

ISSN 2414-3146

Received 31 March 2017 Accepted 15 May 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; thiazolidine-2,4-dione; hydrogen bonding.

CCDC reference: 1501669

Structural data: full structural data are available from iucrdata.iucr.org

N,N-Diethyl-2-[5-(4-methoxybenzylidene)-2,4dioxo-1,3-thiazolidin-3-yl]acetamide

Vijayan Viswanathan,^a Sabina Yasmin,^b Venkatesan Jayaprakash^b and Devadasan Velmurugan^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India. *Correspondence e-mail: shirai2011@gmail.com

In the title compound, $C_{17}H_{20}N_2O_4S$, the thiazolidine (r.m.s. deviation = 0.022 Å) and phenyl rings (major and minor occupancies) are inclined to one another by 6.3 (3) and 10.5 (3)°, respectively. The molecular conformation is stabilized by an intramolecular $C-H\cdots S$ interaction. In the crystal, molecules are linked by $C-H\cdots O$ hydrogen bonds, which generate $R_2^2(18)$, $R_2^2(24)$ and $R_2^1(7)$ ring motifs. Aromatic $\pi-\pi$ stacking interactions are also observed.

Structure description

Thiazolidine-2,4-dione derivatives show a number of biological properties including anticancer, antiarthritic, anti-inflammatory, anti-oxidant and diabetes related effects (Fujita *et al.*, 1983; Youssef *et al.*, 2010; Albrecht *et al.*, 2005). As part of our investigations of thiazolidine derivatives, we have undertaken the X-ray crystal structure analysis of the title compound.

The molecular structure of the compound is shown in Fig. 1. The thiazolidine ring adopts its expected planar conformation with a maximum deviation of 0.0266 (4) Å for C11. The methoxy group and atoms C2 and C7 of the phenyl ring are disordered over two orientations with site occupancy factors of 0.579 (15):0.421 (15). The mean planes of the thiazolidine and phenyl rings (major and minor occupancies) are inclined to one another by 6.3 (3) and 10.5 (3)°, respectively. The 2-aminoacetamide moiety is in an extended conformation, as can be seen from the N1–C12–C13–N2 torsion angle of –166.4 (3)°. The torsion angles of the diethylamine group are C13–N2–C16–C17 = 83.3 (5)° and C13–N2–C14–C15 = 90.8 (4)°. An intramolecular C–H···S contact (Table 1) generates an S(6) ring.

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

The C-H···O intermolecular interactions generating $R_2^2(14)$ and $R_2^2(24)$ ring motifs, viewed along the *b* axis. H atoms not involved in hydrogen bonds have been excluded for clarity.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C4-H4\cdots S1$	0.93	2.56	3,259 (4)	133
$C1B - H1B3 \cdots O2^{i}$	0.96	2.51	3.160 (14)	125
$C3-H3\cdots O2^{i}$	0.93	2.58	3.481 (5)	164
$C12 - H12B \cdots O3^{ii}$	0.97	2.43	3.342 (4)	157

 $C_{17}H_{20}N_2O_4S$

1759.89 (17)

Μο Κα

2008)

0.053

0.660

0.752, 0.863 12523, 4146, 1342

0.21

Monoclinic, $P2_1/n$

 $0.28\times0.23\times0.17$

Bruker SMART APEXII CCD Multi-scan (SADABS; Bruker,

11.6978 (6), 7.1331 (4), 21.1822 (12) 95.311 (4)

348.41

293

4

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Table 2Experimental details.

Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) β (°) V (Å³) ZRadiation type μ (mm⁻¹) Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta/\lambda)_{max} (Å^{-1})$

 $\begin{array}{ll} \mbox{Refinement} & & & \\ R[F^2 > 2\sigma(F^2)], wR(F^2), S & 0.054, 0.212, 0.84 \\ \mbox{No. of reflections} & 4146 \\ \mbox{No. of parameters} & 258 \\ \mbox{No. of restraints} & 56 \\ \mbox{H-atom treatment} & & \\ \mbox{H-atom parameters constrained} \\ \Delta\rho_{\max}, \Delta\rho_{\min} (e\ \boldsymbol{\AA}^{-3}) & 0.17, -0.19 \\ \end{array}$

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS and SHELXTL (Sheldrick, 2008) and SHELXL2016 (Sheldrick, 2015).

Figure 3 The C12-H12B···O3 intermolecular hydrogen bond generates C(5) zigzag chains.

