

ISSN 2414-3146

Received 25 April 2017 Accepted 28 April 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; quinoline ring system; hydrogen bonds; π - π stacking interactions.

CCDC reference: 1546956

Structural data: full structural data are available from iucrdata.iucr.org

data reports

5,7-Dibromo-8-methoxyquinoline

Ísmail Çelik,^a Salih Ökten,^b Mehmet Akkurt,^c* Cem Cüneyt Ersanlı,^d Osman Çakmak^e and Rana Özbakır^a

^aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, ^bDepartment of Maths and Science Education, Division of Science Education, Faculty of Education, Kırıkkale University, 71450, Yahşihan, Kırıkkale, Turkey, ^cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^dDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey, and ^eDepartment of Nutrition and Dietetics, School of Health Sciences, İstanbul Gelişim University, 34315 Avcılar, İstanbul, Turkey. *Correspondence e-mail: akkurt@erciyes.edu.tr

In the title compound, $C_{10}H_7Br_2NO$, the methoxy C atom deviates from the quinoline ring system (r.m.s deviation = 0.003 Å) by 1.204 (4) Å. In the crystal, C-H···O hydrogen bonds link the molecules into infinite chains along the *b*-axis direction. Aromatic π - π stacking interactions [centroid-to-centroid distance = 3.7659 (19) Å] are also observed.

Structure description

The treatment of several dihalogenated quinoline derivatives with NaOMe in basic solutions afforded mono methoxide analogues (Politanskaya *et al.*, 2005). Our own work has studied the bromination reactions of substituted quinolines (Ökten & Çakmak, 2015; Ökten *et al.*, 2015). The present study presents the crystal structure of 5,7-dibromo-8-hydroxyquinoline.

In the title compound (Fig. 1), the Br–C bond lengths are 1.889 (3) and 1.901 (3) Å, and the Br–C–C bond angles vary from 117.6 (2) to 120.2 (2)°. The relatively wide range of Br–C–C angles may be due to the alternation of the bond-lengths in the bromine-substituted six-membered ring, which vary from 1.357 (4) to 1.425 (4) Å.

The packing of the title compound viewed down the *b* axis is shown in Fig. 2. The crystal structure features $C-H\cdots O$ hydrogen bonds, which lead to the formation of chains along the *b*-axis direction (Fig. 3 and Table 1). Furthermore, aromatic $\pi-\pi$ stacking interactions $[Cg1\cdots Cg2(x, 1 + y, z) = 3.7659 (19) \text{ Å}; Cg1 \text{ and } Cg2 \text{ are the centroids of the N1/C1-C5 pyridine and C4-C9 benzene rings, respectively] in the [010] direction are also observed.$

Figure 1

View of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Synthesis and crystallization

5,7-Dibromoquinolin-8-ol (1.0 g, 3.3 mmol) was added to a solution of NaOH (132 mg, 3.3 mmol) in distilled water (100 ml). Me₂SO₄ (416 mg, 3.3 mmol) was added dropwise to the mixture at 263 K for 1 h while being stirred. The mixture was heated to 343-353 K for 1 h. After completion of the reaction (the colour of the mixture changed, 2 h), the solid was dissolved in CHCl₃ (50 ml). The organic layer was successively washed with 10% Na₂CO₃ (2 \times 15 ml) and 10% NaOH (2 \times 15 ml), dried over Na₂SO₄, and the solvent was removed under vacuum. The crude material (2.12 g) was passed through a short alumina column and eluted with EtOAchexane (1:6, 150 ml) to obtain the title compound (1 g, 95%) as colourless needles, m.p. 372-375 K. ¹H NMR (400 MHz, CDCl₃): (δ/p.p.m.): 9.00 (dd, J₂₃ = 3.2 Hz, J₂₄ = 1.6 Hz, 1H, H-2), 8.52 (*dd*, 1H, H-4, *J*₄₃ = 8 Hz, *J*₄₂ = 1.6 Hz), 8.02 (*s*, 1H, H-6) 7.58 (*dd*, 1H, H-3, J_{34} = 8.4 Hz, J_{32} = 3.2 Hz), 4.19 (*s*, 3H, OCH₃); ¹³C NMR (100 MHz, CDCl₃) (δ/p.p.m.): 153.3, 150.9, 143.8, 136.1, 133.7, 128.3, 122.5, 116.3, 116.5, 62.1 (OCH₃); IR (ν/cm^{-1}) : 2919, 2850, 1733, 1600, 1578, 1490, 1462, 1383, 1370, 1353. 1086.

