

ISSN 2414-3146

Received 13 April 2017 Accepted 20 April 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; cross-linker; imidazole; poly(ionic liquid); thione; vinyl; C—H $\cdots \pi$ interactions.

CCDC reference: 1545075

Structural data: full structural data are available from iucrdata.iucr.org

3,3'-(Hexane-1,6-diyl)bis(1-vinyl-4-imidazoline-2-thione)

Gabriel Partl,^a Gerhard Laus,^a Volker Kahlenberg,^b Hubert Huppertz^a and Herwig Schottenberger^a*

^aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and ^bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria. *Correspondence e-mail: herwig.schottenberger@uibk.ac.at

The title compound, $C_{16}H_{22}N_4S_2$, was obtained by the reaction of sulfur with the corresponding quaternary salt in the presence of K_2CO_3 . It crystallizes with two half-molecules in the asymmetric unit; the complete molecules are generated by inversion symmetry with the central CH_2-CH_2 bonds of the hexane bridges being located on inversion centres. In each molecule, the C_6 -alkyl chain adopts a typical antiperiplanar conformation and the two heterocyclic rings are oriented antiparallel to each other. In the crystal, molecules are linked by $C-H \cdots \pi$ interactions, forming layers lying parallel to the *ac* plane.

Structure description

The title compound was obtained from 3,3'-(hexane-1,6-diyl)bis(1-vinylimidazolium) dibromide (Cui *et al.*, 2014) by reaction with elemental sulfur in the presence of K₂CO₃. Imidazoline-2-thiones (Laus *et al.*, 2013) are versatile building blocks whose properties have been reviewed by Trzhtsinskaya & Abramova (1991). The crucial advantages of these thiones are simple synthesis and simple derivation in the realm of imidazole chemistry, a mainstay of ionic liquid research. A field of current relevance, poly(ionic liquids) are macromolecules derived from organic salts which are liquid below 373 K (Yuan & Antonietti, 2011). The vinyl substituent renders the title molecule polymerizable, and the bidentate nature of the molecule facilitates cross-linking, thus giving access to a plethora of functionalized imidazolium-containing polymers (Anderson & Long, 2010). They in turn offer a multitude of applications and represent major advances in materials science.

The unit cell contains two independent half-molecules (Fig. 1), which are completed by inversion symmetry. The centres of symmetry lie at the mid-point of the $(CH_2)_6$ spacer

Figure 1

A view of the molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level. The unlabelled atoms are related to the labelled atoms by symmetry operations (-x + 1, -y + 1, -z + 2) for molecule A and (-x, -y + 1, -z + 1) for molecule B.

between the two imidazoline-2-thione rings. As in other bridged bis(imidazoline-2-thiones), the C₆-alkyl chain adopts a typical antiperiplanar conformation (Bhabak *et al.*, 2011; Beheshti *et al.*, 2016), and the two heterocyclic rings are oriented antiparallel to each other, as can be seen in Fig. 1. The lengths of the C=S bonds are 1.680 (1) and 1.682 (1) Å, in perfect accordance with the mean value (Laus *et al.*, 2013) in the Cambridge Structural Database (Groom *et al.*, 2016). Related structures have been reported with short methylene or ethylene bridges (Liu *et al.*, 2003; Jia *et al.*, 2008), C₃-to-C₅ bridges (Bhabak *et al.*, 2011; Beheshti *et al.*, 2016), and longer linkers (Marshall *et al.*, 2005; Marshall & Harrison, 2007).

In the crystal, molecules are linked by $C-H\cdots\pi$ interactions, forming layers lying parallel to the *ac* plane (Table 1 and Fig. 2).

Figure 2

A view along the *b* axis of the crystal packing of the title compound, (colour code: blue *A* molecules, red *B* molecules). The $C-H\cdots\pi$ interactions are shown as dashed lines, and only H atoms H8*B* and H15*B* (blue and red balls, respectively) have been included.

Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and N3/N4/C9–C11 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C8-H8B\cdots Cg2^{i}\\ C15-H15B\cdots Cg1^{ii} \end{array}$	0.99	2.75	3.628 (2)	148
	0.99	2.76	3.589 (2)	142

Symmetry codes: (i) x, y, z + 1; (ii) -x, -y + 1, -z + 1.

Tak	ole	2	
Exp	beri	mental	details.

Crystal data	
Chemical formula	$C_{16}H_{22}N_4S_2$
$M_{\rm r}$	334.5
Crystal system, space group	Triclinic, P1
Temperature (K)	173
a, b, c (Å)	7.1335 (5), 10.6863 (5), 11.8830 (6)
α, β, γ (°)	99.856 (4), 93.530 (5), 101.937 (5)
$V(\text{\AA}^3)$	868.75 (9)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.31
Crystal size (mm)	$0.54 \times 0.2 \times 0.14$
Data collection	
Diffractometer	Agilent Xcalibur Ruby Gemini ultra
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.880, 1
No. of measured, independent and	5545, 3151, 2821
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.013
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.072, 1.05
No. of reflections	3151
No. of parameters	199
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.20, -0.20

Computer programs: (CrysAlis PRO; Agilent, 2014), SIR2002 (Burla et al., 2003), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Synthesis and crystallization

A mixture of 3,3'-(hexane-1,6-diyl)bis(1-vinylimidazolium) dibromide (55.6 g, 129 mmol), sulfur (8.25 g, 257 mmol) and K₂CO₃ (35.6 g, 257 mmol) in MeOH (200 ml) was refluxed for 3 h. After evaporation of the solvent under reduced pressure, the residue was extracted with hot $CHCl_3$ (3 \times 250 ml), followed by hot filtration and evaporation of the solvent. To the residue, EtOH (200 ml) was added and the mixture was ultrasonicated for 30 min. The product was collected by filtration and dried in high vacuum for 24 h (yield 40.0 g, 93%; m.p. 423 K). Single crystals were obtained by slow evaporation of a CHCl₃ solution. ¹H NMR (300 MHz, CDCl₃): δ 1.29 (*m*, 4H), 1.68 (m, 4H), 3.92 (t, J = 7.4 Hz, 4H), 4.80 (dd, J = 9.0, 1.8 Hz, 2H), 5.05 (dd, J = 16.1, 1.8 Hz, 2H), 6.68 (d, J = 2.6 Hz, 2H), 6.91 (d, J = 2.6 Hz, 2H), 7.44 (dd, J = 16.1, 9.0 Hz, 2H) p.p.m. ¹³C NMR (75 MHz, CDCl₃): δ 25.7, 28.2, 47.2, 100.6, 112.4, 118.1, 130.0, 162.3 p.p.m. IR (neat): v 3126, 3092, 2943,

2855, 1639, 1454, 1421, 1401, 1363, 1288, 1259, 1233, 1160, 975, 875, 831, 762, 742, 718, 697, 659, 518, 486 cm⁻¹.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Anderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447-2454.
- Beheshti, A., Babadi, S. S., Nozarian, K., Heidarizadeh, F., Ghamari, N., Mayer, P. & Motamedi, H. (2016). *Polyhedron*, **110**, 261–273.
- Bhabak, K. P., Satheeshkumar, K., Jayavelu, S. & Mugesh, G. (2011). *Org. Biomol. Chem.* 9, 7343–7350.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

- Cui, J., Zhu, W., Gao, N., Li, J., Yang, H., Jiang, Y., Seidel, P., Ravoo, B. J. & Li, G. (2014). *Angew. Chem. Int. Ed.* **53**, 3844–3848.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
 Jia, W.-G., Huang, Y.-B., Lin, Y.-J., Wang, G.-L. & Jin, G.-X. (2008).
- *Eur. J. Inorg. Chem.* pp. 4063–4073.
- Laus, G., Kahlenberg, V., Wurst, K., Müller, T., Kopacka, H. & Schottenberger, H. (2013). Z. Naturforsch Teil B. 68, 1239–1252.
- Liu, Q., Shi, D., Yu, K. & Xu, J. (2003). Acta Cryst. E59, o356-o357.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Marshall, C. & Harrison, W. T. A. (2007). Acta Cryst. E63, 04878.
- Marshall, C., Ward, M. F. & Harrison, W. T. A. (2005). J. Organomet. Chem. 690, 3970–3975.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Trzhtsinskaya, B. V. & Abramova, N. D. (1991). Sulfur Rep. 10, 389–421.
- Yuan, J. & Antonietti, M. (2011). Polymer, 52, 1469-1482.

