

ISSN 2414-3146

Received 7 May 2017 Accepted 17 May 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; pyrazoline; thioamide.

CCDC reference: 1550731

Structural data: full structural data are available from iucrdata.iucr.org

3-(2-Hydroxy-4-methoxyphenyl)-*N*-(2-methoxyphenyl)-5-(naphthalen-1-yl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamide

Seunghyun Ahn,^a Yoongho Lim,^a Jiha Sung^b and Dongsoo Koh^{b*}

^aDivision of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea, and ^bDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea. *Correspondence e-mail: dskoh@dongduk.ac.kr

In the title molecule, $C_{28}H_{25}N_3O_3S$, the dihedral angles formed by the naphthalene ring system and the benzene rings are 73.03 (13) and 74.04 (11)°. The benzene rings attached to the central pyrazoline ring are almost coplanar, as indicated by the dihedral angle of 2.22 (10)° between them. The C atom of the methoxy group of the phenol ring is essentially coplanar with the ring [C-C-O-C = -0.3 (3)°], whereas the C atom of the methoxy group of the thioamide benzene ring is slightly twisted [C-C-O-C = 5.4 (3)°]. An intramolecular $O-H \cdots N$ hydrogen bond generates an *S*(6) ring motif. In the crystal, pairs of very weak $C-H \cdots S$ interactions form inversion dimers with an $R_2^2(18)$ motif.

Structure description

Pyrazolines show a broad spectrum of biological activities including the dual function of antimalarial and antimicrobial (Mishra, *et al.*, 2017), antibacterial (Viveka *et al.*, 2015), anti-inflammatory (Kharbanda, *et al.*, 2014) and antitumor activities (Bashir *et al.*, 2011). In continuation of our studies of new pyrazoline derivatives which may show broad range of biological activities (Jung *et al.* 2015), the title compound **I** was synthesized and its crystal structure was determined. For related structures, see: Abdel-Wahab *et al.* (2013); Koh *et al.* (2014).

The molecular structure of I is shown in Fig. 1. The benzene ring and naphthalene ring system are attached at the C1 and C3 position of central pyrazoline ring and another benzene ring is attached at N1 by a carbothioamide linkage. The dihedral angles formed by the naphthalene ring system at C3 and the benzene rings at C1 and N1 are 73.03 (13) and 74.04 (11)°, respectively. The benzene rings attached to the pyrazoline ring at C1 and

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50\% probability level

N1 are almost in the same plane [dihedral angle = $2.22 (10)^{\circ}$]. The C atom of the methoxy group of the phenol ring is essentially co-planar with the ring [C8–C7–O2–C10 = $-0.3 (3)^{\circ}$], whereas the C atom of the methoxy group at the thioamide benzene ring is slightly twisted from the ring plane [C24–C23–O3–C28 = $5.4 (3)^{\circ}$]. An intramolecular O1– H1 $O \cdots$ N1 hydrogen bond forms an *S*(6) ring motif (Table 1). In the crystal, pairs of week C–H···S interactions form inversion dimers (Fig. 2).

Synthesis and crystallization

By the previously reported method (Jung *et al.* 2015), chalcone intermediate **III** was prepared and converted into pyrazoline

Figure 2

A view of an inversion dimer formed by a pair of $C-H\cdots S$ interactions in the crystal structure of the title compound.

Table 1 Hydrogen-bond geometry (Å, °).					
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$	
$O1-H1\cdots N2$ $C18-H18\cdots S1^{i}$	0.84 0.95	1.96 2.96	2.6889 (19) 3.712 (2)	145 137	
Symmetry code: (i) –	x + 2, -y + 1,	-z + 2.			
Table 2 Experimental deta	ils.				

Crystal data	
Chemical formula	C ₂₈ H ₂₅ N ₃ O ₃ S
M _r	483.57
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	173
a, b, c (Å)	6.8521 (4), 23.1503 (13), 15.0422 (8)
β (°)	99.365 (1)
$V(Å^3)$	2354.3 (2)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.17
Crystal size (mm)	$0.22 \times 0.16 \times 0.10$
Data collection	
Diffractometer	Bruker SMART CCD
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17230, 5827, 3091
R _{int}	0.044
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.667
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.147, 0.96
No. of reflections	5827
No. of parameters	319
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.23, -0.24

Computer programs: *SMART* and *SAINT* (Bruker, 2000) and *SHELXTL* (Sheldrick, 2008).

intermediate IV *via* imine formation followed by Michael addition of hydrazine. The reaction between IV and isothiocyanate V gave the desired pyrazoline carbothiamide (see Fig. 3).