Figure 4 The weak π - π interaction of the title compound, viewed along the *c* axis.

In the crystal, the C3-H3···O2 interaction generates an $R_2^2(18)$ loop and the C1B-H13B···O2 hydrogen bond leads to an $R_2^2(24)$ loop (Fig. 2). The C12-H12B···O3 hydrogen bond generates a C(5) zigzag chain running along [101], as shown in Fig. 3. Aromatic π - π stacking interactions are observed, as shown in Fig. 4, with a Cg1···Cg2(x, -1 + y, z) distance of 3.879 (3) Å where Cg1 and Cg2 are the centroids of the thiazolidine and phenyl rings, respectively.

Synthesis and crystallization

To a stirred solution of *p*-methoxybenzylidine thiazolidinedione (0.5 g; 2.2 mmol) in 25 ml of acetonitrile was added 2-chloro-*N*,*N*-diethylacetamide (0.3 g; 2.4 mmol) and the mixture was refluxed for 16 h and cooled to room temperature. The reaction mixture was then poured into icecooled water. The crude brown-colored solid that separated was filtered and dried to give the title compound as a crystalline powder (yield = 82%). After purification, the compound was recrystallized from CHCl₃ solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The methoxy group and atoms C2/C7 of the phenyl ring are disordered over two orientations with site occupancy factors of 0.579 (15):0.421 (15).

Acknowledgements

SY acknowledges the UGC–MANF for a JRF. The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

- Albrecht, U., Gördes, D., Schmidt, E., Thurow, K., Lalk, M. & Langer, P. (2005). *Bioorg. Med. Chem.* **13**, 4402–4407.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fujita, T., Sugiyama, Y., Taketomi, S., Sohda, T., Kawamatsu, Y., Iwatsuka, H. & Suzuoki, Z. (1983). *Diabetes*, **32**, 804–810.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Youssef, A. M., Sydney White, M., Villanueva, E. B., El-Ashmawy, I. M. & Klegeris, A. (2010). *Bioorg. Med. Chem.* 18, 2019–2028.

full crystallographic data

IUCrData (2017). **2**, x170716 [https://doi.org/10.1107/S2414314617007167]

N,N-Diethyl-2-[5-(4-methoxybenzylidene)-2,4-dioxo-1,3-thiazolidin-3-yl]acetamide

Vijayan Viswanathan, Sabina Yasmin, Venkatesan Jayaprakash and Devadasan Velmurugan

F(000) = 736

 $\theta = 1.9 - 28.0^{\circ}$

 $\mu = 0.21 \text{ mm}^{-1}$ T = 293 K

Block, brown

 $0.28 \times 0.23 \times 0.17 \text{ mm}$

 $D_{\rm x} = 1.315 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4146 reflections

N,N-Diethyl-2-[5-(4-methoxybenzylidene)-2,4-dioxo-1,3-thiazolidin-3-yl]acetamide

Crystal data

 $\begin{array}{l} C_{17}H_{20}N_2O_4S\\ M_r = 348.41\\ \text{Monoclinic, }P2_1/n\\ a = 11.6978\ (6)\ \text{\AA}\\ b = 7.1331\ (4)\ \text{\AA}\\ c = 21.1822\ (12)\ \text{\AA}\\ \beta = 95.311\ (4)^\circ\\ V = 1759.89\ (17)\ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Bruker SMART APFXII CCD	4146 independent reflections
diffractomator	1242 reflections with $L > 2\pi(D)$
unnacionielei	1542 Teffections with $I \ge 20(1)$
ω and φ scans	$R_{\rm int} = 0.053$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
(SADABS; Bruker, 2008)	$h = -15 \rightarrow 11$
$T_{\min} = 0.752, \ T_{\max} = 0.863$	$k = -9 \rightarrow 9$
12523 measured reflections	$l = -27 \rightarrow 24$

