

ISSN 2414-3146

Received 28 March 2017 Accepted 10 April 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; chromene; 1*H*-isochromen-1-one; hydrogen bonding.

CCDC reference: 1540578

Structural data: full structural data are available from iucrdata.iucr.org

8-Hydroxy-3,4-bis(4-methoxyphenyl)-1*H*-isochromen-1-one

Sivakalai Mayakrishnan, Y. Arun and Narayanan Uma Maheswari*

Organic & Bio-organic Chemistry, CSIR Central Leather Research Institute, Adyar, Chennai 600 020, India. *Correspondence e-mail: umanarayanclri@gmail.com

In the title compound, $C_{23}H_{18}O_5$, the two methoxy-substituted benzene rings are inclined to one another by 67.0 (2)° and to the mean plane of the 1*H*isochromene ring system by 67.21 (16) and 27.61 (17)°. There is an intramolecular $C-H\cdots\pi$ interaction present involving the two 4-methoxyphenyl rings. In the crystal, molecules are linked by $O-H\cdots O$ hydrogen bonds, forming chains propagating along the [301] direction. The chains are linked by a number of $C-H\cdots\pi$ interactions, forming a three-dimensional structure.

Structure description

Chromene derivatives are important heterocyclic compounds that have a variety of industrial, biological and chemical synthesis applications (Geen *et al.*, 1996; Ercole *et al.*, 2009). They exhibit a number of pharmacological activities, such as anti-HIV, anti-inflammatory, antibacterial, anti-allergic and anticancer (Khan *et al.*, 2010; Raj *et al.*, 2010).

The title compound, Fig. 1, consists of a chromene moiety substituted by two methoxyphenyl groups and an hydroxy group. The two benzene rings (C10–C15 and C17–C22) are inclined to one another by 67.0 (2)° and to the mean plane of the 1*H*-isochromene ring system (O1/C1–C9) by 67.21 (16) and 27.61 (17)°, respectively. The 1*H*-isochromene moiety is planar (r.m.s. deviation = 0.043 Å) and atoms O2 and O3 deviate from this mean plane by -0.121 (3) and 0.058 (5) Å, respectively. There is an intramolecular C– $H \cdots \pi$ interaction present involving the two 4-methoxyphenyl rings (Table 1 and Fig. 1).

In the crystal, molecules are linked by $O-H\cdots O$ hydrogen bonds, forming chains propagating along [301]; Table 1 and Fig. 2. The chains are linked by a number of $C-H\cdots \pi$ interactions, forming a three-dimensional structure

Figure 1

The molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular C-H··· π interaction (Table 1) is shown as a dashed arrow.

Synthesis and crystallization

To a dried 50 ml round-bottom flask, fitted with a reflux condenser, were added 2-hydroxybenzoic acid (0.3 mmol), 1,2-

Figure 2

A view along the a axis of the crystal packing of the title compound. The dashed lines represent the hydrogen bonds (see Table 1). For clarity, H atoms not involved in hydrogen bonding have been omitted.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

Cg3 and Cg4 are the centroids of benzene rings C10–C15 and C17–C22, respectively.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O3-H3A\cdots O5^{i}$	0.82	2.56	3.236 (5)	140
$C18-H18\cdots Cg3$	0.93	2.77	3.494 (5)	135
$C3-H3\cdots Cg3^{ii}$	0.93	2.79	3.611 (5)	148
$C11 - H11 \cdots Cg4^{iii}$	0.93	2.73	3.593 (4)	155
$C23-H23C\cdots Cg4^{iv}$	0.96	3.00	3.872 (7)	152

Symmetry codes: (i) $x + \frac{3}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 3, -y, -z + 1; (iii) x + 1, y, z; (iv) -x + 1, -y + 1, -z + 1.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{23}H_{18}O_5$
M _r	374.37
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
a, b, c (Å)	5.8882 (7), 16.418 (3), 18.894 (3)
β (°)	95.016 (5)
$V(A^3)$	1819.5 (5)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.10
Crystal size (mm)	$0.25 \times 0.22 \times 0.16$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.976, 0.985
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9449, 2910, 1375
R _{int}	0.068
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.576
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.061, 0.197, 1.01
No. of reflections	2910
No. of parameters	257
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.29, -0.23