The synthetic procedure for the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Funding information

Funding for this research was provided by: the Basic Science Research Program (award No. NRF-2016R1D1A1B03931623).

References

Abdel-Wahab, B. F., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, 0619.

- Bashir, R., Ovais, S., Yaseen, S., Hamid, H., Alam, M. S., Samim, M., Singh, S. & Javed, K. (2011). *Bioorg. Med. Chem. Lett.* 21, 4301– 4305.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jung, H., Ahn, S., Park, M., Yoon, H., Noh, H. J., Kim, S. Y., Yoo, J. S., Koh, D. & Lim, Y. (2015). *Magn. Reson. Chem.* 53, 383–390.
- Kharbanda, C., Alam, M. S., Hamid, H., Javed, K., Bano, B., Dhulap, A., Ali, Y., Nazreen, S. & Haider, S. (2014). *Bioorg. Med. Chem.* 22, 5804–5812.
- Koh, D., Lim, Y. & Lough, A. J. (2014). Acta Cryst. E70, 0464.
- Mishra, V. K., Mishra, M., Kashaw, V. & Kashaw, S. K. (2017). Bioorg. Med. Chem. 25, 1949–1962.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Viveka, S., Dinesha, Shama, P., Nagaraja, G. K., Ballav, S. & Kerkar, S. (2015). *Eur. J. Med. Chem.* **101**, 442–451.

full crystallographic data

IUCrData (2017). **2**, x170732 [https://doi.org/10.1107/S2414314617007325]

3-(2-Hydroxy-4-methoxyphenyl)-*N*-(2-methoxyphenyl)-5-(naphthalen-1-yl)-4,5dihydro-1*H*-pyrazole-1-carbothioamide

Seunghyun Ahn, Yoongho Lim, Jiha Sung and Dongsoo Koh

3-(2-Hydroxy-4-methoxyphenyl)-*N*-(2-methoxyphenyl)-5-(naphthalen-1-yl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamide

Crystal data

C₂₈H₂₅N₃O₃S $M_r = 483.57$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 6.8521 (4) Å b = 23.1503 (13) Å c = 15.0422 (8) Å $\beta = 99.365$ (1)° V = 2354.3 (2) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans 17230 measured reflections 5827 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.147$ S = 0.965827 reflections 319 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1016 $D_x = 1.364 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5750 reflections $\theta = 2.2-27.9^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 173 KBlock, yellow $0.22 \times 0.16 \times 0.10 \text{ mm}$

3091 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 28.3^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -8 \rightarrow 9$ $k = -23 \rightarrow 30$ $l = -20 \rightarrow 17$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0716P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.24$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Ζ v N1 0.0466 (4) 0.6669(2)0.68425 (6) 0.92398 (10) N2 0.93947 (10) 0.0443(4)0.7136(2)0.74261 (6) C1 0.8947(3)0.74602(8)0.98041 (11) 0.0405(4)C2 0.99689 (12) 0.0431 (4) 0.9924(3)0.68823 (7) H2A 0.6837 1.0609 0.052* 1.0532 H₂B 1.0951 0.6826 0.9584 0.052* C3 0.0437 (5) 0.8196 (3) 0.64595 (8) 0.97126 (12) H3 0.8551 0.9296 0.052* 0.6155 C4 0.9887(3)0.80096 (8) 1.00541 (12) 0.0406(4)C5 0.8889(3)0.85421 (8) 0.99168 (12) 0.0448(5)01 0.69489 (19) 0.85814 (6) 0.95457 (10) 0.0583 (4) H1 0.6497 0.8249 0.9416 0.087* C6 0.9869 (3) 0.90568 (8) 1.01527 (13) 0.0478(5)H6 0.9175 1.0064 0.057* 0.9413 C7 0.90539 (8) 1.05168 (12) 0.0457(5)1.1853 (3) 0.0490(5)C8 1.2875 (3) 0.85359 (8) 1.06688 (13) H8 1.4235 0.059* 0.8533 1.0928 C9 1.1890(3)0.80279 (8) 1.04382 (12) 0.0456(5)Н9 0.055* 1.2594 0.7675 1.0543 02 1.2692(2)0.95858 (5) 1.06886 (9) 0.0563(4)C10 1.4744(3)0.96092 (9) 1.10511 (15) 0.0614 (6) 0.092* H10A 1.4972 0.9425 1.1645 H10B 1.5173 1.0013 1.1109 0.092* H10C 0.092* 1.5500 0.9406 1.0648 C11 0.7552 (3) 0.61868 (8) 1.05338 (13) 0.0477 (5) C12 0.5914(3)0.63734 (10) 1.08515 (15) 0.0646 (6) 0.078* H12 0.5114 0.6666 1.0533 C13 0.5384(4)0.61442 (16) 1.1636(2)0.1038 (11) H13 0.4251 0.6287 1.1855 0.125* C14 0.6474(5)0.57218 (16) 1.2083(2)0.1130(12)H14 0.6082 1.2611 0.136* 0.5565 C15 0.8173 (4) 1.17942 (17) 0.0820(9)0.55059(11) C16 0.8761 (3) 0.57470 (8) 1.10030(14) 0.0574 (6) C17 1.0517 (4) 0.55469 (8) 1.07327 (16) 0.0678 (7) 0.081* H17 1.0942 0.5709 1.0217