Refinement

Refinement on <i>F</i> ² Hydrogen site location: infer	
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.054$	H-atom parameters constrained
$wR(F^2) = 0.212$	$w = 1/[\sigma^2(F_o^2) + (0.1074P)^2]$
S = 0.84	where $P = (F_0^2 + 2F_c^2)/3$
4146 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
258 parameters	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
56 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were placed in calculated positions with C—H = 0.93 Å to 0.97 Å, refined in the riding model with fixed isotropic displacement parameters: $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl group and $U_{iso}(H) = 1.2U_{eq}(C)$ for other groups.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C3	0.6852 (4)	0.3920 (6)	0.98139 (18)	0.0889 (12)	
H3	0.645923	0.404422	1.017386	0.107*	
C4	0.6695 (3)	0.2315 (6)	0.94622 (18)	0.0798 (11)	
H4	0.608647	0.153121	0.953630	0.096*	
C5	0.7400 (3)	0.1804 (5)	0.90020 (17)	0.0692 (10)	
C6	0.8256 (4)	0.3040 (7)	0.8900 (2)	0.1029 (14)	
H6	0.885074	0.269085	0.866210	0.124*	
C8	0.7292 (3)	0.0126 (6)	0.86181 (16)	0.0716 (10)	
H8	0.787318	-0.003383	0.835153	0.086*	
C9	0.6511 (3)	-0.1225 (5)	0.85793 (16)	0.0693 (10)	
C10	0.6611 (3)	-0.2856 (5)	0.81545 (17)	0.0713 (10)	
C11	0.4918 (4)	-0.3558 (6)	0.86037 (18)	0.0849 (12)	
C12	0.5567 (3)	-0.5782 (5)	0.78347 (16)	0.0690 (10)	
H12A	0.521585	-0.674578	0.807565	0.083*	
H12B	0.630996	-0.623818	0.773382	0.083*	
C13	0.4810 (3)	-0.5400 (7)	0.72212 (18)	0.0680 (10)	
C14	0.4522 (3)	-0.8817 (5)	0.71029 (19)	0.0840 (11)	
H14A	0.523234	-0.894418	0.737439	0.101*	
H14B	0.457094	-0.962399	0.673789	0.101*	
C15	0.3535 (4)	-0.9451 (6)	0.7461 (2)	0.1128 (15)	
H15A	0.353226	-0.874479	0.784671	0.169*	
H15B	0.361974	-1.076036	0.756010	0.169*	
H15C	0.282503	-0.925314	0.720459	0.169*	
C16	0.3669 (4)	-0.6514 (6)	0.6298 (2)	0.1011 (14)	
H16A	0.318532	-0.543771	0.635958	0.121*	
H16B	0.317224	-0.758599	0.620371	0.121*	
C17	0.4347 (5)	-0.6150 (9)	0.5744 (2)	0.139 (2)	
H17A	0.483720	-0.508536	0.583319	0.209*	
H17B	0.383143	-0.590304	0.537429	0.209*	
H17C	0.480638	-0.722981	0.567051	0.209*	
N1	0.5719 (2)	-0.4109 (4)	0.82111 (13)	0.0699 (8)	
N2	0.4399 (3)	-0.6879 (5)	0.68896 (15)	0.0787 (9)	
O2	0.4063 (3)	-0.4452 (4)	0.86787 (13)	0.1112 (10)	
03	0.7349 (2)	-0.3119 (3)	0.78051 (12)	0.0892 (9)	
O4	0.4629 (2)	-0.3782 (4)	0.70499 (12)	0.0911 (8)	
S1	0.52785 (9)	-0.14350 (16)	0.89820 (5)	0.0943 (5)	
O1A	0.8368 (13)	0.629 (2)	1.0134 (6)	0.130 (5)	0.416 (16)
C1A	0.7701 (18)	0.694 (3)	1.0625 (9)	0.115 (6)	0.416 (16)
H1A1	0.708181	0.770687	1.044279	0.173*	0.416 (16)
H1A2	0.817939	0.765989	1.092696	0.173*	0.416 (16)