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 SHELXL97 and SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

bis(4-methoxyphenyl)ethyne (0.3 mmol), [RuCl₂(p-cymene)] (5.0 mol %), AgOAc (1.0 equiv) and AgSbF₆ (20 mol %) in 1,2-dichloroethane. The reaction mixture was refluxed for 12 h. After cooling to ambient temperature, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and the filtrate was concentrated under reduced pressure. The crude product was purified through a silica gel column using hexane and ethyl acetate as eluent. The title compound was obtained in 65% yield. It was recrystallized by slow evaporation of a solution in chloroform, yielding colourless block-like crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

References

- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ercole, F., Davis, T. P. & Evans, R. A. (2009). *Macromolecules*, **42**, 1500–1511.
- Geen, G. R., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry, 1st ed., edited by A. R. Katrizky, Vol. 3, pp. 469–500. New York: Pergamon.
- Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). *Eur. J. Med. Chem.* **45**, 4058–4064.
- Raj, T., Bhatia, R. K., kapur, A., Sharma, M., Saxena, A. K. & Ishar, M. P. S. (2010). *Eur. J. Med. Chem.* **45**, 790–794.
- Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Spek, A. L. (2009). *Acta Cryst.* D**65**, 148–155.

full crystallographic data

IUCrData (2017). **2**, x170535 [https://doi.org/10.1107/S2414314617005351]

8-Hydroxy-3,4-bis(4-methoxyphenyl)-1H-isochromen-1-one

Sivakalai Mayakrishnan, Y. Arun and Narayanan Uma Maheswari

8-Hydroxy-3,4-bis(4-methoxyphenyl)-1H-isochromen-1-one

Crystal data

C₂₃H₁₈O₅ $M_r = 374.37$ Monoclinic, P2₁/n Hall symbol: -P 2yn a = 5.8882 (7) Å b = 16.418 (3) Å c = 18.894 (3) Å $\beta = 95.016$ (5)° V = 1819.5 (5) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.976, T_{\max} = 0.985$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.197$ S = 1.012910 reflections 257 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 784 $D_x = 1.367 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1375 reflections $\theta = 2.2-24.2^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.25 \times 0.22 \times 0.16 \text{ mm}$