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C18	1.1624 (5)	0.51184 (10)	1.1209 (2)	0.0945 (10)
H18	1.2799	0.4984	1.1018	0.113*
C19	1.1014 (6)	0.48799 (11)	1.1980 (2)	0.1073 (14)
H19	1.1788	0.4588	1.2312	0.129*
C20	0.9358 (6)	0.50619 (14)	1.2246 (2)	0.1161 (14)
H20	0.8958	0.4887	1.2759	0.139*
C21	0.4949 (3)	0.66760 (9)	0.87116 (12)	0.0486 (5)
S1	0.43887 (9)	0.59834 (2)	0.85550 (4)	0.0700 (2)
N3	0.3851 (2)	0.71315 (7)	0.83677 (11)	0.0572 (5)
H3A	0.4489	0.7463	0.8429	0.069*
C22	0.1887 (3)	0.71777 (9)	0.79305 (12)	0.0484 (5)
C23	0.1202 (3)	0.77489 (9)	0.78290 (12)	0.0491 (5)
C24	-0.0711 (3)	0.78644 (9)	0.74395 (13)	0.0547 (5)
H24	-0.1168	0.8252	0.7370	0.066*
C25	-0.1979 (3)	0.74061 (10)	0.71471 (14)	0.0604 (6)
H25	-0.3308	0.7482	0.6880	0.073*
C26	-0.1321 (3)	0.68513 (10)	0.72435 (13)	0.0584 (6)
H26	-0.2202	0.6543	0.7046	0.070*
C27	0.0604 (3)	0.67287 (9)	0.76234 (13)	0.0550 (5)
H27	0.1051	0.6340	0.7675	0.066*
03	0.2590 (2)	0.81574 (6)	0.81542 (9)	0.0614 (4)
C28	0.1973 (3)	0.87432 (9)	0.81590 (14)	0.0618 (6)
H28A	0.1587	0.8878	0.7538	0.093*
H28B	0.3065	0.8981	0.8463	0.093*
H28C	0.0843	0.8775	0.8480	0.093*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0468 (10)	0.0413 (9)	0.0474 (9)	-0.0097 (7)	-0.0052 (7)	0.0015 (7)
N2	0.0457 (10)	0.0427 (9)	0.0416 (8)	-0.0089 (7)	-0.0018 (7)	0.0023 (7)
C1	0.0398 (11)	0.0484 (11)	0.0330 (9)	-0.0060 (8)	0.0049 (8)	-0.0007 (8)
C2	0.0391 (11)	0.0472 (11)	0.0425 (10)	-0.0044 (8)	0.0052 (8)	-0.0030 (8)
C3	0.0443 (12)	0.0426 (10)	0.0416 (10)	-0.0029 (8)	-0.0011 (8)	-0.0047 (8)
C4	0.0375 (10)	0.0453 (11)	0.0390 (9)	-0.0053 (8)	0.0062 (8)	0.0010 (8)
C5	0.0374 (11)	0.0499 (11)	0.0462 (11)	-0.0061 (8)	0.0045 (8)	-0.0007 (9)
01	0.0385 (8)	0.0512 (8)	0.0806 (10)	-0.0040 (6)	-0.0037 (7)	-0.0002 (8)
C6	0.0466 (12)	0.0451 (11)	0.0511 (11)	-0.0032 (8)	0.0060 (9)	-0.0033 (9)
C7	0.0474 (12)	0.0442 (11)	0.0455 (11)	-0.0113 (8)	0.0072 (9)	-0.0056 (8)
C8	0.0390 (11)	0.0533 (12)	0.0517 (11)	-0.0077 (9)	-0.0016 (9)	-0.0039 (9)
C9	0.0418 (11)	0.0448 (11)	0.0485 (11)	-0.0020 (8)	0.0028 (8)	-0.0011 (8)
O2	0.0505 (9)	0.0485 (8)	0.0671 (9)	-0.0129 (6)	0.0012 (7)	-0.0081 (7)
C10	0.0521 (14)	0.0600 (13)	0.0706 (14)	-0.0201 (10)	0.0055 (11)	-0.0133 (11)
C11	0.0416 (11)	0.0451 (11)	0.0510 (11)	-0.0138 (9)	-0.0082 (9)	0.0026 (9)
C12	0.0386 (13)	0.0925 (17)	0.0606 (14)	-0.0154 (11)	0.0019 (10)	0.0154 (12)
C13	0.0488 (16)	0.177 (3)	0.0843 (19)	-0.0222 (18)	0.0083 (14)	0.044 (2)
C14	0.068 (2)	0.168 (3)	0.097 (2)	-0.049 (2)	-0.0050 (17)	0.068 (2)
C15	0.0709 (18)	0.0750 (17)	0.0855 (18)	-0.0386 (14)	-0.0308 (14)	0.0361 (14)

