

ISSN 2414-3146

Received 7 April 2017 Accepted 20 April 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: allyl; chloride; crystal structure; pyridine.

CCDC reference: 1545055

Structural data: full structural data are available from iucrdata.iucr.org

1-Allyl-2-methylpyridinium chloride

Gino Bentivoglio,^a Gerhard Laus,^a Volker Kahlenberg,^b Thomas Röder^c and Herwig Schottenberger^a*

^aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, ^bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria, and ^cLenzing AG, Global R&D, Werkstrasse 2, 4860 Lenzing, Austria. *Correspondence e-mail: herwig.schottenberger@uibk.ac.at

The title molecular salt, $C_9H_{12}N^+ \cdot Cl^-$, was obtained by reaction of 2-methylpyridine and allyl chloride. A network of $C-H \cdot \cdot \cdot Cl$ hydrogen bonds is observed in the crystal structure.

Structure description

Chloride-based ionic liquids (salts melting below 373 K) are suitable solvents for cellulose dissolution (Wang *et al.*, 2012; Liu *et al.*, 2016) and for fibre spinning. The numerous advantages of ionic liquids, such as non-volatility, thermal stability, chemical modifiability, and low melting points are countervailed by their disadvantages, such as aquatic toxicity, corrosivity, and a high energy input required for pulp preparation and removal of water (Bentivoglio *et al.*, 2006). In particular, it has been found that some ionic liquids promote degradation of cellulose. The molecular mass distribution of the reconstituted cellulose samples was determined by gel permeation chromatography (Schelosky *et al.*, 1999). Degradation was exceptionally strong (from 200 kDa down to 24 kDa) in the present ionic liquid. The solubility of cellulose in a series of pyridinium chlorides was studied by quantum-chemical calculations (Sashina *et al.*, 2012).

The title compound has been described as a 'sirupy liquid' (Ramsay, 1876). It has now been crystallized but still qualifies as an ionic liquid (melting at 367 K). In the crystal structure, the allyl group is twisted out of the plane of the heterocyclic ring. Weak C– $H \cdots$ Cl hydrogen bonds (Fig. 1, Table 1) create a three-dimensional network in which the chloride ions are sixfold coordinated toward the pyridinium cations (Fig. 2).

Related structures with similar hydrogen bond networks include *N*-allylpyrrolidinium chloride (Laus *et al.*, 2008), *N*-allylpyridinium bromide (Seethalakshmi *et al.*, 2013) and *N*-allylimidazolium iodides (Fei *et al.*, 2006).

Figure 1

The molecular structure of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms. The C– H···Cl hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, -y, -z + 1; (iii) -x + 2, -y, -z + 2.

Synthesis and crystallization

To 2-methylpyridine (18.9 g, 0.20 mol) was added an excess of allyl chloride (18.6 g, 0.24 mol). The reaction mixture was refluxed for 72 h. Excess allyl chloride was removed under reduced pressure. The crude product was washed with Et₂O (50 ml) and dried on a high vacuum line giving 1-allyl-2-methylpyridinium chloride as a brown powder (17.4 g, 51%), m.p. 364–367 K. Colourless plates were recrystallized from a solvent mixture of acetone/CH₂Cl₂. ¹H NMR (300 MHz, DMSO-*d*₆): δ 2.93 (3*H*, s), 5.10 (1H, *d*, *J* = 17.2 Hz), 5.35 (1*H*, *d*, *J* = 10.6 Hz), 5.66 (2H, *d*, *J* = 5.6 Hz), 6.00 (1H, *m*), 7.92 (1H, *t*, *J* = 6.8 Hz), 8.00 (1H, *d*, *J* = 7.9 Hz), 8.41 (1H, *t*, *J* = 7.6 Hz),

Figure 2

Sixfold-coordinated chloride ions in the unit cell of the title compound. Only hydrogen atoms involved in contacts are shown.

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C1-H1···Cl1	0.95	2.82	3.701 (2)	155
$C7-H7A\cdots Cl1^{i}$	0.98	2.78	3.695 (2)	157
$C4-H4A\cdots Cl1^{ii}$	0.99	2.76	3.698 (2)	159
$C4-H4B\cdots Cl1^{i}$	0.99	2.72	3.609 (2)	149
C6-H6···Cl1 ⁱⁱⁱ	0.95	2.64	3.545 (2)	161
$C3-H3\cdots Cl1^{ii}$	0.95	2.57	3.454 (2)	155

Symmetry codes: (i) x, y + 1, z; (ii) -x + 2, -y, -z + 1; (iii) -x + 2, -y, -z + 2.

 Table 2

 Experimental details.

