IUCrData

ISSN 2414-3146

Received 29 March 2017 Accepted 16 May 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; borate; ethyne; guanidinium; trimethylsilyl.

CCDC reference: 1550268

Structural data: full structural data are available from iucrdata.iucr.org

Hexaethylguanidinium tetrakis(trimethylsilylethyn-

data reports

Stefan Oberparleiter, Gerhard Laus, Thomas Gelbrich, Klaus Wurst, Julia Kunze-Liebhäuser and Herwig Schottenberger*

yl)borate diethyl ether monosolvate

University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria. *Correspondence e-mail: herwig.schottenberger@uibk.ac.at

The solvated molecular salt, $C_{13}H_{30}N_3^{+}C_{20}H_{36}BSi_4^{-}C_4H_{10}O$, was obtained by the reaction of trimethylsilylethyne with boron trichloride in the presence of *tert*-butyllithium, followed by ion metathesis. The cation exhibits positional disorder and one of the Me₃Si groups shows rotational disorder. No significant directional intermolecular interactions are observed.

Structure description

Hexaethylguanidinium salts have been described and used principally as phase transfer catalysts (Kantlehner *et al.*, 1984; Caringi *et al.*, 1999). The conformations of these cations have been studied recently (Salchner *et al.*, 2014). Large anions in which bulky groups at the end of a rigid rod assembly shield the charge were synthesized not long ago (Vitze, 2008). It was intended to combine these non-coordinating ions in order to benefit from their respective advantageous properties. The resulting salt or even more bulky analogues may be of interest as potential supporting electrolytes for lithium–air batteries (Luntz & McCloskey, 2014).

The molecular structure of the title compound is shown in Fig. 1. The complete cation is disordered (Fig. 2a) with an occupancy ratio of the two components of 0.65:0.35. In the anion, one Me₃Si group is disordered over three orientations (0.40:0.33:0.27; Fig. 2b) related by a rotation about the Si4–C30 bond. The complete solvent molecule is disordered over two positions (0.6:0.4; Fig. 2c).

The central C1 atom does not deviate significantly from the N1/N2/N3 plane [by 0.01 (1) Å; the analogous value in the minor disorder component is 0.02 (2) Å]. The central C–N bond lengths lie between 1.336 (6) and 1.350 (6) Å [in the minor component between 1.341 (7) and 1.348 (7) Å]. The pertinent N–C–N angles are close to the ideal value of 120° and range from 119.0 (5) to 120.5 (6)° [from 118.8 (8) to 120.6 (8)° in

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms and the atom-labelling scheme. Minor-disorder components have been omitted for clarity.

the minor component]. The conformations of the six ethyl groups can be described by the corresponding torsion angles C1-N-C-C [-120.6 (7), -131.3 (8), -96.0 (8), -119.0 (9), -106.5 (13) and -115.5 (12)°], which are similar to those found in the related tetrachlorocuprate(II) (Salchner *et al.*, 2014).

Figure 2

Disorder models for (a) the cation, (b) the anion and (c) the solvent molecule. Minor-disorder components are drawn as having open [in (a), (b) and (c)] or dashed [in (b)] bonds.

Table 1	
Experimental details.	
Crystal data	
Chemical formula	$C_{13}H_{30}N_3^+ \cdot C_{20}H_{36}BSi_4^- \cdot C_4H_{10}O$
$M_{\rm r}$	702.17
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	193
<i>a</i> , <i>b</i> , <i>c</i> (Å)	12.9107 (7), 17.8720 (8), 21.6094 (11)
β (°)	95.0374 (16)
$V(Å^3)$	4966.9 (4)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.15
Crystal size (mm)	$0.19\times0.15\times0.11$
Data collection	
Diffractometer	Bruker D8 QUEST PHOTON 100
Absorption correction	Multi-scan (SADABS; Bruker, 2012)
T_{\min}, T_{\max}	0.922, 0.971
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	82487, 8834, 5918
R _{int}	0.079
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.597
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.068, 0.193, 1.00
No. of reflections	8834
No. of parameters	597
No. of restraints	458
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.34, -0.35

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXTL2013 and XP/ SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

In the tetrahedral anion, the C–B–C angles range from 105.5 (2)° to 111.5 (2)°. The B–C–C angles deviate only marginally from linearity with values between 174.5 (3) and 176.9 (3)°, whereas the deformation of the C–C–Si angles [170.0 (3) to 175.0 (2)°] is more pronounced. The arrangement of the ions in the unit cell is shown in Fig. 3. The crystal

structure does not exhibit any significant directed intermolecular interactions.

Structures of related tetraethynylborates (Gusev *et al.*, 1977 and 1978) are known. The structures of silylated tetraethynylborates were described more recently, and the angles of their anions were similar to those observed in the present structure (Vitze, 2008).

Synthesis and crystallization

To a cooled solution (190 K) of trimethylsilylethyne (2.20 ml, 16 mmol) in toluene (20 ml) tert-BuLi (10 ml 1.7 M, 17 mmol) was added and stirred at room temperature for 1 h. The mixture was cooled again at 190 K, and BCl₃ (4.0 ml 1M in toluene, 4 mmol) was added. Stirring was continued for 36 h at room temperature. After addition of Aliquat HTA-1 (3.0 ml, ca 4.2 mmol; Aldrich) and saturated NH₄Cl solution (3 ml), the phases were separated. Colourless crystals grew in the aqueous phase and were collected by filtration. Washing with Et₂O and drying under reduced pressure resulted in 1.10 g of the product (44%); m.p. 449 K. ¹H NMR (300 MHz, DMSO d_6): δ 0.04 (s, 36H), 1.12 (t, J = 7.5 Hz, 18H), 3.11 and 3.27 (m, 24H) p.p.m. ¹³C NMR (75 MHz, DMSO-d₆): δ 0.8 (12 C), 12.6 (6 C), 43.0 (6 C), 94.3 (q, J = 12 Hz, 4 C), 128.0 (q, J = 66 Hz, 4 C), 162.7 p.p.m. IR (neat): v 2958, 2100, 1534, 1241, 955, 831, 754 cm^{-1} .

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The complete solvent molecule is disordered over two positions (0.6:0.4; Fig. 2c). Distance restraints (SAME/SADI) were applied for all chemically equivalent 1,2- and 1,3-distances. All 1,2- and 1,3-distances in the disordered solvent molecule were restrained to target values (DFIX). All non-H atomic positions involved in a disorder were refined isotropically, except for the major component of the cation, which was refined anisotropically.

