

ISSN 2414-3146

Received 9 April 2017 Accepted 18 April 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; quinazoline-2,4dione; hydrogen bonding.

CCDC reference: 1024197

Structural data: full structural data are available from iucrdata.iucr.org

3-(2-Chloropyridin-3-yl)quinazoline-2,4(1*H*,3*H*)dione chloroform monosolvate

Noura M. Riad,^a Darius P. Zlotos^a* and Ulrike Holzgrabe^b

^aThe German University in Cairo, Department of Pharmaceutical Chemistry, New Cairo City, 11835 Cairo, Egypt, and ^bInstitute of Pharmacy and Food Chemistry, Wuerzburg University, 97074 Wuerzburg, Germany. *Correspondence e-mail: darius.zlotos@guc.edu.eg

The solvated title compound, $C_{13}H_8ClN_3O_2\cdot CHCl_3$, is a product of a condensation reaction between 2-amino-*N*-(2-chloropyridin-3-yl)benzamide and phosgene. The presence of the chlorine substituent in the pyridine ring forces the latter to adopt a nearly perpendicular orientation relative to the planar quinazoline ring (r.m.s. deviation = 0.04 Å), the two ring systems being inclined to one another by 84.28 (9)°. In the crystal, molecules are linked by pairs of N-H···O hydrogen bonds, forming inversion dimers with an $R_2^2(8)$ ring motif. The dimers are linked by C-H···O hydrogen bonds, forming ribbons propagating along the *a*-axis direction. The chloroform solvent molecules are linked to the organic molecule by C-H···N hydrogen bonds.

Structure description

The title compound results from our ongoing research aimed at the development of subtype-selective ligands for muscarinic receptors (Tahtaoui *et al.*, 2004; Mohr *et al.*, 2010). It was isolated as a side-product in the course of the synthesis of AFDX-type allosteric modulators of muscarinic M2 receptors (Mohr *et al.*, 2004). Specifically, the incomplete condensation between ethyl 2-aminobenzoate and 3-amino-2-chloropyridine (Holzgrabe & Heller, 2003) gave the ring-opened 2-amino-N-(2-chloropyridin-3-yl)-benzamide (1) in 23% yield. This compound, (1), was subjected to condensation with phosgene giving the title compound (2) in 85% yield. This two-step approach is of general interest for the synthesis of differently substituted (1*H*,3*H*)-quinazoline-2,4-diones.

The molecular structure of the title compound (2), which crystallized as a chloroform monosolvate, is shown in Fig. 1. The pyridine ring (N1/C1–C5) is nearly perpendicular to the planar quinazoline ring (N2/N3/C6–C13; r.m.s. deviation = 0.04 Å), making a dihedral angle of 84.28 (9)°.

Figure 1

The molecular structure of the solvated title compound, (2)·CHCl₃, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the crystal, molecules are linked by pairs of $N-H\cdots O$ hydrogen bonds forming inversion dimers, with an $R_2^2(8)$ ring motif (Fig. 2 and Table 1). The chloroform solvate molecules are linked to the organic molecule by $C-H\cdots N$ hydrogen bonds, and the dimers are linked by $C-H\cdots O$ hydrogen bonds, forming ribbons propagating along the *a*-axis direction (Fig. 2 and Table 1).

Synthesis and crystallization

2-Amino-N-(2-chloropyridin-3-yl)benzamide (1).

3-Amino-2-chloropyridine (2.57 g, 20.0 mmol), ethyl 2aminobenzoate (3.39 g, 20.5 mmol) and KO'Bu (7.29 g, 65.0 mmol) were suspended in dry 1,4-dioxane (100 ml) under argon. The mixture was heated by microwaves (gradient of heating: 2 min to 333 K; holding time: 10 min at 333 K; gradient of heating: 3 min from 333–373 K; holding time: 2.5 h at 373 K). After cooling to 298 K, the solution was treated with 1 M NaH₂PO₄ (60 ml) and stirred for 30 min. The dioxane was evaporated *in vacuo* and the residue was treated with 50 ml water. The solid obtained was filtered and dried. The product (1) was then purified by silica chromatography

Figure 2

A view along the *c* axis of the crystal packing of the solvated title compound, (2)·CHCl₃. The hydrogen bonds are shown as dashed lines (see Table 1). For clarity, only the H atoms involved in hydrogen bonding have been included.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N3-H3···O1 ⁱ	0.88	1.91	2.791 (3)	175
$C14-H14\cdots N1^{n}$	1.00	2.39	3.200 (3)	137
$C3-H3A\cdots O2^m$	0.95	2.48	3.123 (3)	125

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, y - 1, z; (iii) x + 1, y, z.