C16	0.0543 (13)	0.0409 (11)	0.0670 (13)	-0.0190 (10)	-0.0199 (11)	0.0028 (10)
C17	0.0742 (17)	0.0421 (12)	0.0733 (14)	0.0039 (11)	-0.0293 (12)	-0.0160 (11)
C18	0.105 (2)	0.0466 (14)	0.108 (2)	0.0161 (14)	-0.0562 (18)	-0.0294 (15)
C19	0.125 (3)	0.0394 (14)	0.124 (3)	-0.0210 (16)	-0.082(2)	0.0112 (15)
C20	0.114 (3)	0.080(2)	0.127 (3)	-0.056 (2)	-0.061 (2)	0.0490 (19)
C21	0.0492 (12)	0.0522 (12)	0.0403 (10)	-0.0096 (9)	-0.0050 (9)	0.0028 (9)
S1	0.0692 (4)	0.0499 (3)	0.0790 (4)	-0.0112 (3)	-0.0234 (3)	-0.0076 (3)
N3	0.0526 (11)	0.0499 (10)	0.0607 (10)	-0.0181 (8)	-0.0158 (8)	0.0122 (8)
C22	0.0467 (12)	0.0584 (13)	0.0360 (10)	-0.0129 (9)	-0.0055 (8)	0.0083 (9)
C23	0.0503 (12)	0.0588 (13)	0.0358 (10)	-0.0164 (10)	-0.0002 (8)	0.0081 (9)
C24	0.0514 (13)	0.0651 (13)	0.0459 (11)	-0.0063 (10)	0.0028 (9)	0.0078 (10)
C25	0.0412 (12)	0.0847 (17)	0.0532 (12)	-0.0121 (11)	0.0010 (9)	0.0001 (11)
C26	0.0512 (13)	0.0697 (15)	0.0507 (12)	-0.0208 (11)	-0.0028 (10)	-0.0012 (11)
C27	0.0540 (13)	0.0604 (13)	0.0466 (11)	-0.0157 (10)	-0.0042 (9)	0.0019 (10)
O3	0.0631 (10)	0.0515 (9)	0.0618 (9)	-0.0154 (7)	-0.0130 (7)	0.0138 (7)
C28	0.0714 (16)	0.0558 (14)	0.0570 (13)	-0.0106 (11)	0.0066 (11)	0.0007 (10)