References

- Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caringi, J. J., Faler, G. R., Phelps, P. D., Guggenheim, T. L., Flowers, L. I., Brunelle, D. J. & Odle, R. R. (1999). US Patent 5872294.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gusev, A. I., Los', M. G., Zhigach, A. F., Svitsin, R. A. & Sobolev, E. S. (1977). J. Struct. Chem. 17, 466–467.
- Gusev, A. I., Nesterov, D. Y., Zhigach, A. F., Svitsyn, R. A. & Sobolev, E. S. (1978). J. Struct. Chem. 19, 161–163.
- Kantlehner, W., Haug, E., Mergen, W. W., Speh, P., Maier, T., Kapassakalidis, J. J., Bräuner, H.-J. & Hagen, H. (1984). *Liebigs Ann. Chem.* pp. 108–126.
- Luntz, A. C. & McCloskey, B. D. (2014). Chem. Rev. 114, 11721-11750.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Salchner, R., Kahlenberg, V., Gelbrich, T., Wurst, K., Rauch, M., Laus, G. & Schottenberger, H. (2014). *Crystals*, 4, 404–416.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Vitze, H. (2008). PhD thesis, Frankfurt, Germany.

full crystallographic data

IUCrData (2017). 2, x170724 [https://doi.org/10.1107/S2414314617007246]

Hexaethylguanidinium tetrakis(trimethylsilylethynyl)borate diethyl ether monosolvate

Stefan Oberparleiter, Gerhard Laus, Thomas Gelbrich, Klaus Wurst, Julia Kunze-Liebhäuser and Herwig Schottenberger

Hexaethylguanidinium tetrakis(trimethylsilylethynyl)borate diethyl ether monosolvate

Crystal data

$C_{13}H_{30}N_3{}^+ \cdot C_{20}H_{36}BSi_4{}^- \cdot C_4H_{10}O$
$M_r = 702.17$
Monoclinic, $P2_1/n$
a = 12.9107 (7) Å
b = 17.8720 (8) Å
c = 21.6094 (11) Å
$\beta = 95.0374 \ (16)^{\circ}$
$V = 4966.9 (4) Å^3$
Z = 4

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer Radiation source: Incoatec Microfocus Multi layered optics monochromator Detector resolution: 10.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{min} = 0.922, T_{max} = 0.971$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.193$ S = 1.008834 reflections 597 parameters 458 restraints Primary atom site location: structure-invariant direct methods F(000) = 1552 $D_x = 0.939 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9883 reflections $\theta = 2.2-24.3^{\circ}$ $\mu = 0.15 \text{ mm}^{-1}$ T = 193 KPrism, colourless $0.19 \times 0.15 \times 0.11 \text{ mm}$

82487 measured reflections 8834 independent reflections 5918 reflections with $I > 2\sigma(I)$ $R_{int} = 0.079$ $\theta_{max} = 25.1^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -15 \rightarrow 15$ $k = -21 \rightarrow 21$ $l = -25 \rightarrow 25$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.095P)^2 + 3.190P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.35$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Si1	0.82059 (6)	0.25828 (4)	0.45129 (4)	0.0474 (2)	
Si2	0.57950 (8)	0.42589 (5)	0.12930 (4)	0.0611 (3)	
Si3	0.41942 (7)	0.58398 (5)	0.42690 (4)	0.0576 (3)	
Si4	0.26088 (9)	0.23439 (7)	0.37953 (6)	0.0930 (4)	
B1	0.5461 (2)	0.37341 (16)	0.33687 (14)	0.0383 (7)	
C14	0.6465 (2)	0.33713 (13)	0.37359 (12)	0.0368 (6)	
C15	0.7195 (2)	0.30760 (14)	0.40350 (12)	0.0427 (6)	
C16	0.7580 (3)	0.1983 (2)	0.5072 (2)	0.0984 (14)	
H16A	0.8117	0.1728	0.5344	0.148*	
H16B	0.7140	0.1610	0.4844	0.148*	
H16C	0.7153	0.2293	0.5324	0.148*	
C17	0.9099 (3)	0.32537 (19)	0.49402 (18)	0.0815 (11)	
H17A	0.9683	0.2981	0.5156	0.122*	
H17B	0.8724	0.3526	0.5245	0.122*	
H17C	0.9363	0.3609	0.4646	0.122*	
C18	0.8968 (3)	0.1994 (2)	0.40136 (17)	0.0813 (11)	
H18A	0.9537	0.1752	0.4269	0.122*	
H18B	0.9254	0.2307	0.3698	0.122*	
H18C	0.8515	0.1610	0.3810	0.122*	
C19	0.56311 (19)	0.38643 (14)	0.26528 (13)	0.0409 (6)	
C20	0.5730 (2)	0.39932 (16)	0.21087 (13)	0.0486 (7)	
C21	0.5703 (4)	0.3415 (2)	0.07899 (18)	0.1155 (17)	
H21A	0.5691	0.3567	0.0354	0.173*	
H21B	0.5064	0.3141	0.0855	0.173*	
H21C	0.6306	0.3092	0.0896	0.173*	
C22	0.4679 (3)	0.4880 (3)	0.1030(2)	0.1015 (14)	
H22A	0.4695	0.4988	0.0586	0.152*	
H22B	0.4733	0.5349	0.1266	0.152*	
H22C	0.4025	0.4630	0.1100	0.152*	
C23	0.7039(3)	0.4753 (2)	0.1207 (2)	0.0965 (13)	
H23A	0.7086	0.4879	0.0769	0.145*	
H23B	0.7622	0.4429	0.1352	0.145*	
H23C	0.7065	0.5213	0.1455	0.145*	
C24	0.5167 (2)	0.45080 (14)	0.36753 (12)	0.0395 (6)	
C25	0.4864 (2)	0.50746 (15)	0.39096 (13)	0.0472 (7)	
C26	0.3561 (4)	0.6432 (2)	0.36347 (18)	0.1148 (18)	
H26A	0.3189	0.6844	0.3815	0.172*	
H26B	0.3068	0.6127	0.3371	0.172*	
H26C	0.4092	0.6634	0.3384	0.172*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C27	0.3206 (2)	0.5415 (2)	0.47330 (17)	0.0764 (10)	
H27A	0.2867	0.5809	0.4958	0.115*	
H27B	0.3544	0.5059	0.5031	0.115*	
H27C	0.2685	0.5154	0.4456	0.115*	
C28	0.5103 (3)	0.64243 (18)	0.47729 (16)	0.0732 (10)	
H28A	0.4722	0.6840	0.4942	0.110*	
H28B	0.5646	0.6622	0.4529	0.110*	
H28C	0.5423	0.6120	0.5115	0.110*	
C29	0.4495 (2)	0.31905 (15)	0.34457 (13)	0.0455 (7)	
C30	0.3757 (2)	0.28119 (18)	0.35500 (15)	0.0593 (8)	
C31	0.1720 (7)	0.2040 (6)	0.3136 (3)	0.073 (2)*	0.4
H31A	0.1465	0.2477	0.2896	0.109*	0.4
H31B	0.1132	0.1772	0.3289	0.109*	0.4
H31C	0.2089	0.1706	0.2870	0.109*	0.4
C32	0.1952 (8)	0.2995 (5)	0.4306 (5)	$0.082(3)^{*}$	0.1
H32A	0.1992 (0)	0.3150	0.4654	0.124*	0.1
H32R	0.1359	0.2741	0.4467	0.124*	0.1
H32C	0.1335	0.2/41	0.4467	0.124	0.4
C33	0.1707 0.2008 (11)	0.1483 (6)	0.4007 0.4271(6)	0.124 0.123 (5)*	0.4
U22 A	0.3008 (11)	0.1403 (0)	0.4271(0)	0.125 (5)	0.4
ПЭЭА 1122D	0.3343	0.1124	0.4011	0.105*	0.4
пээр	0.2390	0.1232	0.4423	0.105*	0.4
H33C	0.3494	0.102/	0.4625	0.185*	0.4
USIA	0.2094 (10)	0.1041 (0)	0.3244 (5)	0.088 (4)*	0.33
H3ID	0.2001	0.1861	0.2827	0.132*	0.33
HJIE	0.1422	0.1462	0.3363	0.132*	0.33
H3IF	0.2581	0.1221	0.3243	0.132*	0.33
C32A	0.1680 (11)	0.3112 (7)	0.3936 (8)	0.130 (6)*	0.33
H32D	0.1983	0.3435	0.4271	0.195*	0.33
H32E	0.1028	0.2897	0.4055	0.195*	0.33
H32F	0.1541	0.3408	0.3556	0.195*	0.33
C33A	0.2990 (12)	0.1844 (9)	0.4535 (5)	0.117 (5)*	0.33
H33D	0.2370	0.1628	0.4696	0.175*	0.33
H33E	0.3317	0.2197	0.4839	0.175*	0.33
H33F	0.3482	0.1444	0.4459	0.175*	0.33
C31B	0.1604 (14)	0.2484 (12)	0.3122 (6)	0.136 (8)*	0.27
H31G	0.1466	0.3020	0.3066	0.203*	0.27
H31H	0.0961	0.2227	0.3206	0.203*	0.27
H31I	0.1862	0.2279	0.2744	0.203*	0.27
C32B	0.2154 (11)	0.2732 (8)	0.4503 (4)	0.070 (4)*	0.27
H32G	0.2678	0.2645	0.4852	0.105*	0.27
H32H	0.1501	0.2489	0.4587	0.105*	0.27
H32I	0.2039	0.3271	0.4450	0.105*	0.27
C33B	0.2817 (18)	0.1314 (5)	0.3878 (9)	0.151 (9)*	0.27
H33G	0.3099	0.1119	0.3504	0.226*	0.27
НЗЗН	0.2153	0.1068	0.3933	0.226*	0.27
H33I	0.3308	0.1214	0.4240	0.226*	0.27
NI	0.7562(4)	0.6243(3)	0.2917(3)	0.0445(13)	0.65
N2	0.8692(4)	0.5254(3)	0.3205(2)	0.0521(12)	0.05
1 1	0.0074 (7)	0.2227 (2)	0.5205 (2)	0.0221 (12)	0.05