Table 2

Experimental details.

Crystal data	
Chemical formula	C13H8CIN3O2·CHCl3
M _r	393.04
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	5.6382 (11), 13.622 (3), 20.662 (4)
β (°)	92.289 (6)
$V(Å^3)$	1585.7 (5)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.76
Crystal size (mm)	$0.59 \times 0.32 \times 0.26$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2013)
T_{\min}, T_{\max}	0.656, 0.980
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15463, 3370, 2796
R _{int}	0.054
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.634
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.109, 1.08
No. of reflections	3370
No. of parameters	208
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.45, -0.49

Computer programs: APEX2 and SAINT (Bruker, 2013), olex2.solve (Bourhis et al., 2015), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009), SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004) and publCIF (Westrip (2010).

(ethyl acetate/petroleum ether 1:1, $R_f = 0.78$), giving a paleyellow solid (yield: 1.16 g, 23.3%; m.p. 477.3 K). ¹H NMR (400 MHz, DMSO- d_6) δ 9.89 (1*H*, br, N–H), 8.29 (1*H*, dd, J =4.7, 1.8 Hz), 8.07 (1*H*, dd, J = 7.9, 1.8 Hz), 7.74 (1*H*, dd, J = 8.1, 1.5 Hz), 7.49 (1*H*, dd, J = 7.9, 4.7 Hz), 7.24 (1*H*, ddd, J = 8.4, 7.1, 1.5 Hz), 6.79 (1*H*, dd, J = 8.4, 1.2 Hz), 6.62 (1*H*, ddd, J =8.1, 7.1, 1.2 Hz), 6.47 (2*H*, br, NH₂). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.27 (C= O), 150.73, 146.71 (C–Cl), 146.68 (CH), 136.96 (C), 133.22 (C), 132.82 (C), 129.25 (C), 123.85 (CH), 117.22 (C), 115.35 (C), 113.86 (C). IR (ATR, cm⁻¹): 3433 (NH), 3330, 3286 (NH₂), 3073 (CH), 1644 (C=O amide), 1616, 1578, 1569, 1503, 1486, 1391, 802, 743, 735. MS (ESI): *m*/*z* (%): 248.2 (*M*+1).

3-(2-Chloropyridin-3-yl)quinazoline-2,4-(1H,3H)dione (2).

Compound (1) (4.22 g, 20.0 mmol) and Hueunig's base (7.0 ml, 40.0 mmol) were dissolved in dry 1,4-dioxane (150 ml) under argon. A solution of 20% phosgene in toluene (18.5 ml, 35.0 mmol) was added dropwise over 30 min. The solution was heated using microwaves (gradient of heating: 3 min to 358 K; holding time: 2 h at 358 K). After cooling to 298 K, the

mixture was quenched with 1.0 M NaH₂PO₄ (100 ml) and stirred for 1 h at room temperature. The dioxane was evaporated and the solid obtained was filtered by suction and dried over P_4O_{10} , giving a white solid (yield: 4.68 g, 85.5%; m.p. 510.6 K). The product was recrystallized from chloroform giving colourless block-like crystals of the title compound (2). ¹H NMR (400 MHz, CDCl₃) δ 10.52 (1*H*, *br*, N–H), 8.56 (1*H*, dd, J = 4.8, 1.8 Hz, 8.15 (1*H*, dd, J = 7.9, 1.1 Hz), 7.76 (1*H*, dd, J = 7.8, 1.8 Hz, 7.61 (1*H*, *ddd*, J = 8.1, 7.0, 1.1 Hz), 7.46 (1*H*, dd, J = 7.8, 4.8 Hz), 7.27 (1*H*, ddd, J = 7.9, 7.0, 1.0 Hz), 7.02 (1H, dd, J = 8.1, 1.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 161.58 (C=O), 150.95 (C=O), 150.40 (C-Cl), 149.94 (CH), 139.64 (C), 138.87 (C), 135.94 (C), 129.94 (C), 128.73 (C), 123.99 (C), 123.39 (CH), 115.70 (C), 114.34 (C). IR (ATR, cm⁻¹): 3348 (NH), 3072 (CH), 1680 (C=O), 1730 (C=O), 1580, 734. MS (ESI): *m*/*z* (%): 274.6 (*M*+1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors thank Andreas Lorbach and Todd B. Marder (Institute of Inorganic Chemistry, Wuerzburg University) for the data collection and structure solution. We appreciate the financial support provided to NSR by the Deutscher Akademischer Austauschdienst (DAAD).