full crystallographic data

IUCrData (2017). **2**, x170599 [https://doi.org/10.1107/S2414314617005995]

3,3'-(Hexane-1,6-diyl)bis(1-vinyl-4-imidazoline-2-thione)

Gabriel Partl, Gerhard Laus, Volker Kahlenberg, Hubert Huppertz and Herwig Schottenberger

Z = 2

F(000) = 356

 $\theta = 4.0 - 28.5^{\circ}$

 $\mu = 0.31 \text{ mm}^{-1}$

T = 173 K

 $R_{\rm int} = 0.013$

 $h = -6 \rightarrow 8$

 $k = -12 \rightarrow 11$ $l = -14 \rightarrow 13$

 $D_{\rm x} = 1.279 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Prismatic fragment, colourless

5545 measured reflections

 $\theta_{\rm max} = 25.4^\circ, \ \theta_{\rm min} = 3.5^\circ$

3151 independent reflections

2821 reflections with $I > 2\sigma(I)$

 $0.54 \times 0.2 \times 0.14 \text{ mm}$

Cell parameters from 3343 reflections

3,3'-(Hexane-1,6-diyl)bis(1-vinyl-4-imidazoline-2-thione)

Crystal data

C₁₆H₂₂N₄S₂ $M_r = 334.5$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.1335 (5) Å b = 10.6863 (5) Å c = 11.8830 (6) Å a = 99.856 (4)° $\beta = 93.530$ (5)° $\gamma = 101.937$ (5)° V = 868.75 (9) Å³

Data collection

Agilent Xcalibur Ruby Gemini ultra diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.3575 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.880, T_{\max} = 1$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0287P)^2 + 0.3242P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
$\Delta ho_{ m min} = -0.20 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	V	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
<u>S1</u>	0.42181 (5)	0.23294 (4)	0.56557 (3)	0.03198 (11)	
S2	-0.05723(5)	0.23677(4)	0.07703(3)	0.03264 (11)	
N4	0.22259 (16)	0.40254 (11)	0.23089 (10)	0.0230 (3)	
N3	0.28775 (16)	0.21338 (11)	0.17699 (10)	0.0234(3)	
N2	0.16867 (17)	0.19534 (11)	0.72562 (10)	0.0237 (3)	
N1	0.02845 (16)	0.16137 (10)	0.55287 (10)	0.0216 (2)	
C1	0.20569 (19)	0.19571 (12)	0.61534 (11)	0.0212 (3)	
C14	0.1222 (2)	0.50945 (14)	0.24615 (12)	0.0270 (3)	
H14A	0.0525	0.5112	0.172	0.032*	
H14B	0.2178	0.593	0.2699	0.032*	
C9	0.15171 (19)	0.28462 (13)	0.16221 (11)	0.0231 (3)	
C7	0.3279 (2)	0.37721 (14)	0.87953 (12)	0.0268 (3)	
H7A	0.2061	0.3851	0.9129	0.032*	
H7B	0.3436	0.4314	0.8195	0.032*	
C8	0.4943 (2)	0.42931 (14)	0.97290 (12)	0.0269 (3)	
H8A	0.6164	0.422	0.9397	0.032*	
H8B	0.479	0.3754	1.0331	0.032*	
C11	0.3978 (2)	0.40436 (14)	0.28805 (12)	0.0263 (3)	
H11	0.475	0.4756	0.3414	0.032*	
C10	0.4393 (2)	0.28843 (14)	0.25507 (12)	0.0268 (3)	
H10	0.5515	0.262	0.2802	0.032*	
C15	-0.0198 (2)	0.49571 (14)	0.33577 (12)	0.0252 (3)	
H15A	-0.1108	0.41	0.3133	0.03*	
H15B	-0.0952	0.5638	0.3362	0.03*	
C12	0.2730 (2)	0.08475 (14)	0.11905 (13)	0.0279 (3)	
H12	0.1562	0.0426	0.0729	0.033*	
C13	0.4068 (3)	0.01920 (17)	0.12376 (17)	0.0465 (5)	
H13A	0.5258	0.0579	0.169	0.056*	
H13B	0.3857	-0.0675	0.082	0.056*	
C16	0.07338 (19)	0.50680 (13)	0.45661 (12)	0.0240 (3)	
H16A	0.1478	0.4383	0.457	0.029*	
H16B	0.1645	0.5924	0.4796	0.029*	
C6	0.3136 (2)	0.23646 (14)	0.82447 (12)	0.0292 (3)	
H6A	0.4403	0.2258	0.7997	0.035*	
H6B	0.2797	0.1803	0.8817	0.035*	
C5	-0.1648 (2)	0.12107 (15)	0.37121 (14)	0.0354 (4)	
H5A	-0.2801	0.1019	0.407	0.042*	
H5B	-0.1707	0.1173	0.2906	0.042*	
C3	-0.0276 (2)	0.16310 (14)	0.73221 (13)	0.0287 (3)	
H3	-0.0894	0.1575	0.8003	0.034*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

