

ISSN 2414-3146

Received 21 February 2017 Accepted 6 April 2017

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary

Keywords: crystal structure; 2,6-diaminopyridine; hydrogen bonding; C— $H \cdots \pi$ interactions.

CCDC reference: 1542477

Structural data: full structural data are available from iucrdata.iucr.org

N^2 , N^2 , N^6 , N^6 -Tetraphenylpyridine-2, 6-diamine

Shintaro Miki, Satoru Umezono and Tsunehisa Okuno*

Department of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan. *Correspondence e-mail: okuno@center.wakayama-u.ac.jp

In the title compound, $C_{29}H_{23}N_3$, the molecule has an unsymmetrical structure, although it can possess *Cs* symmetry. The NC₃ units around the amino N atoms are approximately planar and make dihedral angles of 13.41 (5) and 31.05 (5)° with the pyridine ring. In the crystal, $C-H\cdots$ N interactions between the phenyl and pyridyl rings lead to a columnar stack along the *b* axis.

Structure description

Aryl-substituted 2,6-diaminopyridines are used as blue luminous materials (Chen *et al.*, 2001) and as part of molecular receptors (Yao *et al.*, 2009; Fa *et al.*, 2014). For related structures, see: Chen *et al.* (2001), Klinga *et al.* (1994), Berry *et al.* (2003) and Wang *et al.* (2007).

The title molecule has an unsymmetrical structure (Fig. 1), although it can possess *Cs* symmetry. The N2/C1/C6/C12 (r.m.s. deviation = 0.023 Å) and N3/C5/C18/C24 (r.m.s. deviation = 0.008 Å) units around the amino N atoms are approximately planar and subtend dihedral angles of 13.41 (5) and 31.05 (5)°, respectively, to the N1/C1–C5 pyridyl ring, indicating some conjugation between them. As a result of steric repulsion, the four phenyl rings exhibit large dihedral angles to the pyridyl ring plane, *viz*. 67.17 (5)° for the C6–C11 ring, 42.64 (5)° for the C12–C17 ring, 59.26 (5)° for the C18–C23 ring and 85.25 (5)° for the C24–C29 ring. The C12–C17 and C24-C29 phenyl rings make a dihedral angle of 52.51 (5)° and are oriented *syn* to the diaminopyridine moiety.

In the crystal, $C-H\cdots N$ hydrogen bonds between the phenyl and pyridyl rings makes a columnar stack along the *b* axis and $C-H\cdots \pi$ interactions are also observed (Table 1 and Fig. 2). These interactions are thought to be one of the reasons for lowering molecular symmetry.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and H atoms are shown as small spheres.

Synthesis and crystallization

The title compound was obtained as a minor product by the reaction of N,N'-(pyridine-2,6-diyl)diacetamide with bromobenzene in the presence of CuI.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This work was supported by Research for Promoting Technological Seeds from Japan Science and Technology Agency (JST).

Figure 2

A view of the intermolecular interactions in the title compound. [Symmetry codes:(i) x, y + 1, z; (ii) x, y - 1, z.]

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centriods of the C12–C17 and C18–C23 rings, respectively.

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
0.95	2.71	3.4649 (18)	137
0.95	3.00	3.8133 (17)	145
0.95	2.80	3.5831 (17)	140
	<i>D</i> -H 0.95 0.95 0.95	D−H H···A 0.95 2.71 0.95 3.00 0.95 2.80	$D-H$ $H \cdots A$ $D \cdots A$ 0.95 2.71 3.4649 (18) 0.95 3.00 3.8133 (17) 0.95 2.80 3.5831 (17)

Symmetry codes: (i) x, y + 1, z; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Гable	2	

Experimental	details.
--------------	----------

Crystal data	
Chemical formula	$C_{29}H_{23}N_3$
M _r	413.52
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	93
a, b, c (Å)	19.949 (4), 5.6952 (10), 20.921 (4)
β (°)	113.152 (2)
$V(Å^3)$	2185.5 (7)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.07
Crystal size (mm)	$0.12 \times 0.10 \times 0.06$
Data collection	
Diffractometer	Rigaku Saturn724+
Absorption correction	Numerical (<i>NUMABS</i> ; Rigaku, 1999)
T_{\min}, T_{\max}	0.992, 0.996
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections	16972, 4997, 4014
Rint	0.027
$(\sin^{\text{mn}}\theta/\lambda)_{\text{max}}$ (Å ⁻¹)	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.115, 1.08
No. of reflections	4997
No. of parameters	289
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} ~{\rm \AA}^{-3})$	0.23, -0.21

Computer programs: CrystalClear (Rigaku, 2008), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Crystal-Structure (Rigaku, 2014).

References

- Berry, J. F., Cotton, F. A., Lei, P., Lu, T. & Murillo, C. A. (2003). *Inorg. Chem.* 42, 3534–3539.
- Chen, T. R., Chen, J. D., Keng, T. C. & Wang, J. C. (2001). *Tetrahedron Lett.* **42**, 7915–7917.
- Fa, S. X., Wang, L. X., Wang, D. X., Zhao, L. & Wang, M. X. (2014). J. Org. Chem. 79, 3559–3571.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Klinga, M., Polamo, M. & Leskelä, M. (1994). Acta Cryst. C50, 2051– 2054.
- Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Wang, C. J., Ma, H. R., Wang, Y. Y., Liu, P., Zhou, L. J., Shi, Q. Z. & Peng, S. M. (2007). Cryst. Growth Des. 7, 1811–1817.
- Yao, B., Wang, D. X., Gong, H. Y., Huang, Z. Y. & Wang, M. X. (2009). J. Org. Chem. 74, 5361–5368.

full crystallographic data

IUCrData (2017). **2**, x170521 [https://doi.org/10.1107/S2414314617005211]

