Cl}$	$\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$
S	0.0092	0.0121	0.0561
$d_{\max }(\AA)$	0.3665	0.2445	1.1214
$d_{\text {av }}(\AA)$	0.1575	0.1278	0.2607
Δ	0.045	0.030	0.092

increase in $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ compared to $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$. The Ba 2 site is ninefold coordinated by six O atoms and three Br atoms, forming a distorted tricapped trigonal prism (Fig. 2). The distortion of the trigonal prism is very similar to that of Ca 2 in $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$. Ba 1 has an irregular shaped coordination polyhedron consisting of six O atoms and four Br atoms (Fig. 3). As can be seen in the Voronoi polyhedron, two of these bromine ligands belong to the coordination sphere; nevertheless they are more distant than the other bromine ligands and their $\mathrm{Ba}-\mathrm{Br}$ distance is 118% of the sum of the ionic radii.

The compounds $\mathrm{Ca}_{2} \mathrm{CrO}_{4} \mathrm{Cl}$ (Greenblatt et al., 1967), $\mathrm{Ca}_{2} \mathrm{VO}_{4} \mathrm{Cl}$ (Banks et al., 1970), and $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ crystallize in

Figure 2
The coordination polyhedron of Ba at the $4 d$ site $(\mathrm{Ba} 2)$ in $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ with interatomic distances. Displacement ellipsoids are drawn at the 99.8% probability level. [Symmetry codes: (i) $x, y,-z+\frac{1}{2}$; (ii) $x, y-1,-z+\frac{1}{2}$; (iii) $x, y-1, z$; (iv) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $-x, y-\frac{1}{2}, z$; (vi) $-x+1, y-\frac{1}{2}$, $-z+\frac{1}{2}$.]

Figure 3
(a) The coordination polyhedron of Ba at the $4 c$ site (Ba 1) in $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$, (b) displacement ellipsoid plot (99.8% probability level) with interatomic distances and (c) Voronoi polyhedron. [Symmetry codes: (i) $x,-y+\frac{1}{2},-z$; (ii) $-x+1,-y+1,-z$; (iii) $-x+1, y-\frac{1}{2}, z$; (iv) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (v) $-x+1,-y+1, z-\frac{1}{2}$; (vi) $-x+1,-y,-z$; (vii) $\left.-x+1, y+\frac{1}{2}, z.\right]$
the same space group type Pbcm as $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$ and are isopointal. The similarity of $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$ to these compounds was numerically determined using the program COMPSTRU (de la Flor et al., 2016). The results are given in Table 3, where S is the degree of lattice distortion, $d_{\max }$ and d_{av} are the maximum and mean displacements of equivalent atoms and Δ is the measure of similarity taking atomic positions and lattice parameters into account. The structure of $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ is less similar to $\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}$ than the structures of the other compounds due to a larger difference of the ionic radii. The large volume of the unit cell of $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}\left(V_{\mathrm{Ba}_{2} \mathrm{VO}_{2} \mathrm{Br}^{2}} / V_{\mathrm{Ca}_{2} \mathrm{PO}_{4} \mathrm{Cl}}\right.$ $=138 \%$) causes high values of S and Δ. The displacement of the X atom of more than $1 \AA$ enables higher coordination numbers of the A atoms for $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$. The mean displacement $d_{\text {av }}$ is less than twice the value for $\mathrm{Ca}_{2} \mathrm{CrO}_{4} \mathrm{Cl}$ and demonstrates rather small displacements of the other sites. Despite different ionic radii and different coordination numbers of the A atoms, the structures of all these compounds are very similar and can be regarded as isotypic (Lima-deFaria et al., 1990).

Synthesis and crystallization

$\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ may be synthesized either via a solid-state reaction (ssr) of $\mathrm{Ba}_{3}\left(\mathrm{VO}_{4}\right)_{2}$ with BaBr_{2} or via a melt of $\mathrm{Ba}_{3}\left(\mathrm{VO}_{4}\right)_{2}$ and an excess of BaBr_{2}. While the ssr supports the preparation of a polycrystalline mass, the melt enables the yield of single crystals. Both methods were used, but the synthesis of single crystals will be focused on here.