N3	0.9219 (5)	0.6227 (3)	0.2587 (3)	0.055 (3)	0.65
C1	0.8496 (5)	0.5907 (4)	0.2905 (4)	0.0443 (16)	0.65
C2	0.7477 (4)	0.7067 (3)	0.2937 (2)	0.0574 (12)	0.65
H2A	0.7057	0.7242	0.2560	0.069*	0.65
H2B	0.8180	0.7288	0.2936	0.069*	0.65
C3	0.6985 (5)	0.7335 (3)	0.3501 (3)	0.0844 (18)	0.65
H3A	0.6260	0.7167	0.3479	0.127*	0.65
H3B	0.7007	0.7883	0.3517	0.127*	0.65
H3C	0.7365	0.7130	0.3875	0.127*	0.65
C4	0.6610 (3)	0.5796 (3)	0.2977(2)	0.0487 (11)	0.65
H4A	0.6381	0.5867	0.3398	0.058*	0.65
H4B	0.6772	0.5259	0.2927	0.058*	0.65
C5	0.5742 (6)	0.6235	0.2527	0.0625 (18)	0.65
Н5А	0.5539	0.6534	0.2573	0.094*	0.65
H5R	0.5144	0.5685	0.2539	0.094*	0.65
H5C	0.5977	0.5969	0.2085	0.094*	0.65
C6	0.3377 0.8332 (4)	0.5909	0.38250 (19)	0.054	0.65
Н6А	0.8110	0.4595	0.3855	0.076*	0.65
H6B	0.7720	0.4393	0.3855	0.076*	0.05
	0.7720	0.5284 (6)	0.3370	0.070	0.05
	0.9148(7)	0.5284 (0)	0.4332 (3)	0.130 (4)	0.05
П/А Ц7D	0.9812	0.5078	0.4220	0.234*	0.05
П/D Ц7С	0.0937	0.5054	0.4710	0.234*	0.05
	0.9214	0.3820	0.4369	0.234°	0.05
	0.9333 (0)	0.4080 (3)	0.2930 (4)	0.000 (2)	0.05
	0.9902	0.4382	0.3232	0.079*	0.05
Пор	0.9018	0.48/1	0.2303	0.079°	0.05
	0.8775(10)	0.3965 (5)	0.2814 (6)	0.080 (5)	0.65
H9A	0.8303	0.3754	0.3202	0.120*	0.65
H9B	0.9225	0.3608	0.2622	0.120*	0.65
H9C	0.8157	0.4005	0.2530	0.120^{*}	0.05
	1.0327 (3)	0.6228 (3)	0.2827 (3)	0.0693 (15)	0.65
HIUA	1.0752	0.6068	0.2491	0.083*	0.65
HIUB	1.0431	0.5859	0.3168	0.083*	0.65
	1.0698 (11)	0.6975 (6)	0.3061 (11)	0.095 (5)	0.65
HIIA	1.0689	0.7328	0.2713	0.142*	0.65
HIIB	1.1409	0.6929	0.3257	0.142*	0.65
HIIC	1.0240	0.7159	0.3366	0.142*	0.65
C12	0.8956 (4)	0.6614 (3)	0.1990 (2)	0.0612 (13)	0.65
H12A	0.9214	0.7135	0.2028	0.073*	0.65
H12B	0.8190	0.6635	0.1911	0.073*	0.65
C13	0.9390 (13)	0.6260 (10)	0.1444 (3)	0.075 (4)	0.65
H13A	1.0151	0.6270	0.1502	0.112*	0.65
H13B	0.9152	0.6536	0.1066	0.112*	0.65
H13C	0.9151	0.5740	0.1406	0.112*	0.65
N1A	0.7941 (8)	0.5997 (6)	0.3122 (3)	0.052 (2)	0.35
N2A	0.9133 (6)	0.5034 (5)	0.2994 (6)	0.059 (3)	0.35
N3A	0.9307 (10)	0.6193 (5)	0.2516 (5)	0.055 (7)	0.35
C1A	0.8786 (11)	0.5734 (5)	0.2869 (8)	0.063 (5)	0.35

