ISSN 2414-3146

Received 16 May 2017 Accepted 17 May 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ These authors contributed equally.

Keywords: crystal structure; halogenated compounds; N—H···N hydrogen bonds; $R_2^2(8)$ dimers.

CCDC reference: 1532242

Structural data: full structural data are available from iucrdata.iucr.org

3,5-Dibromo-6-methylpyridin-2-amine

P. Krishna Murthy,^a‡ R. Sreenivasa Rao,^b‡ V. Suneetha,^b L. Giri^c and P. A. Suchetan^d*

^aDepartment of Chemistry, Bapatla Engineering College (Autonomous), Acharaya Nagarjuna University Postgraduate Research Centre, Bapatla 522 101, A.P., India, ^bDepartment of Chemistry, Bapatla College of Arts and Sciences, Bapatla 522 101, A.P., India, ^cSolid State and Supramolecular Structural Chemistry Laboratory, School of Basic Sciences, IIT Bhubaneswar, Bhubaneswar 751 008, India, and ^dDepartment of Chemistry, University College of Science, Tumkur University, Tumkur 572103, India. *Correspondence e-mail: pasuchetan@gmail.com

The title molecule, $C_6H_6Br_2N_2$, is almost planar (r.m.s. deviation for the non-H atoms = 0.012 Å). In the crystal, inversion dimers linked by pairs of N-H···N hydrogen bonds generate $R_2^2(8)$ loops.

Structure description

Halogenated organic compounds are known to exhibit diverse biological activities showing anticancer (Nussbaumer *et al.*, 2011), antiviral (De Clercq, 2013), anti-tuber-culosis (Beena & Rawat, 2013), anti-malarial (Biamonte *et al.*, 2013), antifungal and anti-diabetic (Hector, 2005) properties. As part of our studies in this area, the crystal structure of the commercially available title compound was determined.

The molecule is almost planar (Fig. 1) with the r.m.s. deviation for the non-H atoms being 0.012 Å. An intramolecular $N-H\cdots Br$ interaction occurs. In the crystal, inversion dimers linked by pairs of $N2-H2\cdots N1$ hydrogen bonds generate $R_2^2(8)$ loops (Fig. 2, Table 1). The crystal structure does not feature any other interactions, and thus, the supramolecular architecture displayed is zero dimensional.

Synthesis and crystallization

The title compound was purchased from Avra Synthesis Pvt. Ltd, India, and was used as such. Colourless blocks were grown by recrystallization from methanol solution at room temperature.

Table 1		
Hydrogen-bond geometry	(Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H1\cdots Br1$	0.87 (5)	2.68 (5)	3.128 (4)	114 (4)
$N2-H2\cdots N1^{i}$	0.88 (4)	2.19 (4)	3.070 (6)	173 (3)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Figure 1

A view of the molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Figure 2

Crystal packing of the title compound, displaying N $-H\cdots$ N hydrogenbonded $R_2^2(8)$ loops.

Experimental details.	
Crystal data	
Chemical formula	$C_6H_6Br_2N_2$
Mr	265.95
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.1047 (16), 4.0310 (4), 15.7631 (18)
β (°)	105.720 (4)
$V(Å^3)$	801.54 (16)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	10.04
Crystal size (mm)	$0.26 \times 0.22 \times 0.20$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2009)
T_{\min}, T_{\max}	0.085, 0.134
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	10577, 1670, 1461
R _{int}	0.050
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.631
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.108, 1.09
No. of reflections	1670
No. of parameters	101
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	1.03, -0.86

Computer programs: *APEX2*, *SAINT-Plus* and *XPREP* (Bruker, 2009), *SHELXT2016* (Sheldrick, 2015a), *SHELXL2016* (Sheldrick, 2015b) and *Mercury* (Macrae *et al.*, 2008).