9449 measured reflections 2910 independent reflections 1375 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$ $\theta_{max} = 24.2^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -6 \rightarrow 4$ $k = -15 \rightarrow 18$ $l = -21 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0901P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³ Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc²\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.006 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	1.4796 (7)	0.1453 (3)	0.6993 (2)	0.0573 (12)
C2	1.6348 (7)	0.0900 (3)	0.6765 (2)	0.0606 (12)
H2	1.7539	0.0716	0.7081	0.073*
C3	1.6147 (6)	0.0621 (3)	0.6080 (2)	0.0583 (12)
Н3	1.7190	0.0243	0.5936	0.070*
C4	1.4399 (6)	0.0896 (2)	0.55963 (19)	0.0490 (11)
H4	1.4289	0.0704	0.5132	0.059*
C5	1.2825 (6)	0.1453 (2)	0.58020 (18)	0.0423 (10)
C6	1.1052 (6)	0.1788 (2)	0.52959 (18)	0.0420 (10)
C7	0.9648 (6)	0.2358 (3)	0.55146 (18)	0.0470 (10)
C8	1.1367 (7)	0.2303 (3)	0.6731 (2)	0.0594 (12)
C9	1.3006 (6)	0.1729 (2)	0.65103 (19)	0.0469 (10)
C10	1.0851 (5)	0.1492 (2)	0.45471 (18)	0.0433 (10)
C11	1.2498 (6)	0.1688 (2)	0.40897 (19)	0.0483 (11)
H11	1.3791	0.1975	0.4263	0.058*
C12	1.2242 (6)	0.1464 (3)	0.33848 (19)	0.0514 (11)
H12	1.3341	0.1612	0.3084	0.062*
C13	1.0352 (6)	0.1020 (3)	0.3123 (2)	0.0522 (11)
C14	0.8745 (6)	0.0802 (3)	0.3572 (2)	0.0586 (12)
H14	0.7480	0.0499	0.3401	0.070*
C15	0.9007 (6)	0.1033 (2)	0.4279 (2)	0.0527 (11)
H15	0.7918	0.0876	0.4580	0.063*
C16	0.8276 (8)	0.0444 (4)	0.2115 (2)	0.1003 (19)
H16A	0.8093	-0.0066	0.2352	0.150*
H16B	0.8410	0.0347	0.1619	0.150*
H16C	0.6973	0.0783	0.2168	0.150*
C17	0.7859 (6)	0.2841 (2)	0.5105 (2)	0.0508 (11)
C18	0.7925 (7)	0.3006 (3)	0.4386 (2)	0.0651 (13)
H18	0.9111	0.2796	0.4147	0.078*
C19	0.6284 (8)	0.3471 (3)	0.4019 (3)	0.0772 (14)
H19	0.6361	0.3570	0.3537	0.093*
C20	0.4544 (8)	0.3789 (3)	0.4359 (3)	0.0720 (14)
C21	0.4392 (6)	0.3655 (3)	0.5068 (3)	0.0709 (14)
H21	0.3202	0.3878	0.5297	0.085*
C22	0.6072 (7)	0.3173 (3)	0.5446 (2)	0.0628 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H22	0.5985	0.3076	0.5927	0.075*	
C23	0.1536 (9)	0.4761 (4)	0.4247 (4)	0.126 (2)	
H23A	0.0418	0.4439	0.4461	0.189*	
H23B	0.0787	0.5117	0.3898	0.189*	