C2A	0.7201 (8)	0.6502 (8)	0.2778 (6)	0.064 (4)	0.35
H2A1	0.7459	0.6624	0.2372	0.077*	0.35
H2A2	0.7155	0.6974	0.3014	0.077*	0.35
C3A	0.6138 (9)	0.6161 (11)	0.2673 (9)	0.083 (5)	0.35
H3A1	0.6167	0.5721	0.2404	0.124*	0.35
H3A2	0.5654	0.6529	0.2474	0.124*	0.35
H3A3	0.5900	0.6009	0.3073	0.124*	0.35
C4A	0.7689 (8)	0.5733 (5)	0.3744 (4)	0.071 (3)	0.35
H4A1	0.8129	0.5295	0.3867	0.086*	0.35
H4A2	0.6954	0.5570	0.3719	0.086*	0.35
C5A	0.7858 (18)	0.6326 (10)	0.4225 (6)	0.182 (10)	0.35
H5A1	0.8592	0.6331	0.4386	0.273*	0.35
H5A2	0 7425	0.6223	0.4566	0.273*	0.35
H5A3	0.7669	0.6813	0 4041	0.273*	0.35
C6A	1 0259 (6)	0.4875(5)	0.3076 (5)	0.273 0.071 (3)	0.35
H6A1	1.0255 (0)	0.5338	0.3008	0.085*	0.35
H6A2	1 0440	0.4499	0.2767	0.085*	0.35
C7A	1.0544 (10)	0.4587(10)	0.3718 (6)	0.131 (6)	0.35
H7A1	1 0305	0.4939	0.4022	0.196*	0.35
н7 <u>л</u> 2	1 1301	0.4532	0.3785	0.196*	0.35
H7A3	1.0214	0.4099	0.3767	0.196*	0.35
C84	0.8406 (8)	0.4406 (5)	0.3044 (5)	0.170	0.35
H8A1	0.7689	0.4584	0.2931	0.070(3)	0.35
H8A2	0.8447	0.4234	0.2751	0.084*	0.35
C94	0.862(2)	0.3760 (10)	0.3481 0.2637 (12)	0.004	0.35
СЭЛ НОЛ1	0.862 (2)	0.3700 (10)	0.2057 (12)	0.090(0)	0.35
	0.8001	0.3928	0.2205	0.135*	0.35
H0A2	0.0098	0.3557	0.2075	0.135*	0.35
C10A	0.9313	0.5557	0.2703	0.155	0.35
UI0A	0.9484(7) 0.8047	0.0985 (4)	0.2088 (4)	0.000 (3)	0.35
	0.0947	0.7140	0.2900	0.079	0.35
	0.9403	0.7293 0.7121 (12)	0.2307	0.079°	0.55
	1.0555 (14)	0.7121(12) 0.6870	0.3013(14) 0.3422	0.039 (4)	0.35
	1.0576	0.0879	0.3423	0.000*	0.55
	1.0043	0.7001	0.3008	0.088*	0.35
	1.100/	0.0915	0.2708	0.088°	0.55
UI2A	0.9810 (8)	0.5910 (5)	0.1971 (4)	0.009(3)	0.55
П12С	0.9832	0.5505	0.1984	0.083*	0.55
HIZD C12A	1.0530	0.6100	0.1997	0.083^{*}	0.55
UISA	0.927 (3)	0.010(2)	0.1303 (0)	0.104 (12)	0.55
	0.8518	0.6072	0.1370	0.150*	0.55
HI3E	0.9531	0.5867	0.1027	0.156*	0.35
HI3F	0.9397	0.6690	0.1300	0.156*	0.35
	0.1463 (6)	0.4353(4)	0.1/88 (4)	$0.14/(3)^*$	0.6
034	0.1105 (10)	0.3852 (7)	0.1326 (6)	0.194 (7)*	0.6
H34A	0.0874	0.3387	0.1522	0.233*	0.6
H34B	0.1683	0.3721	0.1073	0.233*	0.6
035	0.0232 (11)	0.4162 (9)	0.0915 (7)	0.220 (7)*	0.6
H35A	-0.0257	0.4416	0.1167	0.330*	0.6

H35B	-0.0128	0.3755	0.0680	0.330*	0.6
H35C	0.0501	0.4520	0.0625	0.330*	0.6
C36	0.2428 (11)	0.4114 (8)	0.2096 (9)	0.248 (10)*	0.6
H36A	0.2939	0.4001	0.1794	0.297*	0.6
H36B	0.2333	0.3664	0.2352	0.297*	0.6
C37	0.2769 (7)	0.4762 (5)	0.2491 (5)	0.126 (3)*	0.6
H37A	0.2787	0.5211	0.2232	0.190*	0.6
H37B	0.3465	0.4664	0.2693	0.190*	0.6
H37C	0.2280	0.4838	0.2807	0.190*	0.6
O1A	0.1379 (6)	0.4166 (5)	0.2028 (4)	0.099 (3)*	0.4
C34A	0.1185 (11)	0.3614 (9)	0.1574 (8)	0.159 (7)*	0.4
H34C	0.1141	0.3120	0.1778	0.191*	0.4
H34D	0.1770	0.3597	0.1307	0.191*	0.4
C35A	0.0201 (9)	0.3758 (8)	0.1180 (6)	0.118 (4)*	0.4
H35D	-0.0365	0.3839	0.1447	0.177*	0.4
H35E	0.0037	0.3326	0.0910	0.177*	0.4
H35F	0.0283	0.4204	0.0925	0.177*	0.4
C36A	0.2432 (7)	0.4180 (7)	0.2287 (6)	0.091 (4)*	0.4
H36C	0.2878	0.4424	0.1996	0.109*	0.4
H36D	0.2689	0.3664	0.2368	0.109*	0.4
C37A	0.2458 (11)	0.4606 (8)	0.2872 (6)	0.131 (5)*	0.4
H37D	0.2385	0.5141	0.2779	0.196*	0.4
H37E	0.3122	0.4517	0.3117	0.196*	0.4
H37F	0.1886	0.4443	0.3109	0.196*	0.4

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0463 (5)	0.0464 (4)	0.0495 (5)	0.0090 (3)	0.0040 (3)	-0.0019 (3)
Si2	0.0728 (6)	0.0665 (6)	0.0444 (5)	-0.0028 (5)	0.0072 (4)	-0.0009 (4)
Si3	0.0677 (6)	0.0524 (5)	0.0527 (5)	0.0206 (4)	0.0061 (4)	-0.0110 (4)
Si4	0.0585 (6)	0.1111 (9)	0.1153 (10)	-0.0377 (6)	0.0403 (6)	-0.0278 (7)
B1	0.0333 (15)	0.0407 (16)	0.0411 (16)	-0.0013 (12)	0.0056 (12)	-0.0061 (13)
C14	0.0382 (15)	0.0333 (13)	0.0405 (14)	-0.0050 (11)	0.0120 (12)	-0.0075 (11)
C15	0.0447 (16)	0.0387 (14)	0.0454 (15)	-0.0012 (12)	0.0080 (13)	-0.0042 (12)
C16	0.087 (3)	0.108 (3)	0.101 (3)	0.010 (3)	0.019 (2)	0.049 (3)
C17	0.080 (3)	0.069 (2)	0.089 (3)	0.0127 (19)	-0.027 (2)	-0.016 (2)
C18	0.069 (2)	0.089 (3)	0.085 (3)	0.031 (2)	0.0010 (19)	-0.025 (2)
C19	0.0337 (14)	0.0431 (15)	0.0460 (16)	-0.0020 (11)	0.0038 (12)	-0.0090 (12)
C20	0.0457 (17)	0.0517 (16)	0.0485 (17)	-0.0031 (13)	0.0051 (13)	-0.0090 (13)
C21	0.179 (5)	0.106 (3)	0.062 (2)	-0.004 (3)	0.016 (3)	-0.024 (2)
C22	0.096 (3)	0.120 (4)	0.086 (3)	0.011 (3)	-0.007(2)	0.026 (3)
C23	0.090 (3)	0.110 (3)	0.094 (3)	-0.010 (3)	0.030 (2)	0.026 (3)
C24	0.0372 (14)	0.0430 (15)	0.0384 (14)	0.0014 (12)	0.0049 (11)	0.0002 (12)
C25	0.0504 (17)	0.0480 (16)	0.0440 (15)	0.0058 (13)	0.0087 (13)	-0.0011 (13)
C26	0.167 (5)	0.091 (3)	0.083 (3)	0.077 (3)	-0.008 (3)	-0.005 (2)
C27	0.054 (2)	0.093 (3)	0.083 (2)	0.0084 (19)	0.0153 (18)	-0.033 (2)
C28	0.095 (3)	0.058 (2)	0.068 (2)	-0.0071 (18)	0.020 (2)	-0.0140 (17)