H1A3	0.739503	0.588108	1.083304	0.173*	0.416 (16)
C7A	0.8220 (12)	0.4863 (13)	0.9161 (6)	0.065 (4)	0.416 (16)
H7A	0.865855	0.579302	0.899298	0.078*	0.416 (16)
C2A	0.7561 (12)	0.536 (2)	0.9662 (7)	0.100 (7)	0.416 (16)
C2B	0.7809 (10)	0.4968 (13)	0.9732 (6)	0.093 (5)	0.584 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C1B	0.7046 (13)	0.7394 (19)	1.0444 (6)	0.113 (4)	0.584 (16)	
H1B1	0.625442	0.717329	1.030028	0.170*	0.584 (16)	
H1B2	0.715029	0.869088	1.055557	0.170*	0.584 (16)	
H1B3	0.726055	0.662618	1.080745	0.170*	0.584 (16)	
C7B	0.8638 (11)	0.4416 (18)	0.9326 (6)	0.118 (5)	0.584 (16)	
H7B	0.937125	0.492941	0.934397	0.142*	0.584 (16)	
O1B	0.7743 (8)	0.6939 (9)	0.9952 (4)	0.093 (3)	0.584 (16)	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	U ²³
C3	0.129 (3)	0.086 (3)	0.056 (3)	-0.022 (3)	0.027 (2)	-0.011 (2)
C4	0.100 (3)	0.082 (3)	0.060 (2)	-0.014 (2)	0.025 (2)	-0.003 (2)
C5	0.082 (2)	0.079 (3)	0.049 (2)	-0.010 (2)	0.0145 (19)	0.002 (2)
C6	0.124 (3)	0.114 (4)	0.077 (3)	-0.041 (3)	0.044 (3)	-0.027 (3)
C8	0.081 (2)	0.087 (3)	0.049 (2)	0.002 (2)	0.0207 (18)	0.000 (2)
C9	0.078 (2)	0.079 (3)	0.054 (2)	-0.009 (2)	0.0191 (18)	-0.009 (2)
C10	0.082 (3)	0.080 (3)	0.055 (2)	-0.004 (2)	0.023 (2)	-0.003 (2)
C11	0.088 (3)	0.108 (3)	0.063 (3)	-0.019 (2)	0.034 (2)	-0.015 (2)
C12	0.076 (2)	0.077 (3)	0.056 (2)	-0.0049 (18)	0.0196 (19)	-0.003 (2)
C13	0.074 (2)	0.076 (3)	0.056 (3)	0.008 (2)	0.020 (2)	0.001 (2)
C14	0.094 (3)	0.077 (3)	0.080 (3)	0.006 (2)	0.004 (2)	-0.012 (2)
C15	0.109 (3)	0.103 (3)	0.127 (4)	-0.008 (3)	0.016 (3)	0.016 (3)
C16	0.104 (3)	0.127 (4)	0.069 (3)	0.008 (3)	-0.012 (3)	0.006 (3)
C17	0.144 (4)	0.213 (6)	0.060 (3)	0.053 (4)	0.012 (3)	-0.006 (3)
N1	0.0775 (19)	0.085 (2)	0.0514 (18)	-0.0103 (17)	0.0247 (15)	-0.0113 (17)
N2	0.093 (2)	0.082 (2)	0.061 (2)	0.0030 (18)	0.0035 (17)	0.0002 (19)
O2	0.0970 (19)	0.143 (3)	0.102 (2)	-0.0388 (19)	0.0535 (17)	-0.0404 (19)
O3	0.0999 (18)	0.098 (2)	0.0784 (19)	-0.0146 (14)	0.0527 (15)	-0.0159 (14)
O4	0.118 (2)	0.0776 (19)	0.079 (2)	0.0135 (15)	0.0182 (15)	0.0101 (16)
S1	0.0933 (8)	0.1155 (9)	0.0805 (8)	-0.0162 (6)	0.0426 (6)	-0.0324 (7)
O1A	0.139 (8)	0.135 (8)	0.122 (8)	-0.032 (6)	0.038 (6)	-0.031 (6)
C1A	0.116 (12)	0.127 (12)	0.107 (12)	-0.022 (9)	0.032 (10)	-0.038 (9)
C7A	0.060 (6)	0.075 (7)	0.062 (6)	-0.010 (5)	0.014 (5)	0.009 (5)
C2A	0.110 (9)	0.102 (11)	0.085 (10)	-0.004 (7)	-0.005 (7)	-0.002 (8)
C2B	0.143 (8)	0.070 (6)	0.073 (7)	-0.042 (6)	0.042 (6)	-0.026 (5)
C1B	0.143 (10)	0.105 (7)	0.093 (7)	-0.016 (7)	0.012 (8)	-0.026 (6)
C7B	0.120 (8)	0.136 (8)	0.102 (7)	-0.039 (6)	0.029 (6)	-0.012 (6)
O1B	0.120 (6)	0.081 (4)	0.081 (4)	-0.021 (3)	0.027 (4)	-0.016 (3)