Acknowledgements

Table 2

The authors acknowledge Professor V. R. Pedireddi, Solid State & Supramolecular Structural Chemistry Laboratory, School of Basic Sciences, IIT Bhubaneswar, for the data collection.

Funding information

Funding for this research was provided by: University Grants Commission (award No. UGC-MRP: 2015–16).

References

Beena & Rawat, D. S. (2013). Med. Res. Rev. 33, 693-764.

Biamonte, M. A., Wanner, J. & Le Roch, K. G. (2013). *Bioorg. Med. Chem. Lett.* 23, 2829–2843.

Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

- De Clercq, E. (2013). Biochem. Pharmacol. 85, 727-744.
- Hector, R. F. (2005). Clin. Tech. Small Anim. Pract. 20, 240-249.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nussbaumer, S., Bonnabry, P., Veuthey, J. L. & Fleury-Souverain, S. (2011). Talanta, 85, 2265–2289.
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.

full crystallographic data

IUCrData (2017). 2, x170728 [https://doi.org/10.1107/S2414314617007283]

3,5-Dibromo-6-methylpyridin-2-amine

P. Krishna Murthy, R. Sreenivasa Rao, V. Suneetha, L. Giri and P. A. Suchetan

3,5-Dibromo-6-methylpyridin-2-amine

Crystal data

C₆H₆Br₂N₂ $M_r = 265.95$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.1047 (16) Å b = 4.0310 (4) Å c = 15.7631 (18) Å $\beta = 105.720$ (4)° V = 801.54 (16) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.085, T_{\max} = 0.134$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.108$ S = 1.091670 reflections 101 parameters 2 restraints Hydrogen site location: mixed F(000) = 504Prism $D_x = 2.204 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 133 reflections $\theta = 2.4-26.7^{\circ}$ $\mu = 10.04 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.26 \times 0.22 \times 0.20 \text{ mm}$

10577 measured reflections 1670 independent reflections 1461 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 26.7^\circ, \theta_{min} = 2.4^\circ$ $h = -16 \rightarrow 16$ $k = -5 \rightarrow 4$ $l = -19 \rightarrow 19$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0701P)^2 + 0.463P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.03$ e Å⁻³ $\Delta\rho_{min} = -0.86$ e Å⁻³ Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.064 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3237 (3)	0.5000 (10)	0.4445 (2)	0.0352 (8)	
C2	0.2125 (3)	0.5194 (10)	0.4153 (2)	0.0343 (8)	
C3	0.1522 (3)	0.3994 (10)	0.4668 (2)	0.0360 (8)	
Н3	0.078637	0.410750	0.448303	0.043*	
C4	0.2038 (3)	0.2597 (9)	0.5477 (3)	0.0366 (9)	
C5	0.3126 (3)	0.2404 (10)	0.5746 (3)	0.0377 (9)	
C6	0.3748 (4)	0.0910 (15)	0.6593 (3)	0.0566 (12)	
H6A	0.417884	-0.086130	0.647437	0.085*	
H6B	0.327119	0.005584	0.690749	0.085*	
H6C	0.419361	0.257416	0.694366	0.085*	
N1	0.3710 (3)	0.3633 (9)	0.5226 (2)	0.0385 (8)	
N2	0.3883 (3)	0.6093 (13)	0.3955 (3)	0.0517 (10)	
BR1	0.14692 (3)	0.70991 (12)	0.30385 (3)	0.0436 (2)	
BR2	0.11914 (4)	0.10117 (13)	0.61976 (3)	0.0544 (3)	
H1	0.359 (4)	0.736 (12)	0.351 (3)	0.056 (16)*	
H2	0.458 (3)	0.609 (15)	0.415 (3)	0.063 (16)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.026 (2)	0.046 (2)	0.0313 (18)	-0.0019 (16)	0.0032 (15)	-0.0038 (16)
C2	0.029 (2)	0.040(2)	0.0304 (18)	0.0003 (16)	0.0019 (15)	-0.0044 (15)
C3	0.0243 (19)	0.044 (2)	0.038 (2)	-0.0019 (15)	0.0046 (16)	-0.0047 (17)
C4	0.037 (2)	0.040 (2)	0.035 (2)	-0.0040 (16)	0.0123 (17)	-0.0031 (15)
C5	0.036 (2)	0.045 (2)	0.0288 (19)	0.0000 (16)	0.0029 (16)	-0.0006 (15)
C6	0.052 (3)	0.074 (3)	0.040 (2)	-0.001 (2)	0.004 (2)	0.011 (2)
N1	0.0260 (17)	0.056 (2)	0.0308 (16)	-0.0020 (15)	0.0031 (13)	0.0018 (15)
N2	0.032 (2)	0.085 (3)	0.037 (2)	-0.0064 (19)	0.0073 (17)	0.0091 (19)
BR1	0.0351 (3)	0.0561 (3)	0.0337 (3)	0.00406 (17)	-0.00072 (19)	0.00301 (17)
BR2	0.0524 (4)	0.0647 (4)	0.0525 (3)	-0.0082 (2)	0.0248 (2)	0.0056 (2)