The packing of the title compound down the b axis.

Table 1 Hydrogen-bond geom	etrv (Å °)			
$D - H \cdots A$	<i>D</i> -Н	$H \cdot \cdot \cdot A$	$D \cdots A$	$D-\mathrm{H}\cdots A$
$C10-H10C\cdotsO1^{i}$	0.96	2.48	3.418 (5)	166
Symmetry code: (i) $x, y - 1$	1, <i>z</i> .			
Table 2 Experimental details.				
Crystal data Chemical formula M_r Crystal system, space gr Temperature (K) a, b, c (Å) β (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm)	roup	C ₁₀ H 316.9 Mono 296 16.15 115.3 1024. 4 Mo <i>K</i> 7.88 0.11	$_{7}\text{Br}_{2}\text{NO}$ 9 belinic, $P2_{1}/c$ 8 (3), 3.9960 (6) 16 (5) 4 (3) $\zeta \alpha$ × 0.07 × 0.05), 17.551 (3)
Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, indep observed $[I > 2\sigma(I)]$ R_{int} $(\sin \theta/\lambda)_{\max} (\text{\AA}^{-1})$	Bruker APEXII CCD Multi-scan (<i>SADABS</i> ; Bruker, 2007) 0.603, 0.745 16733, 2048, 1604 0.052 0.623			
Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2)$ No. of reflections No. of parameters H-atom treatment $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)), <i>S</i>	0.028 2048 127 H-ato 0.55,	, 0.059, 1.03 om parameters -0.51	constrained

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2003).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This work is supported by the Scientific Research Project Fund of Cumhuriyet University under the project number F-513. The authors are indebted to the X-ray laboratory of

Figure 3 View of the C-H···O hydrogen bonds along the *b* axis, shown down the *a* axis.

Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

References

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Ökten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337-5340.
- Ökten, S., Eyigün, D. & Çakmak, O. (2015). Sigma J. Eng. Nat. Sci. 33, 8–15.
- Politanskaya, L. V., Malysheva, L. A., Beregovaya, I. V., Bagryanskaya, I. Y., Gatilov, Y. V., Malykhin, E. V. & Shteingarts, V. D. (2005). J. Fluor. Chem. 126, 1502–1509.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

full crystallographic data

IUCrData (2017). 2, x170643 [https://doi.org/10.1107/S2414314617006435]

5,7-Dibromo-8-methoxyquinoline

İsmail Çelik, Salih Ökten, Mehmet Akkurt, Cem Cüneyt Ersanlı, Osman Çakmak and Rana Özbakır

5,7-Dibromo-8-methoxyquinoline

Crystal data

C₁₀H₇Br₂NO $M_r = 316.99$ Monoclinic, $P2_1/c$ a = 16.158 (3) Å b = 3.9960 (6) Å c = 17.551 (3) Å $\beta = 115.316$ (5)° V = 1024.4 (3) Å³ Z = 4

Data collection

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.028$ H-atom parameters constrained $wR(F^2) = 0.059$ $w = 1/[\sigma^2(F_o^2) + (0.0218P)^2 + 1.0875P]$ S = 1.03where $P = (F_0^2 + 2F_c^2)/3$ 2048 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$ 127 parameters $\Delta \rho_{\rm min} = -0.51 \text{ e} \text{ Å}^{-3}$ 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 608 $D_x = 2.055 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5051 reflections $\theta = 3.4-25.1^{\circ}$ $\mu = 7.88 \text{ mm}^{-1}$ T = 296 KNeedle, colourless $0.11 \times 0.07 \times 0.05 \text{ mm}$