Geometric parameters (Å, °)

C3—C4	1.369 (5)	C14—C15	1.509 (5)	
C3—C2B	1.371 (7)	C14—H14A	0.9700	
C3—C2A	1.377 (9)	C14—H14B	0.9700	
С3—Н3	0.9300	C15—H15A	0.9600	
C4—C5	1.383 (5)	C15—H15B	0.9600	
C4—H4	0.9300	C15—H15C	0.9600	

C5—C6	1.366 (5)	C16—N2	1.472 (4)
C5—C8	1.446 (5)	C16—C17	1.498 (6)
С6—С7В	1.380 (8)	C16—H16A	0.9700
С6—С7А	1.415 (8)	C16—H16B	0.9700
С6—Н6	0.9300	C17—H17A	0.9600
C8—C9	1.325 (4)	C17—H17B	0.9600
С8—Н8	0.9300	С17—Н17С	0.9600
C9—C10	1.482 (5)	O1A—C2A	1.469 (9)
C9—S1	1.748 (4)	O1A—C1A	1.432 (19)
C10—O3	1.203 (4)	C1A—H1A1	0.9600
C10—N1	1.387 (4)	C1A—H1A2	0.9600
C11—O2	1.210 (4)	C1A—H1A3	0.9600
C11—N1	1.367 (4)	C7A—C2A	1.413 (9)
C11—S1	1.746 (4)	С7А—Н7А	0.9300
C12—N1	1.437 (4)	C2B—C7B	1.410 (8)
C12—C13	1.528 (5)	C2B—O1B	1.486 (9)
C12—H12A	0.9700	C1B—O1B	1.418 (14)
С12—Н12В	0.9700	C1B—H1B1	0.9600
C13—O4	1.222 (4)	C1B—H1B2	0.9600
C13—N2	1.332 (4)	C1B—H1B3	0.9600
C14—N2	1.457 (4)	C7B—H7B	0.9300
C4—C3—C2B	117.2 (5)	H15B—C15—H15C	109.5
C4—C3—C2A	123.4 (7)	N2—C16—C17	112.9 (4)
С4—С3—Н3	118.3	N2—C16—H16A	109.0
С2А—С3—Н3	118.3	C17—C16—H16A	109.0
C3—C4—C5	123.1 (4)	N2—C16—H16B	109.0
C3—C4—H4	118.5	C17—C16—H16B	109.0
C5—C4—H4	118.5	H16A—C16—H16B	107.8
C6—C5—C4	115.8 (4)	C16—C17—H17A	109.5
C6—C5—C8	118.2 (3)	C16—C17—H17B	109.5
C4—C5—C8	126.0 (3)	H17A—C17—H17B	109.5
С5—С6—С7В	123.6 (6)	C16—C17—H17C	109.5
C5—C6—C7A	118.8 (6)	H17A—C17—H17C	109.5
С5—С6—Н6	120.6	H17B—C17—H17C	109.5
С7А—С6—Н6	120.6	C11—N1—C10	115.5 (3)
C9—C8—C5	131.4 (3)	C11—N1—C12	121.3 (3)
С9—С8—Н8	114.3	C10—N1—C12	122.8 (3)
С5—С8—Н8	114.3	C13—N2—C14	124.6 (3)
C8—C9—C10	121.0 (3)	C13—N2—C16	117.4 (3)
C8—C9—S1	128.8 (3)	C14—N2—C16	117.7 (3)
C10—C9—S1	110.1 (3)	C11—S1—C9	91.45 (19)
O3—C10—N1	122.8 (3)	C2A—O1A—C1A	106.3 (11)
O3—C10—C9	126.7 (3)	O1A—C1A—H1A1	109.5
N1—C10—C9	110.5 (3)	O1A—C1A—H1A2	109.5
O2—C11—N1	123.4 (4)	H1A1—C1A—H1A2	109.5
O2—C11—S1	124.4 (3)	O1A—C1A—H1A3	109.5
N1-C11-S1	112.3 (3)	H1A1—C1A—H1A3	109.5
		-	