Geometric parameters (Å, °)

C1—N1	1.338 (5)	C4—BR2	1.900 (4)	
C1—N2	1.364 (5)	C5—N1	1.358 (5)	
C1—C2	1.407 (5)	C5—C6	1.491 (6)	
С2—С3	1.366 (6)	C6—H6A	0.9600	
C2—BR1	1.896 (4)	C6—H6B	0.9600	
C3—C4	1.390 (6)	C6—H6C	0.9600	
С3—Н3	0.9300	N2—H1	0.87 (3)	
C4—C5	1.375 (6)	N2—H2	0.88 (3)	
N1—C1—N2	116.7 (4)	N1—C5—C6	115.3 (4)	
N1—C1—C2	120.3 (3)	C4—C5—C6	124.6 (4)	
N2—C1—C2	123.0 (4)	С5—С6—Н6А	109.5	

C3—C2—C1	120.1 (3)	С5—С6—Н6В	109.5
C3—C2—BR1	120.3 (3)	H6A—C6—H6B	109.5
C1C2BR1	119.7 (3)	С5—С6—Н6С	109.5
C2—C3—C4	118.2 (4)	H6A—C6—H6C	109.5
С2—С3—Н3	120.9	H6B—C6—H6C	109.5
С4—С3—Н3	120.9	C1—N1—C5	120.6 (3)
C5—C4—C3	120.7 (4)	C1—N2—H1	117 (4)
C5—C4—BR2	121.5 (3)	C1—N2—H2	123 (4)
C3—C4—BR2	117.8 (3)	H1—N2—H2	118 (5)
N1—C5—C4	120.1 (4)		
N1—C1—C2—C3	0.2 (6)	C3—C4—C5—N1	1.1 (6)
N2—C1—C2—C3	178.7 (4)	BR2-C4-C5-N1	-178.4 (3)
N1-C1-C2-BR1	-179.4 (3)	C3—C4—C5—C6	-179.1 (4)
N2-C1-C2-BR1	-0.8 (6)	BR2-C4-C5-C6	1.4 (6)
C1—C2—C3—C4	0.0 (6)	N2-C1-N1-C5	-178.3 (4)
BR1—C2—C3—C4	179.5 (3)	C2-C1-N1-C5	0.3 (6)
C2—C3—C4—C5	-0.6 (6)	C4—C5—N1—C1	-0.9 (6)
C2-C3-C4-BR2	178.9 (3)	C6C5N1C1	179.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N2—H1…Br1	0.87 (5)	2.68 (5)	3.128 (4)	114 (4) 172 (2)
$N2 - H2 \cdots N1^{n}$	0.88 (4)	2.19 (4)	3.070(6)	1/3 (3)

Symmetry code: (i) -x+1, -y+1, -z+1.