Single crystals of $\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$ were grown from a melt of BaBr_{2} using as flux and as reacting agent. 0.4 mmol of $\mathrm{Ba}_{3}\left(\mathrm{VO}_{4}\right)_{2}, 1.6 \mathrm{mmol} \mathrm{BaBr}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and 1.6 mmol NH 44 Br were mixed and filled into a platinum crucible. $\mathrm{NH}_{4} \mathrm{Br}$ was added to minimize the formation of hydroxides. After an initial step of slowly heating to 523 K allowing water to evaporate, the mixture was heated to 1173 K . This temperature was held for 2 h . Then the melt was allowed to cool down to 1053 K within 10 h , followed by cooling to room temperature with a higher cooling rate. The excess BaBr_{2} was leached out with distilled water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The atomic coordinates were standardized by the program STRUCTURE TIDY (Gelato \& Parthé 1987) as implemented in the program PLATON (Spek, 2009), though with a different sequence of the sites. The sites were sorted in the same order as the chemical symbols in the chemical formula. For sites with the same atom type these sites were arranged in alphabetical order of their Wyckoff letters.

Table 4
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.023,0.042,1.05$
No. of reflections	2741
No. of parameters	42
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} \AA^{-3}\right)$	$1.63,-1.14$

Computer programs: APEX2, SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a), SHELXL2015 (Sheldrick, 2015b), DIAMOND (Brandenburg et al., 1999) and publCIF (Westrip, 2010).

For sites with the same atom type and the same Wyckoff letter the sites were arranged according to increasing x.

References

Banks, E., Greenblatt, M. \& Post, B. (1970). Inorg. Chem. 9, 22592264.

Brandenburg, K., Berndt, M. \& Bergerhoff, G. (1999). DIAMOND. Universität Bonn, Germany.
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. \& Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.

Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Greenblatt, M., Banks, E. \& Post, B. (1967). Acta Cryst. 23, 166-171.
Haberkorn, R., Bauer, J. \& Kickelbick, G. (2014). Z. Anorg. Allg. Chem. 640, 3153-3158.
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. \& Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.
Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. \& Parthé, E. (1990). Acta Cryst. A46, 1-11.

Mackay, A. L. (1953). Mineral. Mag. 30, 166-168.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). 2, x170219 [https://doi.org/10.1107/S241431461700219X]
$\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$

Robert Haberkorn, Jessica Bauer and Guido Kickelbick

Dibarium vanadate(V) bromide

Crystal data

$\mathrm{Ba}_{2} \mathrm{VO}_{4} \mathrm{Br}$
$M_{r}=469.52$
Orthorhombic, Pbcm
$a=6.8103$ (7) \AA
$b=7.8855(9) \AA$
$c=12.0131(14) \AA$
$V=645.14(12) \AA^{3}$
$Z=4$
$F(000)=808$
Data collection
Bruker APEXII CCD
diffractometer
Radiation source: sealed X-ray tube φ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
$T_{\text {min }}=0.663, T_{\text {max }}=0.749$
32756 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.042$
$S=1.05$
2741 reflections
42 parameters
0 restraints
$D_{\mathrm{x}}=4.834 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5232 reflections
$\theta=4.3-40.6^{\circ}$
$\mu=19.61 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Cuboid, colorless
$0.04 \times 0.04 \times 0.03 \mathrm{~mm}$