N^2 , N^2 , N^6 , N^6 -Tetraphenylpyridine-2, 6-diamine

Shintaro Miki, Satoru Umezono and Tsunehisa Okuno

N², N², N⁶, N⁶-Tetraphenylpyridine-2, 6-diamine

Crystal data

 $C_{29}H_{23}N_3$ $M_r = 413.52$ Monoclinic, $P2_1/c$ a = 19.949 (4) Å b = 5.6952 (10) Å c = 20.921 (4) Å $\beta = 113.152$ (2)° V = 2185.5 (7) Å³ Z = 4

Data collection

Rigaku Saturn724+ diffractometer Detector resolution: 7.111 pixels mm⁻¹ ω scans Absorption correction: numerical (*NUMABS*; Rigaku, 1999) $T_{\min} = 0.992$, $T_{\max} = 0.996$ 16972 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.115$ S = 1.084997 reflections 289 parameters 0 restraints Primary atom site location: structure-invariant direct methods

F(000) = 872.00 $D_x = 1.257 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 6510 reflections $\theta = 2.0-31.1^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 93 KBlock, colorless $0.12 \times 0.10 \times 0.06 \text{ mm}$

4997 independent reflections 4014 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.027$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 3.2^\circ$ $h = -25 \rightarrow 22$ $k = -6 \rightarrow 7$ $l = -26 \rightarrow 26$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0607P)^2 + 0.3246P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.21$ e Å⁻³