Funding information

Funding for this research was provided by: Deutscher Akademischer Austauschdienst DAAD.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Bruker (2013). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Holzgrabe, U. & Heller, E. (2003). Tetrahedron, 59, 781-787.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mohr, M., Heller, E., Ataie, A., Mohr, K. & Holzgrabe, U. (2004). J. Med. Chem. 47, 3324–3327.
- Mohr, K., Tränkle, C., Kostenis, E., Barocelli, E., De Amici, M. & Holzgrabe, U. (2010). *Br. J. Pharmacol.* **159**, 997–1008.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tahtaoui, C., Parrot, I., Klotz, P., Guillier, F., Galzi, J.-C., Hibert, M. & Ilien, B. (2004). J. Med. Chem. 47, 4300–4315.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). **2**, x170580 [https://doi.org/10.1107/S2414314617005806]

3-(2-Chloropyridin-3-yl)quinazoline-2,4(1H,3H)-dione chloroform monosolvate

Noura M. Riad, Darius P. Zlotos and Ulrike Holzgrabe

3-(2-Chloropyridin-3-yl)quinazoline-2,4(1H,3H)-dione chloroform monosolvate

Crystal data C13H8ClN3O2·CHCl3 F(000) = 792 $M_r = 393.04$ $D_{\rm x} = 1.646 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Monoclinic, $P2_1/c$ a = 5.6382 (11) ÅCell parameters from 3659 reflections *b* = 13.622 (3) Å $\theta = 2.5 - 26.4^{\circ}$ $\mu = 0.76 \text{ mm}^{-1}$ c = 20.662 (4) Å $\beta = 92.289~(6)^{\circ}$ T = 100 K $V = 1585.7 (5) \text{ Å}^3$ Block, colourless Z = 4 $0.59 \times 0.32 \times 0.26 \text{ mm}$ Data collection Bruker APEXII CCD 3370 independent reflections diffractometer 2796 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{\rm int} = 0.054$ $\theta_{\text{max}} = 26.8^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ Absorption correction: multi-scan (SADABS; Bruker, 2013) $h = -7 \rightarrow 7$ $T_{\rm min} = 0.656, \ T_{\rm max} = 0.980$ $k = -17 \rightarrow 16$ 15463 measured reflections $l = -26 \rightarrow 26$ Refinement Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.040$ Hydrogen site location: inferred from $wR(F^2) = 0.109$ neighbouring sites S = 1.08H-atom parameters constrained 3370 reflections $w = 1/[\sigma^2(F_0^2) + (0.0529P)^2 + 0.6894P]$ where $P = (F_0^2 + 2F_c^2)/3$ 208 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	y	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.12965 (11)	0.78921 (4)	0.58061 (3)	0.02149 (16)