N1-C12-C13	110.9 (3)	H1A2—C1A—H1A3	109.5
N1—C12—H12A	109.5	C2A—C7A—C6	124.3 (11)
C13—C12—H12A	109.5	C2A—C7A—H7A	117.9
N1—C12—H12B	109.5	С6—С7А—Н7А	117.9
C13—C12—H12B	109.5	C3—C2A—C7A	111.7 (12)
H12A—C12—H12B	108.1	C3—C2A—O1A	122.9 (12)
O4—C13—N2	123.2 (4)	C7A—C2A—O1A	105.3 (10)
O4—C13—C12	119.4 (4)	C3—C2B—C7B	122.8 (7)
N2—C13—C12	117.3 (3)	C3—C2B—O1B	114.1 (8)
N2—C14—C15	112.5 (3)	C7B—C2B—O1B	121.0 (7)
N2—C14—H14A	109.1	O1B—C1B—H1B1	109.5
C15—C14—H14A	109.1	O1B—C1B—H1B2	109.5
N2—C14—H14B	109.1	H1B1—C1B—H1B2	109.5
C15—C14—H14B	109.1	01B—C1B—H1B3	109.5
H14A—C14—H14B	107.8	H1B1—C1B—H1B3	109.5
C14—C15—H15A	109.5	H1B2— $C1B$ — $H1B3$	109.5
C14—C15—H15B	109.5	C6 - C7B - C2B	113 4 (8)
H15A - C15 - H15B	109.5	C6-C7B-H7B	123.3
C14-C15-H15C	109.5	C2B - C7B - H7B	123.3
H15A - C15 - H15C	109.5	C1B - O1B - C2B	119.8 (8)
	109.5		119.0 (0)
C2B—C3—C4—C5	-5.2(9)	C13—C12—N1—C10	-90.0(4)
C2A—C3—C4—C5	13.9 (11)	04—C13—N2—C14	-175.0(3)
C3—C4—C5—C6	-2.1(6)	C12-C13-N2-C14	6.7 (5)
C3—C4—C5—C8	179.4 (4)	04-C13-N2-C16	-1.7(5)
C4—C5—C6—C7B	18.5 (11)	C12—C13—N2—C16	-180.0(3)
C8—C5—C6—C7B	-162.8(9)	C15-C14-N2-C13	90.8 (4)
C4—C5—C6—C7A	-12.8 (8)	C15—C14—N2—C16	-82.5 (4)
C8—C5—C6—C7A	165.8 (7)	C17—C16—N2—C13	83.3 (5)
C6—C5—C8—C9	-174.3 (4)	C17—C16—N2—C14	-102.9(4)
C4—C5—C8—C9	4.1 (6)	O2—C11—S1—C9	-178.0(4)
C5—C8—C9—C10	-178.2 (3)	N1—C11—S1—C9	2.3 (3)
C5—C8—C9—S1	1.4 (6)	C8—C9—S1—C11	-179.9(4)
C8-C9-C10-O3	-1.7(6)	C10-C9-S1-C11	-0.3(3)
S1—C9—C10—O3	178.6 (3)	C5—C6—C7A—C2A	18.5 (17)
C8—C9—C10—N1	177.9 (3)	C4—C3—C2A—C7A	-8.5 (18)
S1—C9—C10—N1	-1.7 (4)	C4—C3—C2A—O1A	-135.0 (14)
N1—C12—C13—O4	15.3 (4)	C6—C7A—C2A—C3	-7 (2)
N1-C12-C13-N2	-166.4(3)	C6—C7A—C2A—O1A	128.3 (16)
O2-C11-N1-C10	176.3 (4)	C1A—O1A—C2A—C3	-55 (2)
S1-C11-N1-C10	-3.9(4)	C1A—O1A—C2A—C7A	175.7 (13)
02-C11-N1-C12	2.7 (6)	C4—C3—C2B—C7B	-2.6(16)
S1-C11-N1-C12	-177.5(3)	C4—C3—C2B—O1B	161.0 (8)
O3-C10-N1-C11	-176.7 (3)	C5—C6—C7B—C2B	-25.2 (16)
C9—C10—N1—C11	3.6 (4)	C3—C2B—C7B—C6	16.7 (18)
O3-C10-N1-C12	-3.2 (5)	01B—C2B—C7B—C6	-145.8 (15)
C9—C10—N1—C12	177.2 (3)	C3—C2B—O1B—C1B	27.2 (16)
C13—C12—N1—C11	83.2 (4)	C7B-C2B-O1B-C1B	-168.9 (11)
			()

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
C4—H4…S1	0.93	2.56	3.259 (4)	133
C1B— $H1B3$ ···O2 ⁱ	0.96	2.51	3.160 (14)	125
C3—H3···O2 ⁱ	0.93	2.58	3.481 (5)	164
C12—H12 <i>B</i> ···O3 ⁱⁱ	0.97	2.43	3.342 (4)	157

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*+3/2, *y*-1/2, -*z*+3/2.