C29	0.0367 (15)	0.0507 (16)	0.0500 (16)	-0.0005 (13)	0.0095 (12)	-0.0102 (13)
C30	0.0430 (17)	0.067 (2)	0.070 (2)	-0.0102 (15)	0.0173 (15)	-0.0162 (16)
N1	0.036 (3)	0.043 (4)	0.054 (4)	-0.005 (2)	0.000 (3)	0.010 (3)
N2	0.053 (3)	0.038 (2)	0.065 (3)	0.001 (2)	0.006 (2)	0.020 (2)
N3	0.043 (5)	0.045 (6)	0.077 (5)	-0.001 (4)	0.001 (4)	0.024 (4)
C1	0.049 (5)	0.036 (3)	0.049 (4)	-0.005 (3)	0.009 (3)	0.014 (3)
C2	0.056 (3)	0.036 (2)	0.079 (3)	-0.002 (2)	0.000 (3)	0.008 (2)
C3	0.095 (4)	0.052 (3)	0.110 (5)	-0.001 (3)	0.024 (4)	-0.019 (3)
C4	0.044 (3)	0.046 (3)	0.056 (3)	-0.003 (2)	0.005 (2)	0.011 (2)
C5	0.047 (5)	0.059 (4)	0.080 (4)	-0.006 (3)	-0.002 (4)	0.008 (3)
C6	0.080 (4)	0.054 (3)	0.055 (3)	-0.005 (3)	-0.001 (3)	0.018 (2)
C7	0.169 (9)	0.210 (10)	0.081 (5)	-0.113 (8)	-0.038 (5)	0.039 (6)
C8	0.058 (4)	0.046 (4)	0.095 (5)	0.012 (3)	0.014 (3)	0.017 (4)
C9	0.089 (8)	0.047 (6)	0.111 (7)	-0.005 (4)	0.044 (7)	-0.003 (4)
C10	0.040 (3)	0.061 (3)	0.106 (4)	-0.003 (2)	0.000 (3)	0.020 (3)
C11	0.076 (7)	0.082 (7)	0.121 (10)	0.006 (6)	-0.021 (6)	0.015 (8)
C12	0.055 (3)	0.059 (3)	0.071 (3)	-0.003 (2)	0.012 (2)	0.024 (3)
C13	0.083 (7)	0.064 (5)	0.082 (7)	-0.010 (6)	0.030 (6)	0.006 (5)
N1A	0.054 (7)	0.064 (7)	0.038 (6)	-0.009 (5)	0.001 (5)	0.010 (4)
N2A	0.039 (7)	0.053 (9)	0.084 (8)	0.001 (5)	-0.002 (5)	0.033 (7)
N3A	0.056 (11)	0.047 (11)	0.068 (10)	0.000 (8)	0.037 (9)	0.013 (7)
C1A	0.039 (7)	0.066 (11)	0.081 (10)	0.001 (7)	0.001 (6)	-0.025 (9)
C2A	0.051 (8)	0.080 (11)	0.061 (7)	0.014 (7)	0.005 (6)	0.020 (7)
C3A	0.047 (10)	0.103 (12)	0.100 (14)	-0.012 (8)	0.022 (9)	0.023 (11)
C4A	0.062 (6)	0.082 (7)	0.070 (6)	-0.008 (5)	0.009 (5)	0.021 (5)
C5A	0.26 (2)	0.22 (2)	0.071 (9)	-0.147 (19)	0.048 (12)	-0.037 (11)
C6A	0.040 (5)	0.059 (6)	0.113 (9)	0.002 (4)	0.000 (5)	0.026 (6)
C7A	0.088 (10)	0.165 (15)	0.133 (13)	-0.015 (10)	-0.025 (9)	0.058 (11)
C8A	0.065 (7)	0.061 (6)	0.083 (7)	-0.012 (5)	0.000 (6)	0.023 (6)
C9A	0.078 (9)	0.043 (9)	0.145 (18)	-0.007 (8)	-0.013 (11)	0.005 (8)
C10A	0.068 (6)	0.053 (5)	0.079 (7)	0.006 (5)	0.014 (5)	0.013 (5)
C11A	0.042 (8)	0.064 (9)	0.066 (9)	-0.006 (7)	-0.012 (7)	0.008 (8)
C12A	0.067 (6)	0.063 (6)	0.082 (7)	0.009 (5)	0.025 (5)	0.008 (5)
C13A	0.094 (16)	0.10 (2)	0.111 (18)	-0.011 (15)	-0.009 (12)	0.010 (14)

Geometric parameters (Å, °)

Sil—C15	1.820 (3)	C4—H4B	0.9900
Sil—C18	1.851 (3)	C5—H5A	0.9800
Sil—C17	1.853 (3)	C5—H5B	0.9800
Sil—C16	1.853 (3)	C5—H5C	0.9800
Si2-C20	1.835 (3)	C6—C7	1.480 (6)
Si2—C23	1.856 (4)	C6—H6A	0.9900
Si2-C21	1.857 (4)	C6—H6B	0.9900
Si2—C22	1.868 (4)	C7—H7A	0.9800
Si3—C25	1.827 (3)	C7—H7B	0.9800
Si3—C28	1.852 (3)	C7—H7C	0.9800
Si3—C27	1.853 (3)	C8—C9	1.498 (7)

Si3 C26	1 862 (3)	C8 H8A	0.0000
Si3-C20 Si4 C21 A	1.002(3)		0.9900
SI4—C3IA	1.017(0)		0.9900
SI4-C30	1.021(3)	C9—H9A	0.9800
S14—C32B	1.822 (0)	C9—H9B	0.9800
S14-C31	1.851 (0)		0.9800
S14—C33A	1.859 (7)		1.491 (/)
S14—C32	1.859 (6)	CIO—HIOA	0.9900
Si4—C32A	1.865 (7)	C10—H10B	0.9900
Si4—C33B	1.867 (7)	C11—H11A	0.9800
Si4—C31B	1.878 (7)	C11—H11B	0.9800
Si4—C33	1.897 (6)	C11—H11C	0.9800
B1—C24	1.594 (4)	C12—C13	1.490 (7)
B1—C14	1.596 (4)	C12—H12A	0.9900
B1-C19	1.599 (4)	C12—H12B	0.9900
B1—C29	1.601 (4)	C13—H13A	0.9800
C14—C15	1.216 (4)	С13—Н13В	0.9800
C16—H16A	0.9800	C13—H13C	0.9800
C16—H16B	0.9800	N1A—C1A	1.347 (7)
C16—H16C	0.9800	N1A—C2A	1.468 (7)
С17—Н17А	0.9800	N1A—C4A	1.486 (6)
С17—Н17В	0.9800	N2A—C1A	1.348 (7)
С17—Н17С	0.9800	N2A—C8A	1.473 (6)
C18—H18A	0.9800	N2A—C6A	1.476 (6)
C18—H18B	0.9800	N3A—C1A	1 341 (7)
C18 - H18C	0.9800	N3A—C10A	1.371(7) 1 477(7)
C19-C20	1 216 (4)	N3A—C12A	1.477(7) 1 480 (7)
C21 H21A	0.0800	C_{2A} C_{3A}	1.400(7)
C_{21} H21R	0.9800	$C_{2A} = C_{3A}$	0.0000
C_{21} H21C	0.9800	$C_{2A} = H_{2A}$	0.9900
C_{21} H_{22A}	0.9800	$C_{2A} = H_{2A}$	0.9900
C22—1122A	0.9800	C_{2A} H_{2A2}	0.9800
С22—Н22В	0.9800	$C_{2A} = H_{2A}^2$	0.9800
C22—H22C	0.9800	CAA CEA	0.9800
C23—H23A	0.9800	C4A—C5A	1.487 (8)
C23—H23B	0.9800	C4A—H4A1	0.9900
C23—H23C	0.9800	C4A—H4A2	0.9900
C24—C25	1.213 (4)	C5A—H5A1	0.9800
C26—H26A	0.9800	C5A—H5A2	0.9800
С26—Н26В	0.9800	C5A—H5A3	0.9800
C26—H26C	0.9800	C6A—C7A	1.494 (8)
C27—H27A	0.9800	C6A—H6A1	0.9900
C27—H27B	0.9800	C6A—H6A2	0.9900
С27—Н27С	0.9800	C7A—H7A1	0.9800
C28—H28A	0.9800	C7A—H7A2	0.9800
C28—H28B	0.9800	C7A—H7A3	0.9800
C28—H28C	0.9800	C8A—C9A	1.491 (8)
C29—C30	1.206 (4)	C8A—H8A1	0.9900
C31—H31A	0.9800	C8A—H8A2	0.9900
C31—H31B	0.9800	С9А—Н9А1	0.9800