Cl2	0.36470 (11)	0.13451 (5)	0.50999 (3)	0.02813 (17)
C13	0.40964 (14)	0.12297 (5)	0.64924 (3)	0.03261 (19)
Cl4	-0.03576 (12)	0.07201 (5)	0.58295 (4)	0.03620 (19)
O2	0.1523 (3)	0.60895 (12)	0.73418 (7)	0.0176 (4)
01	0.5724 (3)	0.60283 (12)	0.55085 (8)	0.0213 (4)
N2	0.3498 (3)	0.60913 (13)	0.64027 (9)	0.0136 (4)
N1	0.4692 (4)	0.87525 (14)	0.64811 (9)	0.0186 (4)
N3	0.2842 (4)	0.48850 (14)	0.56200 (9)	0.0172 (4)
Н3	0.3204	0.4603	0.5254	0.021*
C10	-0.2711 (4)	0.36988 (17)	0.66329 (12)	0.0217 (5)
H10	-0.3989	0.3427	0.6859	0.026*
C11	-0.1409 (4)	0.44692 (16)	0.69008 (11)	0.0172 (5)
H11	-0.1781	0.4724	0.7313	0.021*
C5	0.6601 (4)	0.87655 (17)	0.68915 (11)	0.0191 (5)
Н5	0.7306	0.9381	0.6997	0.023*
C6	0.4117 (4)	0.56808 (16)	0.58157 (10)	0.0158 (5)
C4	0.7592 (4)	0.79289 (17)	0.71677 (11)	0.0186 (5)
H4	0.8932	0.7968	0.7460	0.022*
C12	0.0464 (4)	0.48717 (16)	0.65602 (10)	0.0139 (4)
C9	-0.2150 (4)	0.33221 (17)	0.60333 (12)	0.0226 (5)
H9	-0.3059	0.2795	0.5853	0.027*
C3	0.6576 (4)	0.70314 (16)	0.70056 (11)	0.0168 (5)
H3A	0.7219	0.6441	0.7184	0.020*
C8	-0.0304 (5)	0.36989 (17)	0.56961 (12)	0.0209 (5)
H8	0.0080	0.3428	0.5290	0.025*
C7	0.1001 (4)	0.44849 (16)	0.59596 (11)	0.0156 (5)
C13	0.1806 (4)	0.57113 (16)	0.68188 (10)	0.0137 (4)
C2	0.4630 (4)	0.70030 (16)	0.65844 (10)	0.0135 (4)
C1	0.3755 (4)	0.78838 (16)	0.63368 (10)	0.0154 (5)
C14	0.2739 (4)	0.07115 (17)	0.57913 (11)	0.0181 (5)
H14	0.3274	0.0014	0.5759	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0248 (3)	0.0162 (3)	0.0229 (3)	0.0005 (2)	-0.0065 (2)	0.0010 (2)
Cl2	0.0266 (3)	0.0344 (4)	0.0234 (3)	-0.0062 (3)	0.0005 (2)	0.0095 (2)
C13	0.0510 (5)	0.0250 (3)	0.0219 (3)	-0.0152 (3)	0.0019 (3)	-0.0036 (2)
Cl4	0.0211 (3)	0.0288 (4)	0.0594 (5)	-0.0018 (3)	0.0103 (3)	0.0094 (3)
O2	0.0216 (9)	0.0148 (8)	0.0166 (8)	-0.0002 (7)	0.0025 (6)	-0.0021 (6)
01	0.0281 (10)	0.0146 (8)	0.0218 (9)	-0.0078 (7)	0.0100 (7)	-0.0063 (6)
N2	0.0179 (10)	0.0071 (9)	0.0159 (9)	-0.0027 (7)	0.0020 (7)	-0.0021 (7)
N1	0.0277 (11)	0.0089 (9)	0.0191 (10)	-0.0023 (8)	0.0004 (8)	0.0001 (7)
N3	0.0237 (11)	0.0113 (9)	0.0168 (9)	-0.0052 (8)	0.0040 (8)	-0.0045 (7)