H23C	0.2381	0.5079	0.4607	0.189*	
01	0.9793 (4)	0.26094 (17)	0.62196 (13)	0.0592 (8)	
O2	1.1211 (5)	0.2567 (2)	0.73262 (15)	0.0907 (12)	
03	1.5022 (7)	0.1731 (3)	0.76879 (19)	0.1251 (15)	
H3A	1.6270	0.1594	0.7878	0.188*	
O4	1.0245 (5)	0.08343 (19)	0.24135 (14)	0.0747 (10)	
05	0.2996 (6)	0.4257 (2)	0.3928 (2)	0.1062 (13)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
C1	0.067 (3)	0.066 (3)	0.038 (2)	-0.002 (2)	-0.003 (2)	-0.014 (2)
C2	0.063 (2)	0.066 (3)	0.050 (3)	0.007 (2)	-0.007(2)	-0.001 (2)
C3	0.059 (2)	0.054 (3)	0.062 (3)	0.009 (2)	0.007 (2)	0.005 (2)
C4	0.055 (2)	0.052 (3)	0.040 (2)	-0.005 (2)	0.0045 (19)	0.000(2)
C5	0.050(2)	0.035 (3)	0.042 (2)	-0.006 (2)	0.0065 (18)	-0.0031 (19)
C6	0.044 (2)	0.044 (3)	0.039 (2)	-0.0020 (19)	0.0070 (17)	-0.0011 (19)
C7	0.051 (2)	0.052 (3)	0.038 (2)	-0.007(2)	0.0047 (18)	-0.007(2)
C8	0.066 (3)	0.061 (3)	0.051 (3)	0.000 (2)	0.004 (2)	-0.001 (2)
C9	0.052 (2)	0.049 (3)	0.040 (2)	0.001 (2)	0.0012 (18)	-0.0017 (19)
C10	0.042 (2)	0.046 (3)	0.042 (2)	-0.0021 (19)	0.0036 (17)	0.0012 (19)
C11	0.046 (2)	0.049 (3)	0.049 (2)	-0.0093 (19)	0.0027 (18)	0.001 (2)
C12	0.054 (2)	0.058 (3)	0.043 (2)	-0.007(2)	0.0113 (18)	0.007 (2)
C13	0.054 (2)	0.059 (3)	0.043 (2)	0.000 (2)	-0.001 (2)	-0.004(2)
C14	0.052 (2)	0.068 (3)	0.054 (3)	-0.017 (2)	-0.004 (2)	-0.008(2)
C15	0.048 (2)	0.063 (3)	0.048 (3)	-0.011 (2)	0.0079 (18)	-0.001 (2)
C16	0.112 (4)	0.120 (5)	0.065 (3)	-0.021 (4)	-0.013 (3)	-0.026 (3)
C17	0.049 (2)	0.039 (3)	0.064 (3)	-0.005 (2)	0.002 (2)	-0.002 (2)
C18	0.060 (3)	0.067 (4)	0.067 (3)	0.000 (2)	-0.001 (2)	0.017 (3)
C19	0.071 (3)	0.076 (4)	0.082 (3)	-0.006 (3)	-0.007 (3)	0.011 (3)
C20	0.067 (3)	0.054 (3)	0.090 (4)	-0.005 (3)	-0.025 (3)	0.009 (3)
C21	0.046 (2)	0.058 (4)	0.107 (4)	-0.005 (2)	-0.006 (3)	-0.020 (3)
C22	0.066 (3)	0.054 (3)	0.068 (3)	-0.008(2)	0.004 (2)	-0.005 (2)
C23	0.084 (4)	0.080 (5)	0.207 (7)	0.014 (4)	-0.026 (4)	-0.037 (5)
O1	0.0656 (17)	0.061 (2)	0.0511 (18)	0.0081 (15)	0.0062 (14)	-0.0058 (15)
O2	0.109 (2)	0.113 (3)	0.0491 (19)	0.037 (2)	0.0023 (17)	-0.0251 (19)
O3	0.136 (3)	0.156 (4)	0.079 (3)	0.016 (3)	-0.015 (2)	-0.019 (3)
O4	0.083 (2)	0.095 (3)	0.0435 (18)	-0.0101 (18)	-0.0063 (14)	-0.0165 (16)
O5	0.085 (2)	0.096 (3)	0.131 (3)	0.010 (2)	-0.028 (2)	0.003 (2)