C2	-0.1148 (2)	0.14119 (14)	0.62602 (13)	0.0275 (3)
H2	-0.2497	0.1164	0.6044	0.033*
C4	0.0022 (2)	0.15270 (13)	0.43297 (12)	0.0260 (3)
H4	0.1142	0.1712	0.3941	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.02078 (19)	0.0399 (2)	0.0333 (2)	0.00365 (15)	0.00389 (15)	0.00479 (17)
S2	0.0251 (2)	0.0409 (2)	0.0281 (2)	0.00743 (16)	-0.00448 (15)	-0.00125 (16)
N4	0.0222 (6)	0.0255 (6)	0.0207 (6)	0.0046 (5)	0.0047 (5)	0.0026 (5)
N3	0.0205 (6)	0.0255 (6)	0.0233 (6)	0.0037 (5)	0.0020 (5)	0.0037 (5)
N2	0.0252 (6)	0.0235 (6)	0.0210 (6)	0.0047 (5)	-0.0004 (5)	0.0025 (5)
N1	0.0202 (6)	0.0207 (6)	0.0229 (6)	0.0043 (4)	-0.0004 (5)	0.0027 (4)
C1	0.0229 (7)	0.0174 (6)	0.0227 (7)	0.0053 (5)	-0.0008 (5)	0.0018 (5)
C14	0.0310 (8)	0.0257 (7)	0.0262 (7)	0.0091 (6)	0.0047 (6)	0.0059 (6)
C9	0.0224 (7)	0.0277 (7)	0.0194 (7)	0.0041 (6)	0.0060 (5)	0.0052 (5)
C7	0.0282 (7)	0.0297 (8)	0.0209 (7)	0.0040 (6)	-0.0020 (6)	0.0048 (6)
C8	0.0273 (7)	0.0335 (8)	0.0188 (7)	0.0041 (6)	-0.0005 (6)	0.0059 (6)
C11	0.0217 (7)	0.0307 (8)	0.0227 (7)	0.0000 (6)	0.0014 (6)	0.0023 (6)
C10	0.0212 (7)	0.0310 (8)	0.0265 (8)	0.0038 (6)	-0.0011 (6)	0.0045 (6)
C15	0.0248 (7)	0.0248 (7)	0.0265 (7)	0.0084 (6)	0.0035 (6)	0.0020 (6)
C12	0.0269 (8)	0.0253 (7)	0.0289 (8)	0.0019 (6)	0.0024 (6)	0.0029 (6)
C13	0.0357 (9)	0.0348 (9)	0.0623 (12)	0.0109 (7)	-0.0056 (8)	-0.0091 (8)
C16	0.0218 (7)	0.0231 (7)	0.0262 (7)	0.0056 (5)	0.0035 (6)	0.0016 (6)
C6	0.0327 (8)	0.0325 (8)	0.0219 (7)	0.0077 (6)	-0.0047 (6)	0.0053 (6)
C5	0.0386 (9)	0.0352 (8)	0.0305 (8)	0.0084 (7)	-0.0077 (7)	0.0045 (7)
C3	0.0280 (8)	0.0278 (7)	0.0303 (8)	0.0044 (6)	0.0078 (6)	0.0058 (6)
C2	0.0198 (7)	0.0268 (7)	0.0350 (8)	0.0038 (6)	0.0035 (6)	0.0044 (6)
C4	0.0316 (8)	0.0219 (7)	0.0237 (7)	0.0066 (6)	-0.0004 (6)	0.0024 (6)