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.22089 (5)	0.05699 (18)	0.02057 (5)	0.0183 (2)	
N2	0.13310 (5)	-0.10586 (18)	-0.07967 (5)	0.0192 (2)	
N3	0.31284 (6)	0.2296 (2)	0.11341 (5)	0.0237 (2)	
C1	0.15290 (6)	-0.0247 (2)	-0.01159 (6)	0.0179 (2)	
C2	0.10344 (6)	-0.0310 (2)	0.02107 (6)	0.0210 (3)	
C3	0.12642 (7)	0.0567 (2)	0.08790 (7)	0.0240 (3)	
C4	0.19604 (7)	0.1464 (2)	0.12166 (7)	0.0245 (3)	
C5	0.24170 (6)	0.1413 (2)	0.08529 (6)	0.0204 (3)	
C6	0.06996 (6)	-0.2532 (2)	-0.10914 (6)	0.0196 (2)	
C7	0.01295 (7)	-0.1862 (2)	-0.17059 (6)	0.0218 (3)	
C8	-0.04818 (7)	-0.3288 (3)	-0.19904 (7)	0.0262 (3)	
C9	-0.05299 (7)	-0.5353 (3)	-0.16599 (7)	0.0294 (3)	
C10	0.00375 (7)	-0.6018 (2)	-0.10515 (7)	0.0292 (3)	
C11	0.06585 (7)	-0.4628 (2)	-0.07697 (7)	0.0238 (3)	
C12	0.17718 (6)	-0.0741 (2)	-0.11891 (6)	0.0183 (2)	
C13	0.21613 (7)	0.1330 (2)	-0.11500 (6)	0.0209 (3)	
C14	0.25942 (7)	0.1554 (2)	-0.15304 (6)	0.0235 (3)	
C15	0.26401 (7)	-0.0251 (2)	-0.19596 (7)	0.0248 (3)	
C16	0.22393 (7)	-0.2281 (2)	-0.20109 (7)	0.0244 (3)	
C17	0.18107 (7)	-0.2534 (2)	-0.16269 (6)	0.0210 (3)	
C18	0.35806 (6)	0.2183 (2)	0.18519 (6)	0.0200 (3)	
C19	0.35523 (7)	0.0266 (2)	0.22566 (7)	0.0238 (3)	
C20	0.40196 (7)	0.0158 (3)	0.29523 (7)	0.0272 (3)	
C21	0.45213 (7)	0.1935 (3)	0.32528 (7)	0.0273 (3)	
C22	0.45537 (7)	0.3831 (2)	0.28495 (7)	0.0251 (3)	
C23	0.40846 (7)	0.3967 (2)	0.21551 (6)	0.0228 (3)	
C24	0.34234 (6)	0.3263 (2)	0.06662 (6)	0.0195 (2)	
C25	0.39688 (7)	0.2069 (2)	0.05433 (7)	0.0235 (3)	
C26	0.42474 (7)	0.3004 (3)	0.00875 (7)	0.0309 (3)	
C27	0.39866 (8)	0.5121 (3)	-0.02417 (7)	0.0329 (3)	
C28	0.34452 (8)	0.6312 (3)	-0.01182 (7)	0.0305 (3)	
C29	0.31614 (7)	0.5382 (2)	0.03378 (7)	0.0248 (3)	
H2	0.05578	-0.09348	-0.002	0.0252*	
H3	0.09391	0.05535	0.11106	0.0288*	
H4	0.21202	0.20849	0.1674	0.0294*	
H7	0.01587	-0.04361	-0.19293	0.0262*	
H8	-0.08681	-0.28475	-0.24128	0.0314*	
H9	-0.09524	-0.63103	-0.18513	0.0353*	
H10	0.00031	-0.74309	-0.0825	0.0350*	
H11	0.10531	-0.51116	-0.03587	0.0286*	
H13	0.21306	0.25848	-0.08637	0.0251*	
H14	0.28622	0.29604	-0.14967	0.0282*	
H15	0.29416	-0.00949	-0.22134	0.0298*	
H16	0.22571	-0.35106	-0.23107	0.0292*	
H17	0.15421	-0.39404	-0.16635	0.0252*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H19	0.3213	-0.09649	0.20555	0.0286*	
H20	0.39959	-0.11459	0.32259	0.0327*	
H21	0.48393	0.18543	0.37298	0.0327*	
H22	0.48998	0.50438	0.30504	0.0301*	
H23	0.41067	0.52825	0.18848	0.0274*	
H25	0.41495	0.06202	0.07707	0.0281*	
H26	0.46187	0.21904	0.00005	0.0371*	
H27	0.418	0.5757	-0.05533	0.0395*	
H28	0.32672	0.77647	-0.03445	0.0366*	
H29	0.27894	0.61958	0.04235	0.0298*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	<i>U</i> ²³
N1	0.0165 (5)	0.0207 (5)	0.0176 (5)	-0.0013 (4)	0.0066 (4)	-0.0004 (4)
N2	0.0183 (5)	0.0224 (5)	0.0177 (5)	-0.0051 (4)	0.0078 (4)	-0.0031 (4)
N3	0.0184 (5)	0.0362 (6)	0.0155 (5)	-0.0090 (5)	0.0056 (4)	0.0007 (4)
C1	0.0178 (6)	0.0182 (6)	0.0176 (6)	-0.0009 (5)	0.0070 (5)	-0.0009 (4)
C2	0.0160 (6)	0.0258 (6)	0.0213 (6)	-0.0042 (5)	0.0074 (5)	-0.0035 (5)
C3	0.0226 (6)	0.0295 (7)	0.0247 (6)	-0.0051 (5)	0.0145 (5)	-0.0039 (5)
C4	0.0248 (6)	0.0313 (7)	0.0200 (6)	-0.0072 (5)	0.0116 (5)	-0.0074 (5)
C5	0.0186 (6)	0.0231 (6)	0.0193 (6)	-0.0041 (5)	0.0071 (5)	-0.0009 (5)
C6	0.0167 (6)	0.0240 (6)	0.0193 (6)	-0.0033 (5)	0.0083 (5)	-0.0046 (5)
C7	0.0219 (6)	0.0268 (7)	0.0179 (6)	0.0008 (5)	0.0090 (5)	-0.0024 (5)
C8	0.0199 (6)	0.0363 (8)	0.0197 (6)	0.0010 (5)	0.0051 (5)	-0.0070 (5)
C9	0.0224 (6)	0.0335 (8)	0.0316 (7)	-0.0086 (6)	0.0098 (6)	-0.0127 (6)
C10	0.0297 (7)	0.0241 (7)	0.0343 (7)	-0.0073 (6)	0.0131 (6)	-0.0031 (6)
C11	0.0231 (6)	0.0236 (6)	0.0225 (6)	-0.0015 (5)	0.0066 (5)	-0.0015 (5)
C12	0.0164 (5)	0.0224 (6)	0.0156 (5)	0.0012 (5)	0.0056 (4)	0.0018 (5)
C13	0.0224 (6)	0.0216 (6)	0.0180 (6)	-0.0009 (5)	0.0073 (5)	0.0002 (5)
C14	0.0212 (6)	0.0284 (7)	0.0203 (6)	-0.0035 (5)	0.0075 (5)	0.0040 (5)
C15	0.0209 (6)	0.0355 (7)	0.0202 (6)	0.0032 (5)	0.0103 (5)	0.0056 (5)
C16	0.0231 (6)	0.0302 (7)	0.0199 (6)	0.0044 (5)	0.0086 (5)	-0.0015 (5)
C17	0.0198 (6)	0.0230 (6)	0.0198 (6)	0.0003 (5)	0.0073 (5)	-0.0002 (5)
C18	0.0176 (6)	0.0262 (6)	0.0167 (6)	-0.0012 (5)	0.0073 (5)	-0.0016 (5)
C19	0.0257 (6)	0.0248 (6)	0.0225 (6)	-0.0049 (5)	0.0113 (5)	-0.0029 (5)
C20	0.0307 (7)	0.0312 (7)	0.0227 (6)	0.0012 (6)	0.0135 (6)	0.0040 (5)
C21	0.0236 (6)	0.0393 (8)	0.0174 (6)	0.0021 (6)	0.0063 (5)	-0.0011 (5)
C22	0.0206 (6)	0.0317 (7)	0.0219 (6)	-0.0045 (5)	0.0073 (5)	-0.0060 (5)
C23	0.0211 (6)	0.0255 (7)	0.0224 (6)	-0.0025 (5)	0.0091 (5)	-0.0004 (5)
C24	0.0166 (5)	0.0258 (6)	0.0148 (5)	-0.0057 (5)	0.0045 (5)	-0.0019 (5)
C25	0.0183 (6)	0.0276 (7)	0.0220 (6)	-0.0011 (5)	0.0053 (5)	-0.0002 (5)
C26	0.0223 (7)	0.0461 (9)	0.0268 (7)	-0.0060 (6)	0.0123 (6)	-0.0078 (6)
C27	0.0282 (7)	0.0505 (9)	0.0189 (6)	-0.0193 (7)	0.0081 (6)	-0.0002 (6)
C28	0.0290 (7)	0.0293 (7)	0.0241 (7)	-0.0105 (6)	0.0007 (6)	0.0061 (6)
C29	0.0196 (6)	0.0252 (7)	0.0255 (6)	-0.0022 (5)	0.0043 (5)	-0.0011 (5)

Geometric parameters (Å, °)