Geometric parameters (Å, °)

C1—C2	1.383 (5)	C13—C14	1.372 (5)
C1—O3	1.386 (5)	C14—C15	1.384 (5)

C1—C9	1.407 (5)	C14—H14	0.9300
C2—C3	1.369 (5)	C15—H15	0.9300
С2—Н2	0.9300	C16—O4	1.400 (5)
C3—C4	1.391 (5)	C16—H16A	0.9600
С3—Н3	0.9300	C16—H16B	0.9600
C4—C5	1.382 (5)	C16—H16C	0.9600
C4—H4	0.9300	C17—C18	1.389 (5)
С5—С9	1.408 (5)	C17—C22	1.392 (5)
C5—C6	1.460 (5)	C18—C19	1.371 (6)
C6—C7	1.338 (5)	C18—H18	0.9300
C6-C10	1.491 (5)	C19—C20	1.359 (6)
C7—O1	1.390 (4)	C19—H19	0.9300
C7—C17	1.690(1) 1.482(5)	C20—C21	1 369 (6)
C8-02	1.216 (4)	C20-O5	1.398 (5)
C8-01	1 374 (4)	$C_{21} - C_{22}$	1 411 (6)
C8—C9	1.436 (6)	C21—H21	0.9300
C10—C15	1 381 (5)	C22—H22	0.9300
C10-C11	1.301(5) 1 392(5)	C23—O5	1 370 (6)
C11-C12	1.372(5)	C23—H23A	0.9600
C11—H11	0.9300	C23—H23B	0.9600
C12—C13	1.385 (5)	C23—H23C	0.9600
C12—H12	0.9300	03—H3A	0.8200
C13—O4	1.371 (4)		0.0200
C2-C1-O3	119.9 (4)	C13—C14—H14	120.0
C2-C1-C9	119.2 (4)	C15—C14—H14	120.0
03-01-09	120.8 (4)	C10-C15-C14	121.4 (4)
C3—C2—C1	120.6 (4)	С10—С15—Н15	119.3
С3—С2—Н2	119.7	C14—C15—H15	119.3
C1—C2—H2	119.7	O4—C16—H16A	109.5
C2—C3—C4	120.7 (4)	O4—C16—H16B	109.5
C2—C3—H3	119.6	H16A—C16—H16B	109.5
C4—C3—H3	119.6	O4—C16—H16C	109.5
C5—C4—C3	120.4 (4)	H16A—C16—H16C	109.5
C5—C4—H4	119.8	H16B—C16—H16C	109.5
C3—C4—H4	119.8	C18—C17—C22	117.6 (4)
C4—C5—C9	118.9 (3)	C18—C17—C7	122.4 (4)
C4—C5—C6	121.6 (3)	C22—C17—C7	119.9 (4)
C9—C5—C6	119.5 (3)	C19—C18—C17	121.5 (4)
C7—C6—C5	119.1 (3)	C19—C18—H18	119.2
C7—C6—C10	121.4 (3)	C17—C18—H18	119.2
C5—C6—C10	119.5 (3)	C20—C19—C18	120.2 (5)
C6—C7—O1	121.1 (3)	C20—C19—H19	119.9
C6—C7—C17	130.0 (3)	C18—C19—H19	119.9
01	108.9 (3)	C19—C20—C21	121.2 (4)
02	114.8 (4)	C19—C20—O5	114.6 (5)
O2—C8—C9	127.5 (4)	C21—C20—O5	124.2 (5)
O1—C8—C9	117.7 (4)	C20—C21—C22	118.8 (4)
			\ -/