C10	0.0199 (13)	0.0121 (12)	0.0331 (14)	-0.0036 (10)	0.0026 (10)	0.0036 (9)
C11	0.0175 (12)	0.0120 (11)	0.0222 (12)	0.0021 (9)	0.0019 (9)	0.0026 (9)
C5	0.0266 (13)	0.0110 (11)	0.0197 (12)	-0.0048 (10)	0.0023 (9)	-0.0029 (8)
C6	0.0203 (12)	0.0096 (11)	0.0175 (11)	-0.0009 (9)	0.0018 (9)	-0.0006 (8)
C4	0.0192 (12)	0.0172 (12)	0.0194 (12)	-0.0025 (10)	-0.0010 (9)	-0.0026 (9)
C12	0.0153 (11)	0.0074 (10)	0.0189 (11)	0.0017 (9)	-0.0008 (8)	0.0022 (8)
C9	0.0228 (13)	0.0104 (11)	0.0344 (14)	-0.0053 (10)	-0.0006 (10)	-0.0018 (10)
C3	0.0206 (12)	0.0111 (11)	0.0190 (11)	0.0020 (9)	0.0035 (9)	-0.0009 (8)
C8	0.0274 (13)	0.0115 (11)	0.0239 (12)	-0.0021 (10)	0.0010 (10)	-0.0032 (9)
C7	0.0183 (12)	0.0081 (10)	0.0203 (11)	0.0006 (9)	0.0003 (9)	0.0014 (8)
C13	0.0150 (11)	0.0098 (10)	0.0165 (11)	0.0043 (9)	0.0009 (8)	0.0021 (8)
C2	0.0172 (11)	0.0089 (10)	0.0148 (10)	-0.0018 (9)	0.0053 (8)	-0.0020 (8)
C1	0.0197 (12)	0.0113 (11)	0.0152 (11)	-0.0011 (9)	0.0009 (8)	-0.0004 (8)
C14	0.0210 (12)	0.0113 (11)	0.0221 (12)	-0.0012 (10)	0.0024 (9)	-0.0004 (9)

Geometric parameters (Å, °)

Cl1—C1	1.733 (2)	C11—H11	0.9500	-
Cl2—C14	1.763 (2)	C11—C12	1.404 (3)	
Cl3—C14	1.759 (2)	С5—Н5	0.9500	
Cl4—C14	1.751 (2)	C5—C4	1.383 (3)	
O2—C13	1.214 (3)	C4—H4	0.9500	
O1—C6	1.222 (3)	C4—C3	1.385 (3)	
N2—C6	1.393 (3)	C12—C7	1.392 (3)	
N2—C13	1.408 (3)	C12—C13	1.461 (3)	
N2—C2	1.439 (3)	С9—Н9	0.9500	
N1—C5	1.343 (3)	C9—C8	1.375 (4)	
N1—C1	1.325 (3)	С3—НЗА	0.9500	
N3—H3	0.8800	C3—C2	1.373 (3)	
N3—C6	1.354 (3)	C8—H8	0.9500	
N3—C7	1.387 (3)	C8—C7	1.397 (3)	
C10—H10	0.9500	C2—C1	1.387 (3)	
C10-C11	1.383 (3)	C14—H14	1.0000	
С10—С9	1.389 (3)			
C6—N2—C13	125.71 (19)	C8—C9—C10	121.2 (2)	
C6—N2—C2	116.71 (18)	С8—С9—Н9	119.4	
C13—N2—C2	117.53 (18)	C4—C3—H3A	120.3	
C1—N1—C5	117.1 (2)	C2—C3—C4	119.3 (2)	
C6—N3—H3	117.9	С2—С3—НЗА	120.3	
C6—N3—C7	124.24 (19)	С9—С8—Н8	120.5	
C7—N3—H3	117.9	C9—C8—C7	119.1 (2)	
С11—С10—Н10	120.0	С7—С8—Н8	120.5	
С11—С10—С9	120.1 (2)	N3—C7—C12	119.7 (2)	
С9—С10—Н10	120.0	N3—C7—C8	119.8 (2)	
С10—С11—Н11	120.2	C12—C7—C8	120.5 (2)	
C10-C11-C12	119.6 (2)	O2—C13—N2	120.3 (2)	
C12—C11—H11	120.2	O2—C13—C12	125.0 (2)	