2741 independent reflections
2132 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=44.9^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-15 \rightarrow 15$
$l=-20 \rightarrow 23$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0146 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.63 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.14 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL2015 } \\
& \quad(\text { Sheldrick, } 2015 b), \\
& \quad \mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4} \\
& \text { Extinction coefficient: } 0.00114(12)
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ba1	$0.61644(2)$	0.2500	0.0000	$0.00879(3)$
Ba 2	$0.11189(2)$	$0.03912(2)$	0.2500	$0.00733(3)$
V1	$0.11728(5)$	0.2500	0.0000	$0.00469(6)$
O1	$0.03522(17)$	$0.77707(15)$	$0.11312(11)$	$0.0074(2)$
O2	$0.26812(17)$	$0.08342(15)$	$0.03175(11)$	$0.0085(2)$
Br1	$0.41944(4)$	$0.41720(4)$	0.2500	$0.01897(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba 1	$0.00453(5)$	$0.00797(5)$	$0.01389(7)$	0.000	0.000	$-0.00337(4)$
Ba 2	$0.01093(5)$	$0.00591(5)$	$0.00515(6)$	$0.00088(4)$	0.000	0.000
V 1	$0.00453(12)$	$0.00486(12)$	$0.00467(15)$	0.000	0.000	$0.00036(10)$
O 1	$0.0071(4)$	$0.0097(5)$	$0.0054(5)$	$-0.0011(3)$	$-0.0005(4)$	$-0.0014(4)$
O 2	$0.0079(4)$	$0.0073(4)$	$0.0104(6)$	$0.0013(3)$	$0.0006(4)$	$0.0012(4)$
Br 1	$0.01411(11)$	$0.02987(15)$	$0.01293(13)$	$-0.00761(10)$	0.000	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	2.7383 (12)	$\mathrm{Ba} 2-\mathrm{O} 1^{\text {x }}$	2.6919 (12)
$\mathrm{Ba} 1-\mathrm{O} 2$	2.7383 (12)	$\mathrm{Ba} 2-\mathrm{O} 1^{\text {xi }}$	2.6919 (12)
$\mathrm{Ba}-\mathrm{O} 1^{\text {ii }}$	2.7423 (12)	$\mathrm{Ba} 2-\mathrm{O} 2$	2.8510 (14)
$\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	2.7423 (12)	$\mathrm{Ba} 2-\mathrm{O} 2^{\text {xii }}$	2.8510 (14)
$\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iv }}$	2.7706 (12)	$\mathrm{Ba} 2-\mathrm{Br} 1^{\text {vii }}$	3.3334 (4)
$\mathrm{Ba} 1-\mathrm{O}^{\text {v }}$	2.7706 (12)	$\mathrm{Ba} 2-\mathrm{Br} 1$	3.6436 (4)
$\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vi }}$	3.5437 (4)	$\mathrm{Ba} 2-\mathrm{Br} 1^{\text {viii }}$	3.7440 (5)
$\mathrm{Ba} 1-\mathrm{Br} 1$	3.5437 (4)	V1-O2	1.7107 (12)
$\mathrm{Ba} 1-\mathrm{Br} 1^{\text {iii }}$	3.9958 (4)	V1-O2 ${ }^{\text {i }}$	1.7107 (12)
$\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vii }}$	3.9958 (4)	$\mathrm{V} 1-\mathrm{O}{ }^{\text {xiii }}$	1.7236 (13)
$\mathrm{Ba} 2-\mathrm{O} 1^{\text {viii }}$	2.6885 (13)	V1-O1 ${ }^{\text {ix }}$	1.7236 (13)
$\mathrm{Ba} 2-\mathrm{O} 1^{\text {ix }}$	2.6885 (13)		
$\mathrm{O} 2-\mathrm{Ba}-\mathrm{O} 2$	59.94 (5)	$\mathrm{Br} 1^{\text {iii }}$ - $\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vii }}$	172.988 (9)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 1^{\text {ii }}$	141.36 (4)	$\mathrm{O} 1{ }^{\text {viii }}-\mathrm{Ba} 2-\mathrm{O} 1^{\text {ix }}$	75.41 (5)
$\mathrm{O} 2-\mathrm{Ba}-\mathrm{Ol}^{\text {ii }}$	135.87 (4)	$\mathrm{O} 1{ }^{\text {viii- }} \mathrm{Ba} 2-\mathrm{O} 1^{\text {x }}$	146.830 (14)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Ba} 1-\mathrm{O} 1^{\text {iii }}$	135.87 (4)	$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Ba} 2-\mathrm{O} 1^{\mathrm{x}}$	95.16 (4)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{Ol}^{\text {iii }}$	141.36 (4)	$\mathrm{O} 1^{\text {viii }}-\mathrm{Ba} 2-\mathrm{O} 1^{\mathrm{xi}}$	95.16 (4)
$\mathrm{O} 1 \mathrm{ii}-\mathrm{Ba}-\mathrm{Ol}^{\text {iii }}$	60.21 (5)	$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Ba} 2-\mathrm{O} 1^{\mathrm{xi}}$	146.830 (14)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O}^{2}{ }^{\text {iv }}$	79.03 (4)	$\mathrm{O} 1^{\mathrm{x}}-\mathrm{Ba} 2-\mathrm{O} 1^{\text {xi }}$	75.30 (6)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2{ }^{\text {iv }}$	132.99 (4)	$\mathrm{O} 1{ }^{\text {viii- }} \mathrm{Ba} 2-\mathrm{O} 2$	128.03 (4)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{O}^{\text {iv }}$	67.20 (4)	$\mathrm{O} 1{ }^{\mathrm{ix}}-\mathrm{Ba} 2-\mathrm{O} 2$	59.41 (3)
$\mathrm{O} 1^{\text {iii- }}$ - $\mathrm{Ba} 1-\mathrm{O} 2^{\text {iv }}$	84.07 (4)	$\mathrm{O} 1 \times-\mathrm{Ba} 2-\mathrm{O} 2$	66.72 (4)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2^{\text {v }}$	132.99 (4)	$\mathrm{O} 1{ }^{\text {xi }}-\mathrm{Ba} 2-\mathrm{O} 2$	136.73 (4)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{O} 2^{\text {v }}$	79.03 (4)	$\mathrm{O} 1^{\text {viii }}-\mathrm{Ba} 2-\mathrm{O} 2{ }^{\text {xii }}$	59.41 (3)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{O} 2^{\mathrm{v}}$	84.07 (4)	$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Ba} 2-\mathrm{O} 2^{\text {xii }}$	128.03 (4)