N1—C1	1.3384 (14)	C24—C25	1.390 (2)
N1—C5	1.3394 (16)	C24—C29	1.3850 (18)
N2—C1	1.3985 (16)	C25—C26	1.385 (2)
N2—C6	1.4354 (15)	C26—C27	1.384 (2)
N2—C12	1.4309 (19)	C27—C28	1.383 (2)
N3—C5	1.3988 (16)	C28—C29	1.392 (2)
N3—C18	1.4170 (14)	С2—Н2	0.950
N3—C24	1.4357 (19)	С3—Н3	0.950
C1—C2	1.404 (2)	C4—H4	0.950
C2—C3	1.3822 (18)	С7—Н7	0.950
C3—C4	1.3847 (18)	С8—Н8	0.950
C4—C5	1.398 (2)	С9—Н9	0.950
C6—C7	1.3937 (15)	C10—H10	0.950
C6—C11	1.3886 (19)	C11—H11	0.950
C7—C8	1.3895 (18)	С13—Н13	0.950
C8—C9	1.386 (2)	C14—H14	0.950
C9—C10	1.3827 (16)	С15—Н15	0.950
C10—C11	1.3908 (18)	C16—H16	0.950
C12—C13	1.3971 (18)	С17—Н17	0.950
C12—C17	1.3937 (19)	С19—Н19	0.950
C13—C14	1.391 (2)	С20—Н20	0.950
C14—C15	1.392 (2)	C21—H21	0.950
C15—C16	1.385 (2)	С22—Н22	0.950
C16—C17	1.392 (2)	С23—Н23	0.950
C18—C19	1.3963 (19)	С25—Н25	0.950
C18—C23	1.3945 (17)	С26—Н26	0.950
C19—C20	1.3872 (17)	С27—Н27	0.950
C20—C21	1.3881 (19)	C28—H28	0.950
C21—C22	1.387 (2)	С29—Н29	0.950
C22—C23	1.3868 (16)		
N1…C3	2.761 (2)	C20····H27 ^{xi}	3.0597
N1…C12	2.7986 (17)	C21····H14 ^{xi}	3.5492
N1…C13	2.8335 (18)	C21····H15 ^{xi}	3.4211
N1…C18	3.5752 (14)	C21····H22 ^{xii}	3.5219
N1…C24	2.7047 (15)	C21····H23 ^{xii}	3.0133
N1…C25	3.4065 (19)	C21····H25 ^{xiii}	3.3689
N1…C29	3.2838 (18)	C21···H27 ^{xi}	3.2235
N2…C5	3.5645 (15)	C22…H15 ^{xi}	3.2474
N3…C1	3.5433 (15)	C22…H20 ⁱⁱ	3.2761
C1···C4	2.7522 (19)	C22···H22 ^{xii}	3.3164
C1…C7	3.5218 (15)	C22···H23 ^{xii}	3.2196
C1…C11	3.0406 (17)	C22···H25 ^{xiii}	3.1925
C1…C13	3.037 (2)	C23····H15 ^{xi}	3.1187
C2…C5	2.7316 (16)	C23····H19 ⁱⁱ	3.3335
C2…C6	2.8351 (18)	C23····H22 ^{xii}	3.1572

C2C11	2,0007,(18)	C25H21xiii	2 5 1 2 5
C4C18	3.0997 (18)	C25H22xii	3.3423
C4C10	3.0005(13) 3.1387(17)	$C_{25} = H_{22}$	3.0618
C5C10	2.0017(16)	C26H21xiii	2 2719
C5C25	2.9917(10)		2 4704
C5C23	3.423(2)		3.4/94 2.0000
C3C29	3.120(2)	C26-H2/**	2.9808
	2.7781 (18)	C26····H28 [·]	3.4805
	2.850 (2)	C27H20 ^{ix}	3.2659
	2.7/6(2)		3.2619
C/C12	3.0862 (19)	C27H21 ^{ix}	3.4158
C7…C17	3.315 (2)	C27···H26 ^m	3.0392
C8…C11	2.7769 (17)	C27···H27 ^m	3.4074
C11···C12	3.484 (2)	C28···H21 ^{xiii}	3.5253
C12···C15	2.806 (2)	C28…H25 ⁱⁱ	3.0656
C13…C16	2.778 (2)	C29…H25 ⁱⁱ	3.4934
C14…C17	2.7668 (19)	H2····C2 ^{iv}	3.1232
C18…C21	2.7940 (17)	H2····C3 ^{iv}	3.3688
C18…C25	3.125 (2)	H2···C10 ⁱⁱ	3.4371
C18…C29	3.4597 (19)	H2···C10 ^v	3.3971
C19…C22	2.7754 (18)	H2…H2 ^{iv}	2.4980
C20···C23	2.770 (2)	H2···H3 ^{iv}	2.9686
C23···C24	2.8935 (17)	H2…H10 ⁱⁱ	2.5647
C23····C25	3.461 (2)	H2…H10 ^v	2.6075
C24…C27	2.769 (2)	H3····C6 ^{iv}	3.4432
C25…C28	2.7764 (19)	H3····C7 ^{iv}	2.9561
C26…C29	2.774 (2)	H3····C8 ^{iv}	2.8226
N1…C29 ⁱ	3.4649 (18)	Н3…С9	3.3906
C2…C10 ⁱⁱ	3.5741 (17)	H3…C9 ^{iv}	3.1933
C10…C2 ⁱ	3.5741 (17)	H3…C10 ^v	3.2083
C17C28 ⁱ	3.5964 (17)	H3····H2 ^{iv}	2.9686
C25…C28 ⁱ	3.553 (2)	H3…H7 ^{iv}	3.2687
C26C27 ⁱⁱⁱ	3.572 (2)	H3···H8 ^{iv}	3.0745
C27C26 ⁱⁱⁱ	3 572 (2)	H3····H9 ^v	2.8652
C_{28} C_{17} ⁱⁱ	3.5964(17)	H3H10 ^v	2.0032
$C_{28}^{0} = C_{17}^{0}$	3 553 (2)	H3···H16 ^{vi}	3 5138
C29···N1 ⁱⁱ	3.355(2) 3.4649(18)	$H4\cdots C14^{xi}$	3 5796
N1···H2	3 2532	H4···C15 ^{xi}	3 1888
N1H4	3 2618		3 1128
N1H13	2 4641		3.4420
N1H25	3 5750	H4 H1	3 5101
N1H20	2 2764		2 8250
N1H29	2.6440		2.0339
1N2117	2.0449 2.6176		2.0/03
N2111	2.01/0		3.3009 2.9575
	2.0219		2.83/3
N2H13	2.0043	H/	3.3457
N2…H1/	2.6000		3.3138
N <i>3</i> ···H4	2.6687	H/C10 ⁿ	3.1798
N3…H19	2.6338	H7···H3 ^{IV}	3.2687