Geometric parameters (Å, °)

S1—C1	1.6805 (14)	C8—H8B	0.99
S2—C9	1.6820 (14)	C11—C10	1.333 (2)
N4—C9	1.3576 (18)	C11—H11	0.95
N4—C11	1.3799 (18)	C10—H10	0.95
N4-C14	1.4609 (18)	C15—C16	1.5196 (19)
N3—C9	1.3721 (18)	C15—H15A	0.99
N3—C10	1.3914 (18)	C15—H15B	0.99
N3—C12	1.4078 (18)	C12—C13	1.299 (2)
N2-C1	1.3531 (18)	C12—H12	0.95
N2—C3	1.3812 (18)	C13—H13A	0.95
N2—C6	1.4585 (18)	C13—H13B	0.95
N1-C1	1.3724 (17)	C16—C16 ⁱⁱ	1.517 (3)
N1—C2	1.3889 (18)	C16—H16A	0.99
N1-C4	1.4101 (18)	C16—H16B	0.99
C14—C15	1.5188 (19)	С6—Н6А	0.99

C14 1114A	0.00		0.00
	0.99		0.99
CI4—HI4B	0.99	C5—C4	1.309 (2)
C/C6	1.514 (2)	С5—Н5А	0.95
С7—С8	1.5178 (19)	С5—Н5В	0.95
С7—Н7А	0.99	C3—C2	1.333 (2)
С7—Н7В	0.99	С3—Н3	0.95
C8—C8 ⁱ	1.521 (3)	C2—H2	0.95
C8—H8A	0.99	C4—H4	0.95
C9—N4—C11	110.30 (12)	C11—C10—N3	107.23 (13)
C9—N4—C14	124.54 (12)	C11—C10—H10	126.4
C11—N4—C14	125.10 (12)	N3—C10—H10	126.4
C9—N3—C10	109.60 (12)	C14—C15—C16	114.16 (12)
C9—N3—C12	123.89 (12)	C14—C15—H15A	108.7
C10—N3—C12	126.51 (12)	C16—C15—H15A	108.7
C1—N2—C3	110.19 (12)	C14—C15—H15B	108.7
C1 - N2 - C6	124.83 (12)	C16—C15—H15B	108.7
$C_3 - N_2 - C_6$	124 68 (12)	H15A-C15-H15B	107.6
$C_1 = N_1 = C_2$	109.63(11)	C13 - C12 - N3	125, 10, (14)
C1 - N1 - C4	109.03(11) 123.53(12)	C_{13} C_{12} H_{12}	117.4
$C_1 = N_1 = C_4$	125.55(12) 126.82(12)	N3 C12 H12	117.4
$N_2 = N_1 = C_1$	120.02(12) 105.20(11)	13 - 012 - 1112	117.4
$N_2 = C_1 = N_1$	103.20(11) 127.50(10)	C12 - C13 - H13A	120
$N_2 - C_1 - S_1$	127.30(10) 127.20(10)		120
	127.29 (10)	HI3A—CI3—HI3B	120
N4—C14—C15	111.76 (11)	C16 ⁿ —C16—C15	112.40 (14)
N4—C14—H14A	109.3	C16 ⁿ —C16—H16A	109.1
C15—C14—H14A	109.3	C15—C16—H16A	109.1
N4—C14—H14B	109.3	C16 ⁿ —C16—H16B	109.1
C15—C14—H14B	109.3	C15—C16—H16B	109.1
H14A—C14—H14B	107.9	H16A—C16—H16B	107.9
N4—C9—N3	105.07 (12)	N2—C6—C7	111.33 (12)
N4—C9—S2	127.37 (11)	N2—C6—H6A	109.4
N3—C9—S2	127.56 (11)	С7—С6—Н6А	109.4
C6—C7—C8	113.07 (12)	N2—C6—H6B	109.4
С6—С7—Н7А	109	С7—С6—Н6В	109.4
С8—С7—Н7А	109	H6A—C6—H6B	108
С6—С7—Н7В	109	С4—С5—Н5А	120
С8—С7—Н7В	109	C4—C5—H5B	120
H7A—C7—H7B	107.8	H5A—C5—H5B	120
C7C8C8 ⁱ	112.14 (15)	C2—C3—N2	107.85 (13)
C7—C8—H8A	109.2	С2—С3—Н3	126.1
C8 ⁱ —C8—H8A	109.2	N2-C3-H3	126.1
C7—C8—H8B	109.2	$C_3 - C_2 - N_1$	107 13 (12)
$C8^{i}$ $C8$ $H8B$	109.2	$C_3 - C_2 - H_2$	126.4
H8A-C8-H8B	107.9	N1 - C2 - H2	126.4
C10-C11-N4	107.79 (12)	C_{5} C_{4} N1	120.4
$C_{10} = C_{11} = H_{11}$	126.1	$C_5 C_4 H_4$	127.77 (17)
NA C11 H11	120.1	C_{3} C_{4} H_{4}	117.5
	140.1		11/.J