$\mathrm{O} 1^{\text {iii- }} \mathrm{Ba} 1-\mathrm{O} 2^{\text {v }}$	67.20 (4)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{O} 2^{\text {v }}$	147.03 (5)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vi }}$	74.48 (3)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vi }}$	67.15 (3)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Br}^{\text {vi }}$	140.94 (3)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vi }}$	83.03 (3)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Br}^{\text {vi }}$	125.25 (3)
$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vi }}$	68.76 (3)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ba} 1-\mathrm{Br} 1$	67.15 (3)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{Br} 1$	74.48 (3)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Br} 1$	83.03 (3)
$\mathrm{O} 1{ }^{\text {iii- }} \mathrm{Ba} 1-\mathrm{Br} 1$	140.94 (3)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Br} 1$	68.76 (3)
$\mathrm{O} 2{ }^{v}-\mathrm{Ba} 1-\mathrm{Br} 1$	125.25 (3)
$\mathrm{Br} 1^{\text {vi }}-\mathrm{Ba} 1-\mathrm{Br} 1$	135.507 (11)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Ba} 1-\mathrm{Br}{ }^{1 i i}$	61.79 (3)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {iii }}$	111.52 (3)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {iii }}$	111.98 (3)
$\mathrm{O} 1^{\text {iii }}$ - $\mathrm{Ba} 1-\mathrm{Br} 1^{\text {iii }}$	74.43 (3)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {iii }}$	59.84 (3)
$\mathrm{O} 2{ }^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {iii }}$	122.49 (3)
$\mathrm{Br} 1^{\text {vi}}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {iii }}$	65.431 (8)
$\mathrm{Br} 1-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {iii }}$	111.683 (8)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vii }}$	111.52 (3)
$\mathrm{O} 2-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vii }}$	61.79 (3)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Br}^{\text {vii }}$	74.43 (3)
$\mathrm{O} 1^{\text {iiii }}-\mathrm{Ba} 1-\mathrm{Br}^{\text {vii }}$	111.98 (3)
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vii }}$	122.49 (3)
$\mathrm{O} 2{ }^{\text {v }}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vii }}$	59.84 (3)
$\mathrm{Br} 1^{\text {vi}}-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vii }}$	111.683 (8)
$\mathrm{Br} 1-\mathrm{Ba} 1-\mathrm{Br} 1^{\text {vii }}$	65.431 (8)