Geometric parameters (Å, °)

N1—C21	1.365 (2)	C13—C14	1.343 (4)
N1—N2	1.399 (2)	C13—H13	0.9500
N1—N2	1.399 (2)	C14—C15	1.400 (4)
N1—C3	1.464 (2)	C14—H14	0.9500
N2-C1	1.295 (2)	C15—C20	1.414 (4)
C1—N2	1.295 (2)	C15—C16	1.430 (3)
C1—C4	1.448 (2)	C16—C17	1.410 (3)
C1—C2	1.499 (2)	C17—C18	1.377 (3)
С2—С3	1.536 (2)	C17—H17	0.9500
C2—H2A	0.9900	C18—C19	1.408 (5)
C2—H2B	0.9900	C18—H18	0.9500
C3—C11	1.515 (3)	C19—C20	1.332 (5)
С3—Н3	1.0000	C19—H19	0.9500
С4—С9	1.400 (2)	C20—H20	0.9500
C4—C5	1.409 (2)	C21—N3	1.349 (2)
C5—O1	1.359 (2)	C21—S1	1.657 (2)
C5—C6	1.385 (2)	N3—C22	1.403 (2)
01—H1	0.8400	N3—H3A	0.8800
С6—С7	1.380 (3)	C22—C27	1.391 (3)
С6—Н6	0.9500	C22—C23	1.403 (3)
С7—О2	1.366 (2)	C23—C24	1.372 (3)
С7—С8	1.389 (3)	C23—O3	1.374 (2)
С8—С9	1.372 (2)	C24—C25	1.396 (3)
С8—Н8	0.9500	C24—H24	0.9500
С9—Н9	0.9500	C25—C26	1.361 (3)
O2—C10	1.424 (2)	C25—H25	0.9500
C10—H10A	0.9800	C26—C27	1.379 (3)
C10—H10B	0.9800	C26—H26	0.9500
C10—H10C	0.9800	C27—H27	0.9500

data reports

C11—C12	1.360 (3)	O3—C28	1.421 (2)
C11—C16	1.425 (3)	C28—H28A	0.9800
C12—C13	1.395 (3)	C28—H28B	0.9800
С12—Н12	0.9500	C28—H28C	0.9800
C21—N1—N2	121.46 (15)	C14—C13—C12	120.0 (3)
C21—N1—N2	121.46 (15)	C14—C13—H13	120.0
C21—N1—C3	126.33 (15)	C12—C13—H13	120.0
N2—N1—C3	112.20 (13)	C13—C14—C15	121.8 (3)
N2—N1—C3	112.20 (13)	C13—C14—H14	119.1
C1—N2—N1	108.27 (14)	C15—C14—H14	119.1
N2—C1—C4	121.93 (16)	C14—C15—C20	123.5 (3)
N2—C1—C4	121.93 (16)	C14—C15—C16	118.7 (2)
N2—C1—C2	113.09 (15)	C20—C15—C16	117.8 (3)
N2—C1—C2	113.09 (15)	C17—C16—C11	123.1 (2)
C4—C1—C2	124.98 (15)	C17—C16—C15	118.7 (2)
C1—C2—C3	102.81 (14)	C11—C16—C15	118.1 (2)
С1—С2—Н2А	111.2	C18—C17—C16	120.7 (3)
С3—С2—Н2А	111.2	C18—C17—H17	119.7
C1—C2—H2B	111.2	C16—C17—H17	119.7
C3—C2—H2B	111.2	C17—C18—C19	119.9 (3)
H2A—C2—H2B	109.1	C17—C18—H18	120.0
N1—C3—C11	111.62 (16)	C19—C18—H18	120.0
N1—C3—C2	101.35 (14)	C20—C19—C18	120.4 (3)
C11—C3—C2	112.06 (14)	C20—C19—H19	119.8
N1—C3—H3	110.5	C18—C19—H19	119.8
С11—С3—Н3	110.5	C19—C20—C15	122.4 (3)
С2—С3—Н3	110.5	C19—C20—H20	118.8
C9—C4—C5	116.99 (16)	C15—C20—H20	118.8
C9-C4-C1	119.93 (16)	N3—C21—N1	112.16 (16)
C5-C4-C1	123.08 (16)	N_{3} —C21—S1	126.88 (14)
01	116.67 (17)	N1 - C21 - S1	120.95 (15)
01 - C5 - C4	122.55 (16)	C_{21} N3- C_{22}	132.25 (16)
C6-C5-C4	120.77(17)	C21—N3—H3A	113.9
С5—О1—Н1	109.5	C22—N3—H3A	113.9
C7—C6—C5	120.16 (18)	C27—C22—N3	127.24 (19)
С7—С6—Н6	119.9	C27—C22—C23	119.08 (18)
С5—С6—Н6	119.9	N3-C22-C23	113.67 (16)
02	115.31 (17)	C24-C23-O3	125.16 (19)
02	124.18 (17)	C24—C23—C22	120.62 (18)
C6-C7-C8	120.49 (17)	03-C23-C22	114.21 (17)
C9—C8—C7	118.95 (18)	C23—C24—C25	119.3 (2)
С9—С8—Н8	120.5	C23—C24—H24	120.4
С7—С8—Н8	120.5	C25—C24—H24	120.4
C8—C9—C4	122.63 (18)	C_{26} C_{25} C_{24}	120.3 (2)
С8—С9—Н9	118.7	C26—C25—H25	119.8
С4—С9—Н9	118.7	C24—C25—H25	119.8
C7—O2—C10	117.75 (16)	C25—C26—C27	121.11 (19)