N3…H23	2.5998	H7…H8 ^{viii}	2.7573
N3…H25	2.6183	H7…H9 ⁱⁱ	3.2780
N3…H29	2.6098	H7…H9 ^{viii}	3.5270
C1…H3	3.2483	H7…H10 ⁱⁱ	2.9878
C1…H11	2.9078	H8····C7 ^{vii}	3.5964
C1…H13	2.8223	H8…C12 ^{vii}	3.2211
C2…H4	3.2727	H8…C13 ^{vii}	3.1331
C2…H11	2.9887	H8…C14 ^{vii}	3.2977
C4…H2	3.2705	H8…C15 ^{vii}	3.5277
C4…H19	2.7909	H8…C16 ^{vii}	3.5663
C5…H3	3 2361	H8…C17 ^{vii}	3 4240
C5…H13	3.4722	H8···H3 ^{iv}	3.0745
C5H19	2 7466	H8····H4 ^{iv}	3 4428
C5H25	3 5561	H8····H7 ^{vii}	2 7573
C5H29	3 0503	H8H13 ^{vii}	3 5020
C6H2	2 5359		3 5851
C6H8	3 2645	H8H17 ^{viii}	2 0070
C6H10	3 2600		2.9070
C6H17	5.2009 2.5461		2 2619
	2.3401		2.2010
C7H0	2.2620		2.7832
C7	3.2039		3.0441
	3.2681		2.8652
	3.0255		3.4692
C8···H10	3.2544	H9…H7	3.2780
C9…H7	3.2643	H9····H7 ^{vn}	3.5270
С9…Н11	3.2622	H9…H16 ^{vii}	2.7982
С10…Н2	3.5149	$H9 \cdots H17^{vn}$	3.2261
С10…Н8	3.2542	$H10 \cdots N2^{i}$	3.3416
С11…Н2	2.6783	H10····C1 ⁱ	3.2386
С11…Н7	3.2678	H10····C2 ⁱ	2.8481
С11…Н9	3.2630	H10····C2 ^v	3.1116
C11…H17	3.0577	H10…C3 ^v	3.0609
С12…Н7	2.9775	H10····C6 ⁱ	3.3602
C12…H14	3.2698	H10····C7 ⁱ	3.1928
C12…H16	3.2737	H10…H2 ⁱ	2.5647
C13…H15	3.2793	H10····H2 ^v	2.6075
С13…Н17	3.2626	H10…H3 ^v	2.4838
C14…H16	3.2518	$H10 \cdots H7^{i}$	2.9878
C15…H13	3.2759	H11…N1 ⁱ	3.2586
C15…H17	3.2654	H11····C1 ⁱ	3.0552
C16…H14	3.2498	H11····C2 ⁱ	3.1971
С17…Н7	3.3240	H11····C3 ⁱ	3.4761
С17…Н13	3.2638	H11···C5 ⁱ	3.5105
C17…H15	3.2713	H11…H13 ⁱ	3.0404
C18…H4	2.7887	H11…H29 ⁱ	3.2822
C18···H20	3.2666	H13···C11 ⁱⁱ	3.4112
C18····H22	3 2679	H13…C17 ⁱⁱ	3 1441
C18····H25	3 0357	H13····H8 ^{viii}	3 5020
010 1120	5.0557		5.5020

С18…Н29	3.5967	H13…H11 ⁱⁱ	3.0404
С19…Н4	2.8254	H13…H17 ⁱⁱ	2.5592
C19…H21	3.2691	H13…H28 ⁱ	3.4526
С19…Н23	3.2662	H14…C16 ⁱⁱ	2.9992
C20····H22	3.2535	H14…C17 ⁱⁱ	3.2575
С21…Н19	3.2670	H14…C19 ^{ix}	3.5415
С21…Н23	3.2631	H14…C20 ^{ix}	3.1467
С22…Н20	3.2527	H14…C21 ^{ix}	3.5492
С23…Н19	3.2668	$H14$ ··· $H4^{ix}$	3.5191
C23…H21	3.2662	H14…H16 ⁱⁱ	2.6039
С23…Н25	3.5120	$H14 \cdots H17^{ii}$	3.0741
С24…Н13	3.2487	H14…H20 ^{ix}	3.1266
С24…Н23	2.6358	H15…C18 ^{ix}	3.1875
С24…Н26	3.2574	H15…C19 ^x	3.5282
C24…H28	3.2592	H15…C19 ^{ix}	3.3675
С25…Н23	3.2702	H15…C20×	3.5317
C25…H27	3.2576	H15····C20 ^{ix}	3.4734
C25····H29	3.2647	H15····C21 ^{ix}	3.4211
C26····H14	3,3793	H15C22 ^{ix}	3.2474
C26····H28	3.2559	H15C23 ^{ix}	3.1187
C27…H14	2.9679	H15H4 ^{ix}	2.8359
C27···H25	3 2 5 9 0	H15H19 ^x	2.8844
C27···H29	3.2603	H15H20x	2.8865
C28····H13	3 2558	H15H23 ^{ix}	3 5244
C28····H14	3 2674	$H16\cdots C4^{x}$	3 3523
C28····H26	3.2550	$H16 \cdots C14^{i}$	3.1865
C29····H13	3.0032	H16C19 ^x	3.2147
C29····H23	3.0389	H16 ^{···} C20 [×]	3.4676
C29····H25	3 2642	H16···H3×	3 5138
C29····H27	3 2603	H16H4x	2.8765
Н2…Н3	2 3403	H16 H1	3 5851
H2…H11	2.7726	H16 H19 H16 H19	2,7982
Н3…Н4	2 3490	$H16 H14^{i}$	2.6039
H4…H19	2.6530	H16H19 ^x	2 7335
H7…H8	2.3401	H16H20 ^x	3 2045
H7…H17	3 2714	$H17\cdots C13^{i}$	2.9821
H8…H9	2.3351	$H17 \cdots C14^{i}$	3.2569
H9…H10	2.3308	H17···H8 ^{vii}	2,9070
H10····H11	2.3403	$H17 \cdots H9^{viii}$	3 2261
H11····H17	3 3079	H17···H13 ⁱ	2,5592
H13…H14	2.3344	$H17\cdots H14^{i}$	3 0741
H13…H29	3 2289	H17···H28 ⁱ	3 5963
H14…H15	2,3426	H19····C15 ^{vi}	3 4709
H14···H27	3.0436	H19···C16 ^{vi}	3 4014
H14···H28	3 5240	$H19\cdots C23^{i}$	3 3335
H15H16	2, 3392	H19···H15 ^{vi}	2,8844
H16…H17	2,3338	H19····H16 ^{vi}	2.7335
H19····H20	2.3320	H19H23 ⁱ	2.7555
···/ ····/	2.3320	111/ 1140	4.0757