C3—N2—C1—N1	-0.75 (15)	C9—N4—C11—C10	0.59 (15)
C6—N2—C1—N1	-174.72 (12)	C14—N4—C11—C10	177.66 (12)
C3—N2—C1—S1	178.20 (10)	N4—C11—C10—N3	-0.32 (15)
C6—N2—C1—S1	4.2 (2)	C9—N3—C10—C11	-0.04 (16)
C2—N1—C1—N2	0.35 (14)	C12—N3—C10—C11	178.96 (13)
C4—N1—C1—N2	178.70 (11)	N4—C14—C15—C16	65.34 (16)
C2—N1—C1—S1	-178.60 (10)	C9—N3—C12—C13	173.65 (16)
C4—N1—C1—S1	-0.25 (19)	C10—N3—C12—C13	-5.2 (2)
C9—N4—C14—C15	83.69 (16)	C14—C15—C16—C16 ⁱⁱ	179.71 (14)
C11—N4—C14—C15	-92.97 (15)	C1—N2—C6—C7	95.37 (16)
C11—N4—C9—N3	-0.59 (14)	C3—N2—C6—C7	-77.73 (17)
C14—N4—C9—N3	-177.68 (11)	C8—C7—C6—N2	-172.50 (12)
C11—N4—C9—S2	179.67 (10)	C1—N2—C3—C2	0.89 (16)
C14—N4—C9—S2	2.58 (19)	C6—N2—C3—C2	174.87 (13)
C10—N3—C9—N4	0.39 (14)	N2—C3—C2—N1	-0.64 (16)
C12—N3—C9—N4	-178.64 (12)	C1—N1—C2—C3	0.18 (15)
C10—N3—C9—S2	-179.88 (10)	C4—N1—C2—C3	-178.10 (13)
C12—N3—C9—S2	1.09 (19)	C1—N1—C4—C5	-179.54 (14)
C6-C7-C8-C8 ⁱ	-179.90 (15)	C2—N1—C4—C5	-1.5 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) -*x*, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C1-C3 and N3/N4/C9-C11 rings, respectively.

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
C8—H8 <i>B</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.99	2.75	3.628 (2)	148
C15—H15 B ···Cg1 ⁱⁱ	0.99	2.76	3.589 (2)	142

Symmetry codes: (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*, *y*, *z*+1.