2048 independent reflections 1604 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 26.3^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -20 \rightarrow 19$ $k = -4 \rightarrow 4$ $l = -21 \rightarrow 21$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.1048 (2)	0.9036 (9)	0.4918 (2)	0.0462 (9)	
H1	0.049584	1.009212	0.459273	0.055*	
C2	0.1639 (2)	0.8352 (9)	0.4542 (2)	0.0462 (9)	
H2	0.147908	0.895425	0.398488	0.055*	
C3	0.2447 (2)	0.6799 (8)	0.5000 (2)	0.0378 (8)	
Н3	0.284548	0.632227	0.475841	0.045*	
C4	0.2681 (2)	0.5908 (7)	0.58455 (18)	0.0291 (7)	
C5	0.2035 (2)	0.6703 (7)	0.61719 (19)	0.0303 (7)	
C6	0.2236 (2)	0.5909 (7)	0.70229 (19)	0.0310 (7)	
C7	0.3056 (2)	0.4440 (8)	0.75154 (18)	0.0319 (7)	
C8	0.3698 (2)	0.3624 (7)	0.72035 (19)	0.0325 (7)	
H8	0.425118	0.262233	0.755195	0.039*	
C9	0.3503 (2)	0.4313 (7)	0.63871 (19)	0.0296 (7)	
C10	0.0821 (3)	0.4740 (10)	0.7055 (3)	0.0544 (10)	
H10A	0.043928	0.547100	0.731777	0.082*	
H10B	0.049547	0.498501	0.645482	0.082*	
H10C	0.098083	0.243169	0.719059	0.082*	
N1	0.12264 (18)	0.8276 (7)	0.57021 (17)	0.0391 (7)	
01	0.16339 (15)	0.6720 (6)	0.73544 (14)	0.0417 (6)	
BR1	0.33604 (3)	0.34441 (9)	0.86565 (2)	0.04622 (12)	
BR2	0.43774 (2)	0.30825 (9)	0.59799 (2)	0.04253 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.038 (2)	0.053 (2)	0.037 (2)	0.0093 (17)	0.0060 (16)	0.0077 (17)
C2	0.044 (2)	0.059 (2)	0.0286 (18)	0.0025 (18)	0.0091 (16)	0.0056 (17)
C3	0.0425 (19)	0.0418 (19)	0.0315 (17)	-0.0029 (16)	0.0180 (15)	-0.0033 (15)
C4	0.0312 (17)	0.0264 (16)	0.0299 (16)	-0.0036 (13)	0.0133 (14)	-0.0053 (12)
C5	0.0294 (17)	0.0296 (16)	0.0303 (16)	-0.0028 (14)	0.0113 (14)	-0.0025 (13)
C6	0.0337 (17)	0.0314 (17)	0.0329 (17)	-0.0017 (13)	0.0189 (15)	-0.0057 (13)
C7	0.0399 (19)	0.0312 (17)	0.0262 (16)	-0.0016 (14)	0.0158 (14)	-0.0009 (13)
C8	0.0296 (17)	0.0302 (17)	0.0351 (18)	0.0031 (13)	0.0113 (15)	0.0015 (13)
C9	0.0310 (17)	0.0290 (16)	0.0340 (17)	-0.0020 (13)	0.0190 (14)	-0.0037 (13)
C10	0.047 (2)	0.058 (2)	0.071 (3)	-0.0053 (19)	0.038 (2)	-0.007(2)
N1	0.0311 (15)	0.0442 (17)	0.0384 (16)	0.0068 (13)	0.0113 (13)	0.0025 (13)
01	0.0409 (13)	0.0489 (14)	0.0437 (14)	0.0024 (11)	0.0261 (11)	-0.0078 (11)
BR1	0.0589 (2)	0.0512 (2)	0.03332 (19)	0.00706 (18)	0.02425 (17)	0.00917 (16)
BR2	0.0370 (2)	0.0521 (2)	0.0452 (2)	0.00375 (16)	0.02407 (16)	-0.00531 (16)