C1—C9—C5	120.1 (4)	C20—C21—H21	120.6
C1—C9—C8	120.5 (4)	C22—C21—H21	120.6
C5—C9—C8	119.3 (3)	C17—C22—C21	120.7 (4)
C15—C10—C11	117.8 (3)	С17—С22—Н22	119.6
C15—C10—C6	121.4 (3)	C21—C22—H22	119.6
C11—C10—C6	120.8 (3)	O5—C23—H23A	109.5
C12—C11—C10	121.1 (3)	O5—C23—H23B	109.5
C12—C11—H11	119.5	H23A—C23—H23B	109.5
C10—C11—H11	119.5	O5—C23—H23C	109.5
C11—C12—C13	120.1 (3)	H23A—C23—H23C	109.5
C11—C12—H12	119.9	H23B—C23—H23C	109.5
C13—C12—H12	119.9	C8—O1—C7	123.1 (3)
04-C13-C14	124.8 (3)	C1—O3—H3A	109.5
04-C13-C12	115.6 (3)	$C_{13} - O_{4} - C_{16}$	117.5 (3)
C14-C13-C12	119.5 (3)	$C^{23} - C^{20}$	1186(5)
C13 - C14 - C15	1200(3)	020 00 020	110.0 (0)
	120.0 (5)		
03 C1 C2 C3	-1700(4)	C6 C10 C11 C12	-175 5 (4)
$C_{1}^{0} = C_{1}^{0} = C_{2}^{0} = C_{3}^{0}$	-0.2(6)	$C_{10} = C_{10} = C_{11} = C_{12} = C_{13}$	-16(6)
$C_{2} = C_{1} = C_{2} = C_{3}$	0.2(0)	$C_{11} = C_{12} = C_{13} = C_{14}$	1.0(0)
$C_1 = C_2 = C_3 = C_4$	-0.4(6)	$C_{11} = C_{12} = C_{13} = C_{14}$	-0.3(6)
$C_2 = C_3 = C_4 = C_5$	-0.8(6)	$C_{11} = C_{12} = C_{13} = C_{14}$	-170.0(4)
$C_{3} = C_{4} = C_{5} = C_{9}$	-0.8(0) 1764(2)	$C_{12} = C_{13} = C_{14} = C_{15}$	-1/9.0(4)
$C_{3} - C_{4} - C_{3} - C_{6}$	170.4(5)	C12 - C13 - C14 - C13	0.7(0)
C4 - C5 - C6 - C7	-1/6.4(4)	$C_{11} = C_{10} = C_{15} = C_{14}$	-2.0(6)
$C_{9} = C_{5} = C_{6} = C_{7}$	0.8(5)	$C_{0} - C_{10} - C_{15} - C_{14}$	1/5.8 (4)
C4-C5-C6-C10	3.2 (5)	C13 - C14 - C15 - C10	0.8 (6)
C9—C5—C6—C10	-179.6(3)	C6-C7-C17-C18	-26.0 (6)
C5-C6-C7-01	-2.8 (5)	01-07-017-018	151.4 (4)
	177.6 (3)	C6—C7—C17—C22	156.4 (4)
C5—C6—C7—C17	174.4 (3)	01	-26.2 (5)
C10—C6—C7—C17	-5.3 (6)	C22—C17—C18—C19	-0.6 (6)
C2-C1-C9-C5	-1.0 (6)	C7—C17—C18—C19	-178.3(4)
O3—C1—C9—C5	178.8 (4)	C17—C18—C19—C20	0.4 (7)
C2—C1—C9—C8	-180.0 (4)	C18—C19—C20—C21	0.2 (7)
O3—C1—C9—C8	-0.3(6)	C18—C19—C20—O5	179.5 (4)
C4—C5—C9—C1	1.4 (6)	C19—C20—C21—C22	-0.5 (7)
C6—C5—C9—C1	-175.8 (3)	O5—C20—C21—C22	-179.7 (4)
C4—C5—C9—C8	-179.5 (4)	C18—C17—C22—C21	0.3 (6)
C6—C5—C9—C8	3.2 (5)	C7—C17—C22—C21	178.0 (4)
O2—C8—C9—C1	-5.2 (7)	C20—C21—C22—C17	0.2 (6)
O1—C8—C9—C1	173.9 (3)	O2—C8—O1—C7	-177.5 (4)
O2—C8—C9—C5	175.8 (4)	C9—C8—O1—C7	3.4 (5)
O1—C8—C9—C5	-5.2 (6)	C6—C7—O1—C8	0.7 (5)
C7—C6—C10—C15	-68.8 (5)	C17—C7—O1—C8	-177.0 (3)
C5-C6-C10-C15	111.6 (4)	C14—C13—O4—C16	4.8 (6)
C7—C6—C10—C11	109.6 (4)	C12-C13-O4-C16	-174.9 (4)
C5-C6-C10-C11	-70.0 (5)	C19—C20—O5—C23	-164.1 (5)
C15-C10-C11-C12	3.0 (6)	C21—C20—O5—C23	15.2 (7)

Hydrogen-bond geometry (Å, °)

Co3:	and Co4	are the	centroids o	f henzene	rings	C10-C	115 and	C17 - C22	respectively	,
050	and CB i	are the	centrolas o	1 Ochizenie	imgo	010 0	JIJ und	017 022	, respectively	٠

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
03—H3A····O5 ⁱ	0.82	2.56	3.236 (5)	140
C18—H18…Cg3	0.93	2.77	3.494 (5)	135
С3—Н3…Сg3іі	0.93	2.79	3.611 (5)	148
C11—H11··· <i>Cg</i> 4 ⁱⁱⁱ	0.93	2.73	3.593 (4)	155
C23—H23 C ··· $Cg4^{iv}$	0.96	3.00	3.872 (7)	152

Symmetry codes: (i) x+3/2, -y+1/2, z+1/2; (ii) -x+3, -y, -z+1; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.