C31—H31C	0.9800	С9А—Н9А2	0.9800
C32—H32A	0.9800	С9А—Н9А3	0.9800
С32—Н32В	0.9800	C10A—C11A	1.492 (8)
С32—Н32С	0.9800	C10A—H10C	0.9900
С33—Н33А	0.9800	C10A—H10D	0.9900
C33—H33B	0.9800	C11A—H11D	0.9800
C33—H33C	0.9800	C11A—H11E	0.9800
C31A—H31D	0.9800	C11A—H11F	0.9800
C31A—H31E	0.9800	C12A - C13A	1,494 (8)
C31A—H31F	0.9800	C12A - H12C	0 9900
$C_{32}A - H_{32}D$	0.9800	C12A - H12D	0.9900
C32A—H32E	0.9800	C13A—H13D	0.9800
$C_{32}A = H_{32}F$	0.9800	C13A—H13F	0.9800
$C_{33}A = H_{33}D$	0.9800	C13A—H13F	0.9800
C33A—H33E	0.9800	01-C34	1.389(7)
C33A—H33F	0.9800	$01 - C_{36}$	1.305(7) 1.425(7)
C31B H31G	0.9800	C_{34} C_{35}	1.423(7) 1.481(7)
C31B H31H	0.9800	C_{34} H34A	0.0000
C31B H31I	0.9800	C_{34} H34B	0.9900
	0.9800	C35 H35A	0.9900
C32B H32H	0.9800	C35_H35R	0.9800
C32B H32I	0.9800	C35_H35B	0.9800
C32D—11521 C32D—11521	0.9800	C36 C37	1.481(7)
C22D U22U	0.9800	C_{30}	0.0000
C33D—H33H	0.9800	C36_H36A	0.9900
C33D—H331	0.9800	С30—П30В	0.9900
NI-CI	1.550(0)	C37—H37A	0.9800
NI-C2	1.4//(5)	C37—H37B	0.9800
NI-C4	1.481 (5)	$C_3/=H_3/C$	0.9800
N2—C1	1.349 (5)	OIA = C2(A)	1.399(7)
N2	1.4/3 (5)	01A—C36A	1.424 (7)
N2	1.4/4 (5)	C34A—C35A	1.48/(8)
N3—CI	1.336 (6)	C34A—H34C	0.9900
N3—C12	1.477 (5)	C34A—H34D	0.9900
N3—C10	1.478 (6)	C35A—H35D	0.9800
C2—C3	1.501 (6)	С35А—Н35Е	0.9800
C2—H2A	0.9900	C35A—H35F	0.9800
C2—H2B	0.9900	C36A—C37A	1.474 (7)
C3—H3A	0.9800	С36А—Н36С	0.9900
С3—НЗВ	0.9800	C36A—H36D	0.9900
С3—Н3С	0.9800	C37A—H37D	0.9800
C4—C5	1.503 (6)	С37А—Н37Е	0.9800
C4—H4A	0.9900	C37A—H37F	0.9800
C15—Si1—C18	109.65 (15)	C4—C5—H5A	109.5
C15—Si1—C17	110.70 (14)	C4—C5—H5B	109.5
C18—Si1—C17	108.61 (18)	H5A—C5—H5B	109.5
C15—Si1—C16	108.57 (16)	C4—C5—H5C	109.5
C18—Si1—C16	109.6 (2)	H5A—C5—H5C	109.5

C17—Si1—C16	109.7 (2)	H5B—C5—H5C	109.5
C20—Si2—C23	109.41 (17)	N2—C6—C7	112.4 (5)
C20—Si2—C21	110.26 (17)	N2—C6—H6A	109.1
C23—Si2—C21	109.8 (2)	С7—С6—Н6А	109.1
C20—Si2—C22	110.32 (17)	N2—C6—H6B	109.1
C23—Si2—C22	109.7 (2)	C7—C6—H6B	109.1
C21—Si2—C22	107.3 (2)	H6A—C6—H6B	107.8
C25—Si3—C28	111.91 (15)	С6—С7—Н7А	109.5
C25—Si3—C27	107.29 (15)	C6—C7—H7B	109.5
C28—Si3—C27	110.10 (16)	H7A—C7—H7B	109.5
C25—Si3—C26	107.79 (16)	С6—С7—Н7С	109.5
C28—Si3—C26	109.1 (2)	H7A—C7—H7C	109.5
C27—Si3—C26	110.6 (2)	H7B—C7—H7C	109.5
C31A—Si4—C30	112.8 (4)	N2	111.7 (7)
C30—Si4—C32B	113.6 (5)	N2—C8—H8A	109.3
C30—Si4—C31	112.3 (3)	C9—C8—H8A	109.3
C31A—Si4—C33A	106.6 (7)	N2—C8—H8B	109.3
C30—Si4—C33A	108.1 (5)	C9—C8—H8B	109.3
C30—Si4—C32	108.1 (4)	H8A—C8—H8B	107.9
C31—Si4—C32	111.1 (4)	С8—С9—Н9А	109.5
C31A—Si4—C32A	114.3 (6)	С8—С9—Н9В	109.5
C30—Si4—C32A	105.1 (6)	H9A—C9—H9B	109.5
C33A—Si4—C32A	109.8 (6)	С8—С9—Н9С	109.5
C30—Si4—C33B	111.5 (7)	H9A—C9—H9C	109.5
C32B—Si4—C33B	110.5 (6)	H9B—C9—H9C	109.5
C30—Si4—C31B	103.8 (7)	N3-C10-C11	113.1 (6)
C32B—Si4—C31B	110.3 (6)	N3-C10-H10A	109.0
C33B—Si4—C31B	106.8 (7)	C11—C10—H10A	109.0
C30—Si4—C33	110.0 (5)	N3—C10—H10B	109.0
C31—Si4—C33	107.6 (5)	C11—C10—H10B	109.0
C32—Si4—C33	107.6 (5)	H10A-C10-H10B	107.8
C24—B1—C14	111.0 (2)	C10-C11-H11A	109.5
C24—B1—C19	109.5 (2)	C10-C11-H11B	109.5
C14—B1—C19	111.5 (2)	H11A—C11—H11B	109.5
C24—B1—C29	105.5 (2)	C10-C11-H11C	109.5
C14—B1—C29	107.9 (2)	H11A—C11—H11C	109.5
C19—B1—C29	111.3 (2)	H11B—C11—H11C	109.5
C15—C14—B1	176.6 (3)	N3—C12—C13	114.8 (6)
C14—C15—Si1	175.0 (2)	N3—C12—H12A	108.6
Si1—C16—H16A	109.5	C13—C12—H12A	108.6
Si1—C16—H16B	109.5	N3—C12—H12B	108.6
H16A—C16—H16B	109.5	C13—C12—H12B	108.6
Si1—C16—H16C	109.5	H12A-C12-H12B	107.6
H16A—C16—H16C	109.5	C12—C13—H13A	109.5
H16B—C16—H16C	109.5	C12—C13—H13B	109.5
Si1—C17—H17A	109.5	H13A—C13—H13B	109.5
Si1—C17—H17B	109.5	C12—C13—H13C	109.5
H17A—C17—H17B	109.5	H13A—C13—H13C	109.5