H20…H21	2.3382	H19…H29 ⁱ	3.5662
H21…H22	2.3387	H20C15 ^{vi}	3.2940
H22…H23	2.3312	H20…C16 ^{vi}	3.4588
H23…H25	3.5563	H20····C22 ⁱ	3.2761
H23…H29	3.1946	H20····C27 ^{xi}	3.2659
H25…H26	2.3363	H20····H14 ^{xi}	3.1266
H26…H27	2.3317	H20…H15 ^{vi}	2.8865
H27…H28	2.3323	H20…H16 ^{vi}	3.2045
H28…H29	2.3437	H20…H22 ⁱ	2.9353
N1…H11 ⁱⁱ	3.2586	H20…H23 ⁱ	3.5421
N1…H28 ⁱ	3.2009	H20····H27 ^{xi}	2.4433
N1···H29 ⁱ	2.7092	$H21\cdots C25^{xii}$	3.5425
N2…H10 ⁱⁱ	3 3416	$H21\cdots C26^{xii}$	3 2718
N2···H29 ⁱ	3 4038	$H21\cdots C26^{xi}$	3 4794
C1H10 ⁱⁱ	3 2386	$H21 \cdots C27^{xii}$	3 2619
	3.0552	$H21 \cdots C27^{xi}$	3 4158
$C1 \cdots H20^{i}$	3.0771	$H21 \cdots C28^{xii}$	3 5253
C_{1} H_{2}^{iv}	3 1 2 3 2	H21H23 ^{xii}	3 0003
$C2 \cdot H2$	2 8/81	H21H25 ^{xiii}	2 8467
$C_2 \cdots H_{10}$	2.0401	H21 H25 H25 H21 H26 ^{xi}	2.0407
$C_2 \cdots H_{11}^{ii}$	3.1110		2.9113
$C_2 \dots H_2^{iv}$	2 2688	H21 H27 $H21H27^{xi}$	5.5921 2 7825
C3H0v	2 2757		2.7623
C2110v	2.0600		2 2046
	2.47(1		2.2652
	5.4/01 2.2522		3.3032 2.5509
C5 H11	5.5525 2.5105		3.5508
	3.5105		3.5219
C5H29 ⁴	3.2728		3.3164
	3.4432		3.15/2
C6H10"	3.3602	H22C25 ^{xin}	3.1400
	2.9561	H22···H20 ⁿ	2.9353
	3.3669	H22···H23 ^{xn}	3.3299
C7···H8 ^{vin}	3.5964	H22····H23 ^{xin}	3.5548
C7…H10 ⁿ	3.1928	H22···H25 ^{xin}	2.4717
C8…H3 ^{IV}	2.8226	H23···C19 ⁿ	3.2495
C8···H7 ^{vii}	2.8575	H23···C21 ^{xiii}	3.0133
С9…Н3 ^v	3.3906	H23···C22 ^{xiii}	3.2196
C9···H3 ^{iv}	3.1933	H23…H15 ^{xi}	3.5244
C9…H7 ⁱ	3.3457	H23…H19 ⁱⁱ	2.8939
C9…H7 ^{vii}	3.3138	H23…H20 ⁱⁱ	3.5421
C10····H2 ⁱ	3.4371	H23····H21 ^{xiii}	3.0003
C10…H2 ^v	3.3971	H23····H22 ^{xii}	3.5548
C10…H3 ^v	3.2083	H23····H22 ^{xiii}	3.3299
C10····H7 ⁱ	3.1798	H25····C21 ^{xii}	3.3689
C11···H13 ⁱ	3.4112	H25····C22 ^{xii}	3.1925
C12…H8 ^{viii}	3.2211	H25…C28 ⁱ	3.0656
C12···H28 ⁱ	2.9327	H25…C29 ⁱ	3.4934
C13····H8 ^{viii}	3.1331	H25···H21 ^{xii}	2.8467