Geometric parameters (Å, °)

C1—N1	1.316 (4)	C6—C7	1.367 (4)
C1—C2	1.399 (5)	C6—O1	1.368 (3)
С1—Н1	0.9300	С7—С8	1.403 (4)

C2—C3	1.356 (5)	C7—BR1	1.889 (3)
С2—Н2	0.9300	C8—C9	1.357 (4)
C3—C4	1.411 (4)	C8—H8	0.9300
С3—Н3	0.9300	C9—BR2	1.901 (3)
C4—C9	1.411 (4)	C10—O1	1.428 (4)
C4—C5	1.425 (4)	C10—H10A	0.9600
C5—N1	1.364 (4)	C10—H10B	0.9600
C5—C6	1.422 (4)	C10—H10C	0.9600
N1—C1—C2	124.0 (3)	C6—C7—C8	122.1 (3)
N1—C1—H1	118.0	C6—C7—BR1	120.2 (2)
C2—C1—H1	118.0	C8—C7—BR1	117.6 (2)
C3—C2—C1	119.2 (3)	C9—C8—C7	119.2 (3)
С3—С2—Н2	120.4	С9—С8—Н8	120.4
С1—С2—Н2	120.4	С7—С8—Н8	120.4
C2—C3—C4	119.8 (3)	C8—C9—C4	122.0 (3)
С2—С3—Н3	120.1	C8—C9—BR2	118.0 (2)
С4—С3—Н3	120.1	C4—C9—BR2	120.0 (2)
C3—C4—C9	125.1 (3)	O1—C10—H10A	109.5
C3—C4—C5	116.9 (3)	O1—C10—H10B	109.5
C9—C4—C5	118.0 (3)	H10A—C10—H10B	109.5
N1—C5—C6	117.8 (3)	O1—C10—H10C	109.5
N1—C5—C4	122.5 (3)	H10A—C10—H10C	109.5
C6—C5—C4	119.7 (3)	H10B—C10—H10C	109.5
C7 - C6 - O1	120.4(3)	C1 - N1 - C5	117.6 (3)
C7 - C6 - C5	1189(3)	C6-01-C10	1149(3)
01 - C6 - C5	120.6(3)		11 119 (5)
01 00 00	120.0 (5)		
N1—C1—C2—C3	0.3 (6)	C5—C6—C7—BR1	178.5 (2)
C1—C2—C3—C4	-0.2(5)	C6—C7—C8—C9	0.1 (5)
C2—C3—C4—C9	-179.5 (3)	BR1—C7—C8—C9	-179.8 (2)
C2—C3—C4—C5	0.3 (5)	C7—C8—C9—C4	1.6 (5)
C3—C4—C5—N1	-0.5 (4)	C7—C8—C9—BR2	-178.6 (2)
C9—C4—C5—N1	179.3 (3)	C3—C4—C9—C8	177.8 (3)
C3—C4—C5—C6	-179.2 (3)	C5—C4—C9—C8	-1.9 (4)
C9—C4—C5—C6	0.6 (4)	C3—C4—C9—BR2	-1.9 (4)
N1—C5—C6—C7	-177.7 (3)	C5—C4—C9—BR2	178.3 (2)
C4—C5—C6—C7	1.0 (4)	C2-C1-N1-C5	-0.5 (5)
N1—C5—C6—O1	-0.3 (4)	C6—C5—N1—C1	179.3 (3)
C4—C5—C6—O1	178.5 (3)	C4—C5—N1—C1	0.6 (5)
O1—C6—C7—C8	-178.9 (3)	C7—C6—O1—C10	-110.4 (3)
С5—С6—С7—С8	-1.4 (5)	C5-C6-O1-C10	72.2 (4)
O1-C6-C7-BR1	1.0 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C3—H3…Br2	0.93	2.80	3.210 (3)	108

				data reports
C10—H10 <i>B</i> …N1	0.96	2.49	3.065 (6)	118
C10—H10C…O1 ⁱ	0.96	2.48	3.418 (5)	166

Symmetry code: (i) x, y-1, z.