$\mathrm{O}^{\mathrm{x}}-\mathrm{Ba} 2-\mathrm{O} 2^{\text {xii }}$	136.73 (4)
$\mathrm{O} 1^{\mathrm{xi}}-\mathrm{Ba} 2-\mathrm{O} 2^{\text {xii }}$	66.72 (4)
$\mathrm{O} 2-\mathrm{Ba} 2-\mathrm{O} 2^{\text {xii }}$	133.74 (5)
$\mathrm{O} 1^{\text {viii }}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {vii }}$	123.92 (3)
$\mathrm{O} 1{ }^{\text {ix }}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {vii }}$	123.92 (3)
$\mathrm{O} 1^{\mathrm{x}}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {vii }}$	87.96 (3)
$\mathrm{O} 1{ }^{\text {xi}}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {vii }}$	87.96 (3)
$\mathrm{O} 2-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {vii }}$	71.22 (2)
$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {vii }}$	71.21 (2)
$\mathrm{O} 1{ }^{\text {viii- }} \mathrm{Ba} 2-\mathrm{Br} 1$	69.09 (3)
$\mathrm{O} 1{ }^{\mathrm{ix}}-\mathrm{Ba} 2-\mathrm{Br} 1$	69.09 (3)
$\mathrm{O}^{\mathrm{x}}-\mathrm{Ba} 2-\mathrm{Br} 1$	137.70 (3)
$\mathrm{O} 1^{\text {xi }}-\mathrm{Ba} 2-\mathrm{Br} 1$	137.70 (3)
$\mathrm{O} 2-\mathrm{Ba} 2-\mathrm{Br} 1$	71.65 (2)
$\mathrm{O} 2 \times$ xii $-\mathrm{Ba} 2-\mathrm{Br} 1$	71.65 (2)
$\mathrm{Br} 1{ }^{\text {vii }}-\mathrm{Ba} 2-\mathrm{Br} 1$	71.673 (8)
$\mathrm{O} 1^{\text {viii }}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {viii }}$	79.58 (3)
$\mathrm{O} 1^{\mathrm{ix}}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {viii }}$	79.58 (3)
$\mathrm{O} 1{ }^{\mathrm{x}}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {viii }}$	67.38 (3)
$\mathrm{O} 1^{\text {xi }}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {viii }}$	67.38 (3)
$\mathrm{O} 2-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {viii }}$	113.09 (3)
$\mathrm{O} 2{ }^{\text {xii }}-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {viii }}$	113.09 (2)
$\mathrm{Br} 1^{\text {vii }}$ - $\mathrm{Ba} 2-\mathrm{Br} 1^{\text {viii }}$	148.359 (12)
$\mathrm{Br} 1-\mathrm{Ba} 2-\mathrm{Br} 1^{\text {viii }}$	139.968 (10)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 2^{\mathrm{i}}$	106.18 (8)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 1^{\text {xii }}$	116.27 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{V} 1-\mathrm{O} 1^{\text {xiii }}$	106.33 (6)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 1^{\text {ix }}$	106.33 (6)
$\mathrm{O} 2-\mathrm{V} 1-\mathrm{O} 1^{\text {ix }}$	116.27 (6)
$\mathrm{O} 1^{\text {xiii }}-\mathrm{V} 1-\mathrm{O} 1^{\text {ix }}$	105.90 (8)

[^0]
[^0]: Symmetry codes: (i) $x,-y+1 / 2,-z$; (ii) $-x+1, y-1 / 2, z$; (iii) $-x+1,-y+1,-z$; (iv) $-x+1, y+1 / 2, z$; (v) $-x+1,-y,-z$; (vi) $x,-y+1 / 2, z-1 / 2$; (vii) $-x+1, y-1 / 2$, $-z+1 / 2$; (viii) $-x, y-1 / 2,-z+1 / 2$; (ix) $-x, y-1 / 2, z$; (x) $x, y-1, z$; (xi) $x, y-1,-z+1 / 2$; (xii) $x, y,-z+1 / 2$; (xiii) $-x,-y+1,-z$.