C13…H17 ⁱⁱ	2.9821	H25…H22 ^{xii}	2.4717
C13…H28 ⁱ	2.9842	H25…H28 ⁱ	2.8208
C14····H4 ^{ix}	3.5796	H25…H29 ⁱ	3.5622
C14····H8 ^{viii}	3.2977	H26····C27 ⁱⁱⁱ	3.0392
C14…H16 ⁱⁱ	3.1865	H26…H21 ^{ix}	2.9115
C14…H17 ⁱⁱ	3.2569	H26…H26 ^{xiv}	2.9226
C14…H28 ⁱ	3.1617	H26…H26 ⁱⁱⁱ	3.5438
C15…H4 ^{ix}	3.1888	H26…H27 ⁱⁱⁱ	2.5036
C15····H8 ^{viii}	3.5277	H26…H28 ⁱ	3.5515
C15····H9 ^{viii}	3.3618	H27····C20 ^{ix}	3.0597
C15H19 ^x	3 4709	H27···C21 ^{ix}	3 2235
C15···H20 ^x	3 2940	H27···C26 ⁱⁱⁱ	2 9808
C15···H28 ⁱ	3 3068	H27C27 ⁱⁱⁱ	3 4074
C16···H8 ^{viii}	3 5663	$H27 \cdots H20^{ix}$	2 4433
	2 7852	H27H21 ^{xiii}	3 5921
$C16$ ···H1 4^{i}	2.7852	H27 H21 H27H21ix	2 7825
C16H10 ^x	3 4014	H27 H21 H27H26 ⁱⁱⁱ	2.7025
C16H20x	3.4014	H27 H20	2.3030
C16H29i	2 2760	H29N11	3.2941
	2 4240		3.2009
	5.4240 2.0441	H28C12 ⁱⁱ	2.9327
C17. H12i	5.0441		2.9842
С17. Ш4	5.1441 2.2575	H28····C14"	3.101/
C17H14 ⁴	3.2575	H28····C15 [#]	3.3068
C17H28 ⁴	3.0886	H28C16"	3.2769
	3.1875		3.0886
C18····H22 ^{xn}	3.1982	H28C25 ⁿ	3.0618
C19H14 ^{x1}	3.5415	H28C26 ⁿ	3.4865
C19···H15 ^{v1}	3.5282	H28…H13 ⁿ	3.4526
C19…H15 ^{xi}	3.3675	H28…H17 ⁱⁱ	3.5963
C19…H16 ^{vi}	3.2147	H28…H25"	2.8208
C19…H22 ^{xii}	3.3946	H28…H26 ⁱⁱ	3.5515
C19…H23 ⁱ	3.2495	H29…N1 ⁱⁱ	2.7092
C20····H14 ^{xi}	3.1467	H29…N2 ⁱⁱ	3.4038
C20…H15 ^{vi}	3.5317	H29····C1 ⁱⁱ	3.0771
C20…H15 ^{xi}	3.4734	H29····C5 ⁱⁱ	3.2728
C20····H16 ^{vi}	3.4676	H29…H11 ⁱⁱ	3.2822
C20····H22 ⁱ	3.3652	H29…H19 ⁱⁱ	3.5662
C20····H22 ^{xii}	3.5508	H29…H25 ⁱⁱ	3.5622
C1—N1—C5	118.87 (12)	C24—C29—C28	119.73 (14)
C1—N2—C6	118.65 (11)	C1—C2—H2	121.112
C1—N2—C12	123.46 (9)	С3—С2—Н2	121.119
C6—N2—C12	117.44 (10)	С2—С3—Н3	119.450
C5—N3—C18	123.18 (12)	С4—С3—Н3	119.452
C5—N3—C24	118.12 (9)	С3—С4—Н4	121.547
C18—N3—C24	118.63 (10)	С5—С4—Н4	121.569
N1—C1—N2	116.84 (12)	С6—С7—Н7	120.153
N1—C1—C2	122.10 (11)	С8—С7—Н7	120.150