O2 C10 U104	100.5	C25 C26 U26	110 4
02-CIO-HIOA	109.5	C25—C20—H20	119.4
O2—C10—H10B	109.5	C27—C26—H26	119.4
H10A—C10—H10B	109.5	C26—C27—C22	119.6 (2)
O2—C10—H10C	109.5	С26—С27—Н27	120.2
H10A—C10—H10C	109.5	С22—С27—Н27	120.2
H10B-C10-H10C	109.5	C23-O3-C28	118.02 (16)
C_{12} C_{11} C_{16}	1200(2)	O3_C28_H28A	109.5
C_{12} C_{11} C_{2}	120.0(2) 121.25(19)	$O_2 = C_2 O_1 = H_2 O_1 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	109.5
	121.55 (18)		109.5
C16—C11—C3	118.59 (19)	H28A—C28—H28B	109.5
C11—C12—C13	121.3 (2)	O3—C28—H28C	109.5
C11—C12—H12	119.3	H28A—C28—H28C	109.5
C13—C12—H12	119.3	H28B—C28—H28C	109.5
C21—N1—N2—N2	0.00 (19)	C2-C3-C11-C16	-75.0(2)
C_3 N1 N2 N2	0.00(1)	C_{16} C_{11} C_{12} C_{13}	0.2(3)
C_3 N_1 N_2 C_1	(2)	$C_{10} - C_{11} - C_{12} - C_{13}$	17(4(2))
C2I—NI—N2—CI	-1/0.99(17)		-1/6.4 (2)
N2—N1—N2—C1	0 (100)	C11—C12—C13—C14	-1.5 (4)
C3—N1—N2—C1	9.8 (2)	C12—C13—C14—C15	1.1 (5)
N1—N2—C1—N2	0 (100)	C13—C14—C15—C20	-180.0 (3)
N2—N2—C1—C4	0.0 (9)	C13—C14—C15—C16	0.4 (4)
N1 - N2 - C1 - C4	179.45 (15)	C12—C11—C16—C17	-177.63(18)
$N^{2}-N^{2}-C^{1}-C^{2}$	0.0 (8)	C_{3} $-C_{11}$ $-C_{16}$ $-C_{17}$	-0.9(3)
$N_2 = N_2 = C_1 = C_2$	0.0(0)	C_{12} C_{11} C_{16} C_{15}	13(3)
N1 - N2 - C1 - C2	0.3(2)	$C_{12} = C_{11} = C_{10} = C_{15}$	1.3(3)
$N_2 - C_1 - C_2 - C_3$	-9.4 (2)	C3-C11-C16-C15	1//.99 (1/)
N2—C1—C2—C3	-9.4 (2)	C14—C15—C16—C17	177.4 (2)
C4—C1—C2—C3	171.51 (16)	C20—C15—C16—C17	-2.3 (3)
C21—N1—C3—C11	-74.5 (2)	C14—C15—C16—C11	-1.6(3)
N2—N1—C3—C11	104.57 (16)	C20-C15-C16-C11	178.78 (19)
N2-N1-C3-C11	104 57 (16)	C11—C16—C17—C18	-17967(18)
C_{21} N1 C_{3} C_{2}	166.01 (18)	C_{15} C_{16} C_{17} C_{18}	14(3)
$N_{2} = N_{1} = C_{2} = C_{2}$	14.99 (19)	$C_{16}^{16} = C_{17}^{17} = C_{18}^{10} = C_{10}^{10}$	0.6(2)
$N_2 - N_1 - C_3 - C_2$	-14.88(18)		-0.0(3)
N2—N1—C3—C2	-14.88 (18)	C17 - C18 - C19 - C20	0.8 (4)
C1—C2—C3—N1	13.60 (17)	C18—C19—C20—C15	-1.7 (4)
C1—C2—C3—C11	-105.54 (17)	C14—C15—C20—C19	-177.1 (3)
N2—C1—C4—C9	-175.47 (17)	C16—C15—C20—C19	2.5 (4)
N2-C1-C4-C9	-175.47 (17)	N2—N1—C21—N3	1.1 (3)
C2—C1—C4—C9	3.6 (3)	N2—N1—C21—N3	1.1 (3)
$N^{2}-C^{1}-C^{4}-C^{5}$	34(3)	C3—N1—C21—N3	-179.84(17)
$N_2 C_1 C_4 C_5$	3.1(3)	$N_2 N_1 C_{21} S_1$	-178 43 (13)
12 - 01 - 04 - 05	J. T (J)	$N_2 = N_1 = C_2 I = S_1$	178.42 (13)
C2-C1-C4-C5	-1/7.52(17)	N2—N1—C21—S1	-1/8.43 (13)
C9—C4—C5—O1	179.67 (17)	C3-N1-C21-S1	0.6 (3)
C1—C4—C5—O1	0.7 (3)	N1—C21—N3—C22	-167.46 (19)
C9—C4—C5—C6	0.2 (3)	S1—C21—N3—C22	12.1 (3)
C1—C4—C5—C6	-178.75 (17)	C21—N3—C22—C27	-9.8 (4)
O1C5C7	-178.71 (18)	C21—N3—C22—C23	168.6 (2)
C4—C5—C6—C7	0.8 (3)	C27—C22—C23—C24	0.6 (3)
$C_{5}-C_{6}-C_{7}-O_{7}$	177 29 (16)	N_{3} C_{22} C_{23} C_{24}	-177 93 (17)
$C_{5} = C_{6} = C_{7} = C_{2}^{0}$	1/(.2) (10)	$113 \ 022 \ 023 \ 024$	170.02(17)
UJ-U0-U/-U8	-1.4 (3)	$U_2 = U_2 = U_2 = U_3 = U_3$	-1/9.93(1/)