118.3	N2—C13—C12	114.72 (18)
123.4 (2)	C3—C2—N2	121.6 (2)
118.3	C3—C2—C1	118.2 (2)
120.9 (2)	C1—C2—N2	120.2 (2)
123.4 (2)	N1—C1—C11	115.99 (17)
115.66 (19)	N1—C1—C2	123.8 (2)
120.9	C2—C1—Cl1	120.18 (17)
118.1 (2)	Cl2—C14—H14	108.3
120.9	Cl3—C14—Cl2	109.87 (12)
120.8 (2)	Cl3—C14—H14	108.3
119.6 (2)	Cl4—C14—Cl2	110.84 (13)
119.6 (2)	Cl4—C14—Cl3	111.24 (13)
119.4	Cl4—C14—H14	108.3
-0.1 (3)	C4—C3—C2—C1	0.0 (3)
179.9 (2)	C9—C10—C11—C12	0.6 (4)
0.8 (4)	C9—C8—C7—N3	-178.8 (2)
-0.5 (3)	C9—C8—C7—C12	1.0 (4)
177.5 (2)	C3—C2—C1—Cl1	-179.73 (17)
-1.0 (4)	C3-C2-C1-N1	0.2 (3)
0.2 (4)	C7—N3—C6—O1	-179.5 (2)
179.6 (2)	C7—N3—C6—N2	0.9 (3)
-0.3 (3)	C7—C12—C13—O2	-178.2 (2)
3.9 (3)	C7-C12-C13-N2	3.1 (3)
-174.84 (19)	C13—N2—C6—O1	-175.0 (2)
-179.98 (17)	C13—N2—C6—N3	4.6 (3)
0.1 (3)	C13—N2—C2—C3	84.3 (3)
-0.5 (3)	C13—N2—C2—C1	-95.3 (2)
174.7 (2)	C13—C12—C7—N3	1.6 (3)
-6.5 (3)	C13—C12—C7—C8	-178.3 (2)
-98.0 (3)	C2-N2-C6-O1	7.4 (3)
82.4 (3)	C2—N2—C6—N3	-172.91 (19)
-3.9 (3)	C2—N2—C13—O2	-7.8 (3)
176.0 (2)	C2—N2—C13—C12	171.01 (19)
-179.6 (2)	C1—N1—C5—C4	-0.6 (4)
	118.3 123.4 (2) 118.3 120.9 (2) 123.4 (2) 115.66 (19) 120.9 118.1 (2) 120.9 120.8 (2) 119.6 (2) 119.6 (2) 119.6 (2) 119.4 -0.1 (3) 179.9 (2) 0.8 (4) -0.5 (3) 177.5 (2) -1.0 (4) 0.2 (4) 179.6 (2) -0.3 (3) 3.9 (3) -174.84 (19) -179.98 (17) 0.1 (3) -0.5 (3) 174.7 (2) -6.5 (3) -98.0 (3) 82.4 (3) -3.9 (3) 176.0 (2) -179.6 (2)	118.3 N2—C13—C12 123.4 (2) C3—C2—N2 118.3 C3—C2—C1 120.9 (2) C1—C2—N2 123.4 (2) N1—C1—C1 115.66 (19) N1—C1—C2 120.9 C2—C1—C11 118.1 (2) C12—C14—H14 120.9 C13—C14—C12 120.8 (2) C13—C14—H14 119.6 (2) C14—C14—C12 119.6 (2) C14—C14—C13 119.4 C14—C14—C14 -0.1 (3) C4—C3—C2—C1 179.9 (2) C9—C10—C11—C12 0.8 (4) C9—C8—C7—N3 -0.5 (3) C9—C8—C7—C12 177.5 (2) C3—C2—C1—C11 -1.0 (4) C3—C2—C1—C11 -1.0 (4) C3—C2—C1—C11 -1.0 (4) C3—C2—C1—N1 0.2 (4) C7—N3—C6—N2 -0.3 (3) C7—C12—C13—N2 -174.84 (19) C13—N2—C6—N3 -179.98 (17) C13—N2—C2—C1 174.7 (2) C13—C12—C7—N3 -6.5 (3) C13—C12—C7—C3 -98.0 (3) C2—N2—C6—N3 -3.9 (3) C2—N2—C6—N3

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>	
N3—H3····O1 ⁱ	0.88	1.91	2.791 (3)	175	
C14—H14…N1 ⁱⁱ	1.00	2.39	3.200 (3)	137	
C3—H3A····O2 ⁱⁱⁱ	0.95	2.48	3.123 (3)	125	

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*, *y*-1, *z*; (iii) *x*+1, *y*, *z*.