N2-C1-C2	121.06 (10)	С7—С8—Н8	119.883
C1—C2—C3	117.77 (11)	С9—С8—Н8	119.887
C2—C3—C4	121.10 (15)	С8—С9—Н9	120.023
C3—C4—C5	116.88 (13)	С10—С9—Н9	120.027
N1—C5—N3	114.45 (12)	C9—C10—H10	119.846
N1—C5—C4	123.25 (10)	C11—C10—H10	119.840
N3—C5—C4	122.28 (11)	C6—C11—H11	120.123
N2—C6—C7	119.74 (11)	C10—C11—H11	120.125
N2-C6-C11	120.24 (9)	C12—C13—H13	120.001
C7—C6—C11	120.02(11)	C14—C13—H13	119,990
C6-C7-C8	119 70 (12)	C13—C14—H14	119 524
C7-C8-C9	120.23(11)	C15—C14—H14	119.521
C8-C9-C10	119.95 (12)	C14— $C15$ — $H15$	120 523
C9-C10-C11	120.31(13)	C16-C15-H15	120.525
C_{6} C_{11} C_{10}	119 75 (11)	C15-C16-H16	119 727
N_{2} C_{12} C_{13}	119.75(11) 121.74(12)	C17—C16—H16	119.727
$N_2 - C_{12} - C_{13}$	121.74(12) 119 35 (11)	C_{12} C_{17} H_{17}	119.725
$C_{12} = C_{12} = C_{17}$	119.55(11) 118.00(13)	$C_{12} = C_{17} = H_{17}$	119.079
$C_{13} = C_{12} = C_{14}$	110.90(13) 120.01(12)	C18 C10 H10	119.708
C_{12} C_{13} C_{14} C_{15}	120.01(12) 120.04(13)	$C_{10} = C_{10} = H_{10}$	119.997
$C_{13} - C_{14} - C_{15}$	120.94 (13)	C_{20} C_{19} C_{10} C_{20} H_{20}	119.992
$C_{14} = C_{15} = C_{16}$	110.95(15) 120.55(14)	C19 - C20 - H20 C21 - C20 - H20	119.051
$C_{13} = C_{10} = C_{17}$	120.55(14) 120.61(12)	$C_{21} = C_{20} = H_{21}$	119.004
$N_{2} = C_{1}^{1} = C_{10}^{10}$	120.01(12) 121.16(11)	$C_{20} = C_{21} = H_{21}$	120.340
$N_{3} = C_{18} = C_{19}$	121.10(11) 110.50(12)	$C_{22} = C_{21} = H_{21}$	120.557
N_{3} $-C_{18}$ $-C_{23}$	119.39 (12)	C21—C22—H22	119.704
C19 - C18 - C23	119.20 (10)	C_{23} C_{22} H_{22}	119./5/
C18 - C19 - C20	120.01(12)	C18 - C23 - H23	119.855
C19 - C20 - C21	120.09 (13)	C22—C23—H23	119.850
$C_{20} = C_{21} = C_{22}$	119.32 (11)	C24—C25—H25	120.185
$C_{21} - C_{22} - C_{23}$	120.48 (12)	C26—C25—H25	120.183
C18—C23—C22	120.30 (12)	C25—C26—H26	119.895
N3-C24-C25	119.92 (11)	C2/—C26—H26	119.891
N3—C24—C29	119.78 (13)	C26—C27—H27	119.916
C25—C24—C29	120.30 (14)	C28—C27—H27	119.919
C24—C25—C26	119.63 (12)	C27—C28—H28	120.024
C25—C26—C27	120.21 (15)	C29—C28—H28	120.017
C26—C27—C28	120.17 (16)	С24—С29—Н29	120.133
C27—C28—C29	119.96 (13)	C28—C29—H29	120.135
C1—N1—C5—N3	-177.95 (9)	C3—C4—C5—N3	179.10 (10)
C1—N1—C5—C4	0.67 (17)	N2—C6—C7—C8	-179.94 (11)
C5—N1—C1—N2	178.55 (9)	N2-C6-C11-C10	178.61 (11)
C5—N1—C1—C2	-1.86 (16)	C7—C6—C11—C10	-2.0 (2)
C1—N2—C6—C7	122.77 (12)	C11—C6—C7—C8	0.6 (2)
C1-N2-C6-C11	-57.80 (15)	C6—C7—C8—C9	0.9 (2)
C6-N2-C1-N1	162.66 (9)	C7—C8—C9—C10	-1.1 (2)
C6—N2—C1—C2	-16.93 (15)	C8—C9—C10—C11	-0.2 (2)
C1—N2—C12—C13	-38.32 (14)	C9—C10—C11—C6	1.7 (2)

C1—N2—C12—C17	142.21 (9)	N2-C12-C13-C14	178.86 (8)
C12—N2—C1—N1	-9.43 (15)	N2-C12-C17-C16	-179.52 (8)
C12—N2—C1—C2	170.98 (9)	C13—C12—C17—C16	0.99 (15)
C6—N2—C12—C13	149.50 (9)	C17—C12—C13—C14	-1.67 (15)
C6—N2—C12—C17	-29.97 (13)	C12—C13—C14—C15	0.78 (15)
C12—N2—C6—C7	-64.67 (14)	C13—C14—C15—C16	0.80 (16)
C12—N2—C6—C11	114.77 (12)	C14—C15—C16—C17	-1.49 (16)
C5—N3—C18—C19	35.16 (18)	C15—C16—C17—C12	0.60 (16)
C5—N3—C18—C23	-147.51 (11)	N3-C18-C19-C20	177.64 (12)
C18—N3—C5—N1	-147.66 (11)	N3—C18—C23—C22	-177.09 (11)
C18—N3—C5—C4	33.71 (18)	C19—C18—C23—C22	0.3 (2)
C5—N3—C24—C25	-109.07 (11)	C23-C18-C19-C20	0.3 (2)
C5—N3—C24—C29	70.77 (14)	C18—C19—C20—C21	-0.4 (2)
C24—N3—C5—N1	29.38 (15)	C19—C20—C21—C22	-0.2 (2)
C24—N3—C5—C4	-149.25 (11)	C20—C21—C22—C23	0.8 (2)
C18—N3—C24—C25	68.10 (14)	C21—C22—C23—C18	-0.8 (2)
C18—N3—C24—C29	-112.06 (11)	N3—C24—C25—C26	179.54 (9)
C24—N3—C18—C19	-141.86 (11)	N3—C24—C29—C28	-179.69 (8)
C24—N3—C18—C23	35.46 (17)	C25—C24—C29—C28	0.15 (16)
N1—C1—C2—C3	1.73 (16)	C29—C24—C25—C26	-0.29 (16)
N2—C1—C2—C3	-178.70 (9)	C24—C25—C26—C27	0.28 (17)
C1—C2—C3—C4	-0.40 (17)	C25—C26—C27—C28	-0.12 (18)
C2—C3—C4—C5	-0.69 (18)	C26—C27—C28—C29	-0.02 (18)
C3—C4—C5—N1	0.59 (18)	C27—C28—C29—C24	0.01 (17)

Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z; (iv) -x, -y, -z; (v) -x, -y-1, -z; (vi) x, -y-1/2, z+1/2; (vii) -x, y-1/2, -z-1/2; (viii) -x, y+1/2, -z-1/2; (viii) -x, y+1/2, -z-1/2; (viii) -x+1, y+1/2, -z+1/2; (viii) -x+1, y+1/2, -z+1/2; (viii) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centriods of the C12-C17 and C18-C23 rings, respectively.

D—H···A	D—H	H···A	D··· A	D—H···A
C29—H29…N1 ⁱⁱ	0.95	2.71	3.4649 (18)	137
C15—H15···· $Cg4^{ix}$	0.95	3.00	3.8133 (17)	145
C28—H28…Cg3 ⁱⁱ	0.95	2.80	3.5831 (17)	140

Symmetry codes: (ii) x, y+1, z; (ix) x, -y+1/2, z-1/2.