O2—C7—C8—C9	-177.58 (17)	N3—C22—C23—O3	1.6 (2)
C6—C7—C8—C9	1.0 (3)	O3—C23—C24—C25	-179.18 (18)
C7—C8—C9—C4	0.0 (3)	C22—C23—C24—C25	0.3 (3)
C5—C4—C9—C8	-0.6 (3)	C23—C24—C25—C26	-0.3 (3)
C1—C4—C9—C8	178.38 (17)	C24—C25—C26—C27	-0.5 (3)
C6—C7—O2—C10	-178.99 (17)	C25—C26—C27—C22	1.3 (3)
C8—C7—O2—C10	-0.3 (3)	N3—C22—C27—C26	176.93 (18)
N1—C3—C11—C12	-11.2 (2)	C23—C22—C27—C26	-1.4 (3)
N1-C3-C11-C12 C2-C3-C11-C12 N1-C3-C11-C12	-0.3 (3) -11.2 (2) 101.7 (2) 172.14 (15)	C23-C22-C27-C26 C24-C23-O3-C28 C22-C23-O3-C28	-1.4 (3) 5.4 (3) -174.03 (17)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D··· A	<i>D</i> —H··· <i>A</i>
01—H1…N2	0.84	1.96	2.6889 (19)	145
C18—H18····S1 ⁱ	0.95	2.96	3.712 (2)	137

Symmetry code: (i) -x+2, -y+1, -z+2.