Si1—C17—H17C	109.5	H13B—C13—H13C	109.5
H17A—C17—H17C	109.5	C1A—N1A—C2A	121.6 (9)
H17B—C17—H17C	109.5	C1A—N1A—C4A	120.3 (9)
Si1—C18—H18A	109.5	C2A—N1A—C4A	117.9 (9)
Si1—C18—H18B	109.5	C1A—N2A—C8A	121.3 (8)
H18A—C18—H18B	109.5	C1A—N2A—C6A	120.6 (8)
Si1—C18—H18C	109.5	C8A—N2A—C6A	118.2 (8)
H18A—C18—H18C	109.5	C1A— $N3A$ — $C10A$	121.2 (8)
H18B-C18-H18C	109.5	C1A—N3A— $C12A$	121.8 (8)
C20-C19-B1	176 9 (3)	C10A - N3A - C12A	1168(7)
C19 - C20 - Si2	174.7(3)	N3A—C1A—N1A	118.8(8)
Si2-C21-H21A	109 5	N3A—C1A—N2A	1204(8)
Si2 C21 H21R	109.5	N1A—C1A—N2A	120.1(0) 120.6(8)
$H_{21} = C_{21} = H_{21} B$	109.5	N1A - C2A - C3A	120.0(0) 111.8(11)
Si2H21C	109.5	N1A - C2A - H2A1	100.2
$H_{21} = C_{21} = H_{21}C$	109.5	$C_{3}A = C_{2}A = H_{2}A_{1}$	109.2
$H_{21}R = C_{21} = H_{21}C$	109.5	$N_{1A} C_{2A} H_{2A2}$	109.2
$\frac{11210}{210} = \frac{1210}{11210}$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.2
Si2-C22-H22R Si2-C22-H22R	109.5	$H_{2A1} = C_{2A} = H_{2A2}$	109.2
$\frac{312}{22}$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9
Si2 C22 H22C	109.5	$C_{2A} = C_{3A} = H_{3A}^2$	109.5
$\frac{312}{22}$	109.5	$H_{2A} = C_{2A} = H_{2A} = H_{2A}$	109.5
$H_{22}A - C_{22} - H_{22}C$	109.5	$H_{A} = C_{A} = H_{A}$	109.5
$\mathbf{H}_{22}\mathbf{D}_{122}\mathbf{D}_$	109.5	$U_2A = C_3A = H_2A_2$	109.5
SI2-C23-H23A	109.5	$H_{2A2} = C_{2A} = H_{2A2}$	109.5
S12-C23-H23B	109.5	H3A2—C3A—H3A3	109.5
H25A—C25—H25B	109.5	NIA-C4A-C5A	112.1 (8)
S12—C23—H23C	109.5	NIA - C4A - H4AI	109.2
$H_{23}A - C_{23} - H_{23}C$	109.5	CSA—C4A—H4AI	109.2
H23B—C23—H23C	109.5	NIA—C4A—H4A2	109.2
C25—C24—B1	1/4.8 (3)	CSA—C4A—H4A2	109.2
$C_{24} = C_{25} = S_{13}$	170.0 (3)	H4A1—C4A—H4A2	107.9
S13—C26—H26A	109.5	C4A—C5A—H5A1	109.5
S13—C26—H26B	109.5	C4A—C5A—H5A2	109.5
Н26А—С26—Н26В	109.5	H5A1—C5A—H5A2	109.5
S13—C26—H26C	109.5	C4A—C5A—H5A3	109.5
H26A—C26—H26C	109.5	H5A1—C5A—H5A3	109.5
H26B—C26—H26C	109.5	H5A2—C5A—H5A3	109.5
Si3—C27—H27A	109.5	N2A—C6A—C7A	109.7 (8)
Si3—C27—H27B	109.5	N2A—C6A—H6A1	109.7
H27A—C27—H27B	109.5	C7A—C6A—H6A1	109.7
Si3—C27—H27C	109.5	N2A—C6A—H6A2	109.7
H27A—C27—H27C	109.5	С7А—С6А—Н6А2	109.7
H27B—C27—H27C	109.5	H6A1—C6A—H6A2	108.2
Si3—C28—H28A	109.5	C6A—C7A—H7A1	109.5
Si3—C28—H28B	109.5	С6А—С7А—Н7А2	109.5
H28A—C28—H28B	109.5	H7A1—C7A—H7A2	109.5
Si3—C28—H28C	109.5	С6А—С7А—Н7А3	109.5
H28A—C28—H28C	109.5	H7A1—C7A—H7A3	109.5

H28B—C28—H28C	109.5	H7A2—C7A—H7A3	109.5
C30—C29—B1	174.5 (3)	N2A—C8A—C9A	113.1 (10)
C29—C30—Si4	171.5 (3)	N2A—C8A—H8A1	109.0
Si4—C31—H31A	109.5	C9A—C8A—H8A1	109.0
Si4—C31—H31B	109.5	N2A—C8A—H8A2	109.0
H31A—C31—H31B	109.5	C9A—C8A—H8A2	109.0
Si4—C31—H31C	109.5	H8A1—C8A—H8A2	107.8
H31A—C31—H31C	109.5	C8A—C9A—H9A1	109.5
H31B—C31—H31C	109.5	С8А—С9А—Н9А2	109.5
Si4—C32—H32A	109.5	H9A1—C9A—H9A2	109.5
Si4—C32—H32B	109.5	С8А—С9А—Н9А3	109.5
H32A—C32—H32B	109.5	Н9А1—С9А—Н9А3	109.5
Si4—C32—H32C	109.5	Н9А2—С9А—Н9А3	109.5
H32A—C32—H32C	109.5	N3A—C10A—C11A	112.9 (9)
H32B—C32—H32C	109.5	N3A—C10A—H10C	109.0
Si4—C33—H33A	109.5	C11A-C10A-H10C	109.0
Si4—C33—H33B	109.5	N3A—C10A—H10D	109.0
H33A—C33—H33B	109.5	C11A—C10A—H10D	109.0
Si4—C33—H33C	109.5	H10C-C10A-H10D	107.8
H33A—C33—H33C	109.5	C10A-C11A-H11D	109.5
H33B-C33-H33C	109.5	C10A-C11A-H11E	109.5
Si4—C31A—H31D	109.5	H11D—C11A—H11E	109.5
Si4—C31A—H31E	109.5	C10A-C11A-H11F	109.5
H31D—C31A—H31E	109.5	H11D—C11A—H11F	109.5
Si4—C31A—H31F	109.5	H11E— $C11A$ — $H11F$	109.5
H31D—C31A—H31F	109.5	N3A—C12A—C13A	113.4 (11)
H31E—C31A—H31F	109.5	N3A—C12A—H12C	108.9
Si4—C32A—H32D	109.5	C13A - C12A - H12C	108.9
Si4—C32A—H32E	109.5	N3A—C12A—H12D	108.9
H_{32D} C_{32A} H_{32E}	109.5	C13A - C12A - H12D	108.9
Si4—C32A—H32F	109.5	H12C-C12A-H12D	107.7
H_{32D} C_{32A} H_{32F}	109.5	C12A - C13A - H13D	109.5
H32E— $C32A$ — $H32F$	109.5	C12A— $C13A$ — $H13E$	109.5
Si4—C33A—H33D	109.5	$H_{13}D - C_{13}A - H_{13}E$	109.5
Si4-C33A-H33E	109.5	C12A - C13A - H13F	109.5
H33D—C33A—H33E	109.5	H13D-C13A-H13F	109.5
Si4—C33A—H33F	109.5	H13E— $C13A$ — $H13F$	109.5
H33D—C33A—H33F	109.5	$C_{34} - 0_{1} - C_{36}$	111 4 (7)
H33E—C33A—H33E	109.5	01 - C34 - C35	112.2(9)
Si4—C31B—H31G	109.5	01 - C34 - H34A	109.2
Si4—C31B—H31H	109.5	C_{35} C_{34} H_{34A}	109.2
H31G_C31B_H31H	109.5	01 - C34 - H34B	109.2
Si4_C31B_H311	109.5	C_{35} C_{34} H_{34B}	109.2
H_{31G} C_{31B} H_{31I}	109.5	$H_{34} = C_{34} = H_{34} B$	107.9
H31H_C31B_H31I	109.5	C34_C35_H35A	107.5
Si4_C32B_H32G	109.5	C34_C35_H35R	109.5
Si4_C32B_H32H	109.5	H35A_C35_H35B	109.5
$H_{32G} = C_{32B} = H_{32U}$	109.5	C_{34} C_{35} H_{35C}	109.5
пэ20—Сэ2D—пэ2п	107.5	UJ 1 —UJJ—IIJJU	107.5