Crystal data	
Chemical formula	$C_{0}H_{12}N^{+}\cdot Cl^{-}$
м.	169.65
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	173
a, b, c (Å)	6.9617 (17), 7.5941 (19), 9.464 (2)
α, β, γ (°)	86.06 (2), 82.118 (19), 67.102 (18)
$V(\dot{A}^3)$	456.48 (19)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.35
Crystal size (mm)	$0.4 \times 0.38 \times 0.1$
Data collection	
Diffractometer	Stoe IPDS 2
Absorption correction	Multi-scan (SADABS; Bruker, 2001)
T_{\min}, T_{\max}	0.904, 0.985
No. of measured, independent and	3066, 1616, 1465
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.017
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.067, 1.05
No. of reflections	1616
No. of parameters	101
H-atom treatment	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} \ ({ m e} \ { m \AA}^{-3})$	0.19, -0.17

Computer programs: X-AREA and X-RED (Stoe & Cie, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

9.70 (1H, d, J = 5.9) p.p.m. ¹³C NMR (75 MHz, DMSO- d_6): δ 20.5, 60.0, 120.9, 126.2, 130.0, 130.1, 145.5, 146.9, 155.0 p.p.m. IR (neat): ν 3009, 2921, 2438, 1622, 1573, 1503, 1478, 1455, 1421, 1296, 1158, 1141, 1053, 1004, 930, 829, 794, 770, 710, 663 cm⁻¹.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

Bentivoglio, G., Röder, T., Fasching, M., Buchberger, M., Schottenberger, H. & Sixta, H. (2006). *Lenz. Ber.* 86, 154–161.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fei, Z., Kuang, D., Zhao, D., Klein, C., Ang, W. H., Zakeeruddin, S. M., Grätzel, M. & Dyson, P. J. (2006). *Inorg. Chem.* 45, 10407– 10409.
- Laus, G., Bentivoglio, G., Kahlenberg, V., Griesser, U. J., Schottenberger, H. & Nauer, G. (2008). *CrystEngComm*, **10**, 748–752.
- Liu, Y.-R., Thomsen, K., Nie, Y., Zhang, S.-J. & Meyer, A. S. (2016). Green Chem. 18, 6246–6254.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

- Ramsay, W. (1876). Philos. Mag. Ser. 5, 2, 269-281.
- Sashina, E. S., Kashirskii, D. A. & Martynova, E. V. (2012). Russ. J. Gen. Chem. 82, 729-735.
- Schelosky, N., Röder, T. & Baldinger, T. (1999). Papier 53, 728-738.
- Seethalakshmi, T., Venkatesan, P., Nallu, M., Lynch, D. E. & Thamotharan, S. (2013). Acta Cryst. E69, 0884.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (1997). X-AREA and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
- Wang, H., Gurau, G. & Rogers, R. D. (2012). Chem. Soc. Rev. 41, 1519–1537.

full crystallographic data

IUCrData (2017). 2, x170598 [https://doi.org/10.1107/S2414314617005983]

1-Allyl-2-methylpyridinium chloride

Gino Bentivoglio, Gerhard Laus, Volker Kahlenberg, Thomas Röder and Herwig Schottenberger

1-Allyl-2-methylpyridinium chloride

Crystal data C₉H₁₂N⁺·Cl⁻ $M_r = 169.65$ Triclinic, *P*1 Hall symbol: -P 1 a = 6.9617 (17) Å b = 7.5941 (19) Å c = 9.464 (2) Å $a = 86.06 (2)^{\circ}$ $\beta = 82.118 (19)^{\circ}$ $\gamma = 67.102 (18)^{\circ}$ $V = 456.48 (19) \text{ Å}^{3}$

Data collection

Stoe IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Graphite monochromator Detector resolution: 6.67 pixels mm⁻¹ rotation method scans Absorption correction: multi-scan (SADABS; Bruker, 2001)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.067$ S = 1.051616 reflections 101 parameters 0 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 180 $D_x = 1.234 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3556 reflections $\theta = 2.2-27.2^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 173 KFragment of a plate, colorless $0.4 \times 0.38 \times 0.1 \text{ mm}$

 $T_{\min} = 0.904, T_{\max} = 0.985$ 3066 measured reflections 1616 independent reflections 1465 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.017$ $\theta_{\text{max}} = 25.4^{\circ}, \theta_{\text{min}} = 2.2^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 9$ $l = -11 \rightarrow 11$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0261P)^2 + 0.1555P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.17$ e Å⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	<i>x</i>	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.89617 (6)	-0.22917 (5)	0.72298 (4)	0.02896 (12)
N1	1.00030 (18)	0.21870 (17)	0.71106 (12)	0.0243 (3)
C1	0.6310(2)	0.2941 (2)	0.67241 (16)	0.0294 (3)
H1	0.6544	0.1621	0.6801	0.035*
C2	1.3379 (2)	-0.0309 (2)	0.68650 (17)	0.0314 (3)
H2	1.4525	-0.1182	0.6277	0.038*
C3	1.1628 (2)	0.0914 (2)	0.62917 (16)	0.0281 (3)
Н3	1.1553	0.0868	0.5301	0.034*
C4	0.8179 (2)	0.3488 (2)	0.63906 (15)	0.0272 (3)
H4A	0.8591	0.3451	0.5346	0.033*
H4B	0.7789	0.4814	0.67	0.033*
C5	1.0027 (2)	0.2277 (2)	0.85415 (15)	0.0268 (3)
C6	1.1772 (2)	0.1022 (2)	0.91430 (16)	0.0322 (3)
H6	1.1808	0.1042	1.0141	0.039*
C7	0.8237 (3)	0.3733 (2)	0.94055 (16)	0.0350 (4)
H7A	0.8066	0.5014	0.9031	0.052*
H7B	0.8518	0.3622	1.0401	0.052*
H7C	0.6948	0.352	0.9352	0.052*
C8	1.3453 (2)	-0.0254 (2)	0.83142 (17)	0.0331 (3)
H8	1.4654	-0.1089	0.8734	0.04*
C9	0.4376 (2)	0.4194 (2)	0.69139 (19)	0.0394 (4)
H9A	0.4102	0.5522	0.6842	0.047*
H9B	0.3246	0.3776	0.7123	0.047*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic	displ	lacement	parameters	$(Å^2)$
			F	\ /