Si4—C32B—H32I	109.5	H35A—C35—H35C	109.5
H32G—C32B—H32I	109.5	H35B—C35—H35C	109.5
H32H—C32B—H32I	109.5	O1—C36—C37	103.8 (8)
Si4—C33B—H33G	109.5	O1—C36—H36A	111.0
Si4—C33B—H33H	109.5	С37—С36—Н36А	111.0
H33G—C33B—H33H	109.5	O1—C36—H36B	111.0
Si4—C33B—H33I	109.5	С37—С36—Н36В	111.0
H33G—C33B—H33I	109.5	H36A—C36—H36B	109.0
H33H—C33B—H33I	109.5	С36—С37—Н37А	109.5
C1—N1—C2	120.8 (5)	С36—С37—Н37В	109.5
C1—N1—C4	120.8 (5)	Н37А—С37—Н37В	109.5
C2—N1—C4	118.1 (5)	С36—С37—Н37С	109.5
C1—N2—C8	120.9 (5)	Н37А—С37—Н37С	109.5
C1—N2—C6	120.9 (5)	Н37В—С37—Н37С	109.5
C8—N2—C6	118.0 (5)	C34A—O1A—C36A	113.2 (7)
C1—N3—C12	122.2 (5)	O1A—C34A—C35A	111.7 (9)
C1—N3—C10	121.2 (5)	01A—C34A—H34C	109.3
C12 - N3 - C10	116.5 (5)	C35A—C34A—H34C	109.3
N3-C1-N2	120.5 (6)	O1A—C34A—H34D	109.3
N3-C1-N1	119.0 (5)	C35A—C34A—H34D	109.3
N2—C1—N1	120.4 (5)	H34C—C34A—H34D	107.9
N1—C2—C3	112.4 (4)	C34A—C35A—H35D	109.5
N1—C2—H2A	109.1	С34А—С35А—Н35Е	109.5
C3—C2—H2A	109.1	H35D—C35A—H35E	109.5
N1—C2—H2B	109.1	C34A—C35A—H35F	109.5
C3—C2—H2B	109.1	H35D—C35A—H35F	109.5
H2A—C2—H2B	107.9	H35E—C35A—H35F	109.5
С2—С3—НЗА	109.5	O1A—C36A—C37A	107.2 (8)
С2—С3—Н3В	109.5	O1A—C36A—H36C	110.3
НЗА—СЗ—НЗВ	109.5	С37А—С36А—Н36С	110.3
С2—С3—Н3С	109.5	O1A—C36A—H36D	110.3
НЗА—СЗ—НЗС	109.5	C37A—C36A—H36D	110.3
НЗВ—СЗ—НЗС	109.5	H36C—C36A—H36D	108.5
N1—C4—C5	112.0 (5)	C36A—C37A—H37D	109.5
N1—C4—H4A	109.2	С36А—С37А—Н37Е	109.5
C5—C4—H4A	109.2	H37D—C37A—H37E	109.5
N1—C4—H4B	109.2	С36А—С37А—Н37F	109.5
C5—C4—H4B	109.2	H37D—C37A—H37F	109.5
H4A—C4—H4B	107.9	H37E—C37A—H37F	109.5
C12—N3—C1—N2	141.9 (7)	C10A—N3A—C1A—N2A	-136.7 (15)
C10—N3—C1—N2	-39.9 (11)	C12A—N3A—C1A—N2A	38 (2)
C12—N3—C1—N1	-37.3(12)	C2A—N1A—C1A—N3A	39 (2)
C10—N3—C1—N1	140.9 (7)	C4A—N1A—C1A—N3A	-145.8 (12)
C8—N2—C1—N3	-34.2 (11)	C2A—N1A—C1A—N2A	-144.3 (15)
C6—N2—C1—N3	139.9 (7)	C4A—N1A—C1A—N2A	31 (2)
C8—N2—C1—N1	145.0 (8)	C8A—N2A—C1A—N3A	-144.4 (14)
C6—N2—C1—N1	-40.9 (10)	C6A—N2A—C1A—N3A	35 (2)

C2 N1 C1 N3	-36.6(11)	CRA N2A C1A N1A	30(2)
C2—N1—C1—N3	30.0 (11)	Coa—NZA—CIA—NIA	39(2)
C4— $N1$ — $C1$ — $N3$	150.0 (7)	C6A—N2A—C1A—N1A	-141.9 (14)
C2—N1—C1—N2	144.2 (7)	C1A—N1A—C2A—C3A	117.4 (16)
C4—N1—C1—N2	-29.2 (11)	C4A—N1A—C2A—C3A	-57.9 (17)
C1—N1—C2—C3	-120.6 (7)	C1A—N1A—C4A—C5A	109.6 (16)
C4—N1—C2—C3	52.9 (7)	C2A—N1A—C4A—C5A	-75.0 (16)
C1—N1—C4—C5	-131.3 (8)	C1A—N2A—C6A—C7A	118.3 (15)
C2—N1—C4—C5	55.1 (7)	C8A—N2A—C6A—C7A	-62.5 (15)
C1—N2—C6—C7	-96.0 (8)	C1A—N2A—C8A—C9A	127.0 (18)
C8—N2—C6—C7	78.2 (8)	C6A—N2A—C8A—C9A	-52.2 (17)
C1—N2—C8—C9	-119.0 (9)	C1A—N3A—C10A—C11A	98 (2)
C6—N2—C8—C9	66.8 (10)	C12A—N3A—C10A—C11A	-76.8 (19)
C1—N3—C10—C11	-106.5 (13)	C1A—N3A—C12A—C13A	108 (2)
C12-N3-C10-C11	71.9 (13)	C10A—N3A—C12A—C13A	-77 (2)
C1—N3—C12—C13	-115.5 (12)	C36—O1—C34—C35	-167.9 (16)
C10—N3—C12—C13	66.2 (11)	C34—O1—C36—C37	171.1 (13)
C10A—N3A—C1A—N1A	40 (2)	C36A—O1A—C34A—C35A	-162.3 (13)
C12A—N3A—C1A—N1A	-145.4 (14)	C34A—O1A—C36A—C37A	-162.8 (14)