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02934 (19)	0.02856 (19)	0.02593 (19)	-0.00806 (14)	-0.00311 (14)	0.00060 (13)
N1	0.0225 (6)	0.0264 (6)	0.0247 (6)	-0.0108 (5)	-0.0011 (5)	0.0002 (5)
C1	0.0283 (7)	0.0250 (7)	0.0353 (8)	-0.0100 (6)	-0.0063 (6)	0.0000 (6)
C2	0.0242 (7)	0.0315 (8)	0.0357 (8)	-0.0093 (6)	0.0026 (6)	-0.0024 (6)
C3	0.0279 (7)	0.0321 (8)	0.0254 (7)	-0.0137 (6)	0.0012 (6)	-0.0032 (6)
C4	0.0262 (7)	0.0275 (7)	0.0258 (7)	-0.0083 (6)	-0.0038 (6)	0.0022 (6)
C5	0.0283 (7)	0.0299 (7)	0.0245 (7)	-0.0149 (6)	-0.0001 (6)	0.0003 (6)
C6	0.0328 (8)	0.0390 (8)	0.0269 (8)	-0.0162 (7)	-0.0059 (6)	0.0040 (6)
C7	0.0368 (8)	0.0370 (9)	0.0269 (8)	-0.0108 (7)	0.0006 (7)	-0.0024 (6)
C8	0.0256 (7)	0.0358 (8)	0.0378 (9)	-0.0117 (6)	-0.0071 (7)	0.0055 (7)
C9	0.0288 (8)	0.0333 (8)	0.0542 (11)	-0.0108 (7)	-0.0037 (7)	0.0015 (7)

Geometric parameters (Å, °)

N1—C3	1.351 (2)	C4—H4B	0.9900
N1—C5	1.364 (2)	C5—C6	1.385 (2)
N1—C4	1.4882 (19)	C5—C7	1.489 (2)
C1—C9	1.307 (2)	C6—C8	1.376 (2)
C1—C4	1.502 (2)	С6—Н6	0.9500
C1—H1	0.9500	С7—Н7А	0.9800
C2—C3	1.368 (2)	С7—Н7В	0.9800
C2—C8	1.383 (2)	С7—Н7С	0.9800
С2—Н2	0.9500	C8—H8	0.9500
С3—Н3	0.9500	С9—Н9А	0.9500
C4—H4A	0.9900	С9—Н9В	0.9500
	101.00 (10)		
C3—N1—C5	121.20 (13)	N1C5C6	118.28 (14)
C3—N1—C4	117.55 (13)	N1—C5—C7	119.86 (14)
C5—N1—C4	121.25 (13)	C6—C5—C7	121.84 (14)
C9—C1—C4	123.20 (15)	C8—C6—C5	120.98 (15)
C9—C1—H1	118.4	C8—C6—H6	119.5
C4—C1—H1	118.4	С5—С6—Н6	119.5
C3—C2—C8	118.97 (15)	С5—С7—Н7А	109.5
С3—С2—Н2	120.5	С5—С7—Н7В	109.5
C8—C2—H2	120.5	H7A—C7—H7B	109.5
N1—C3—C2	121.21 (15)	С5—С7—Н7С	109.5
N1—C3—H3	119.4	H7A—C7—H7C	109.5
С2—С3—Н3	119.4	H7B—C7—H7C	109.5
N1-C4-C1	112.07 (12)	C6—C8—C2	119.33 (15)
N1—C4—H4A	109.2	C6—C8—H8	120.3
C1—C4—H4A	109.2	С2—С8—Н8	120.3
N1—C4—H4B	109.2	С1—С9—Н9А	120.0
C1—C4—H4B	109.2	С1—С9—Н9В	120.0
H4A—C4—H4B	107.9	Н9А—С9—Н9В	120.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C1—H1···Cl1	0.95	2.82	3.701 (2)	155
C7—H7A···Cl1 ⁱ	0.98	2.78	3.695 (2)	157
C4—H4A···Cl1 ⁱⁱ	0.99	2.76	3.698 (2)	159
C4—H4 <i>B</i> ···Cl1 ⁱ	0.99	2.72	3.609 (2)	149
C6—H6…Cl1 ⁱⁱⁱ	0.95	2.64	3.545 (2)	161
C3—H3···Cl1 ⁱⁱ	0.95	2.57	3.454 (2)	155

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+2, –*y*, –*z*+1; (iii) –*x*+2, –*y*, –*z*+2.