

ISSN 2414-3146

Received 27 April 2017 Accepted 29 April 2017

Edited by J. Simpson, University of Otago, New Zealand

Keywords: fluoroalkyl; imidazole; thione; vinyl; crystal structure.

CCDC reference: 1547029

Structural data: full structural data are available from iucrdata.iucr.org

3-(1*H*,1*H*,2*H*,2*H*-Perfluorooctyl)-1-vinyl-4-imidazoline-2-thione

Gabriel Partl, Gerhard Laus, Thomas Gelbrich, Klaus Wurst, Hubert Huppertz and Herwig Schottenberger*

University of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria. *Correspondence e-mail: herwig.schottenberger@uibk.ac.at

The title compound, $C_{13}H_9F_{13}N_2S$, was obtained by reaction of sulfur with the corresponding quaternary salt in the presence of K_2CO_3 . The quaternary salt in turn was obtained by alkylation of 1-vinylimidazole. The crystal structure contains two independent molecules with disordered fluoroalkyl chains with occupancy ratios of 0.7:0.3 and 0.57:0.43.

Structure description

Polyfluorinated compounds are utilized as surfactants and dispersants with numerous applications (Kovalchuk *et al.*, 2014; Krafft & Riess, 2009). Imidazoline-2-thiones (Laus *et al.*, 2013) are versatile building blocks whose properties have been reviewed (Trzhtsinskaya & Abramova, 1991). The key advantages of these thiones are simple synthesis and simple derivatization. The vinyl substituent makes the title molecule polymerizable, thus giving access to functionalized imidazolium-containing polymers (Anderson & Long, 2010). It was intended to combine these structural features in order to derive new materials with advantageous properties.

The most striking feature of the title molecule (Fig. 1) is the extensive disorder of the large substituent. The major component of the disordered fluoroalkyl chain adopts the typical helical conformation (Fournier *et al.*, 2010; Jang *et al.*, 2003) with an average CCCC twist angle (deviation from 180°) of 11° .

Specific $C-F \cdots F-C$ interactions have been identified in fluorous molecules (Baker *et al.*, 2012; Omorodion *et al.*, 2015). Here, a short F9 $D \cdots$ F12C contact of 2.797 (6) Å is observed between the two chains (Fig. 2). In addition, $C-H \cdots S$ and $C-H \cdots F$ hydrogen bonds (Table 1) cross-link the rod-shaped molecules.

Related structures have been reported recently (Hummel et al., 2017), notably a 4-(1H,1H,2H,2H-perfluorooctyl)-1,2,4-triazolium salt (Adamer et al., 2011) and a

Figure 1

Asymmetric unit of the title compound, showing the atom labels and 50% probability displacement ellipsoids for non-H atoms. Minor disorder components are omitted for clarity.

1-(1*H*,1*H*,2*H*,2*H*-perfluorooctyl)-1,2,3-triazole (Omorodion *et al.*, 2015) have been described.

Synthesis and crystallization

3-(1*H*,1*H*,2*H*,2*H*-Perfluorooctyl)-1-vinylimidazolium iodide: A mixture of 1-vinylimidazole (5.0 g, 53.1 mmol) and 1H,1H,2H,2H-perfluorooctyl iodide (26.0 g, 54.9 mmol) was stirred at 70°C for 72 h. After cooling, the mixture was dissolved in MeOH (25 ml) and the product precipitated by addition of Et₂O (250 ml). The product was filtered off, washed with Et₂O and dried in high vacuum overnight, affording 23.0 g (76%) of colourless product; m.p. 434 K. ¹H NMR (300 MHz, CD₃OD): δ 9.54 (*t*, *J* = 1.9 Hz, 1H), 8.07 (*t*, *J* = 1.9 Hz, 1H), 7.93 (t, J = 1.9 Hz, 1H), 7.30 (dd, J = 15.6, 8.7 Hz, 1H), 5.98 (*dd*, *J* = 15.6, 2.8 Hz, 1H), 5.49 (*dd*, *J* = 8.7, 2.8 Hz, 1H), 4.72 (t, J = 7.2 Hz, 2H), 3.06 (tt, J = 18.0, 7.2 Hz, 2H) p.p.m.¹³C NMR (75 MHz, CD₃OD): δ 137.3, 129.8, 124.7, 124.4–109.0 (*m*, 6C), 121.1, 110.6, 43.5 (*t*, *J* = 5.3 Hz), 31.9 (*t*, *J* = 21.4 Hz) p.p.m. IR (neat): v 3117, 2991, 1652, 1568, 1142, 1119, 1071, 1020, 735, 699, 640, 620, 524 cm^{-1} .

Figure 2

Crystal packing of the title compound. Minor disorder components are omitted for clarity.

 Table 1

 Hydrogen-bond geometry (Å, °).

, , ,	2 ()	/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C3–H3···F8A ⁱ	0.95	2.47	3.201 (5)	133
$C3' - H3' \cdots F8C^{i}$	0.95	2.45	3.233 (4)	140
$C6' - H6'1 \cdot \cdot \cdot S1^i$	0.99	2.71	3.616 (3)	152
$C4-H4\cdots S1$	0.95	2.80	3.179 (4)	105
$C4' - H4' \cdots S1'$	0.95	2.83	3.191 (3)	104
$C7' - H7'2 \cdot \cdot \cdot F9C$	0.99	2.52	2.880 (5)	101
$C7 - H7B \cdot \cdot \cdot F9A$	0.99	2.54	2.875 (5)	100

Symmetry code: (i) x + 1, y, z.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{13}H_9F_{13}N_2S$
M _r	472.28
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	193
a, b, c (Å)	7.425 (1), 9.952 (2), 24.359 (4)
α, β, γ (°)	85.076 (5), 83.431 (5), 88.720 (5)
$V(Å^3)$	1781.4 (5)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.31
Crystal size (mm)	$0.22 \times 0.18 \times 0.04$
Data collection	
Diffractometer	Bruker D8 QUEST PHOTON 100
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.449, 0.490
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	44091, 6372, 4851
R _{int}	0.043
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.599
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.067, 0.176, 0.99
No. of reflections	6372
No. of parameters	679
No. of restraints	1685
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.86, -0.64

Computer programs: APEX2 (Bruker 2014), SAINT (Bruker 2014), SHELXL2014/6 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), Mercury (Macrae et al., 2008).

3-(1H,1H,2H,2H-Perfluorooctyl)-1-vinylimidazoline-2thione: A mixture of 3-(1H,1H,2H,2H-perfluorooctyl)-1vinylimidazolium iodide (80.0 g, 141 mmol), elemental sulfur (4.6 g, 144 mmol) and K₂CO₃ (19.9 g, 144 mmol) in MeOH (240 ml) was refluxed for 3 h. The solvent was evaporated and the residue extracted thrice with Et₂O (total 700 ml). The organic phase was treated with charcoal, filtered and the solvent was evaporated. The residue was dried in high vacuum overnight, affording 60.5 g (91%) of the product as an offwhite powder; m.p. 359 K. Single crystals suitable for structure determination were fashioned by slow evaporation of a solution in CHCl₃. ¹H NMR (300 MHz, CDCl₃): δ 7.53 (dd, J = 16.1, 9.0 Hz, 1H), 6.99 (*d*, *J* = 2.6 Hz, 1H), 6.75 (*d*, *J* = 2.6 Hz, 1H), 5.16 (*dd*, *J* = 16.1, 1.8 Hz, 1H), 4.96 (*dd*, *J* = 9.0, 1.8 Hz, 1H), 4.36 (*t*, *J* = 6.9 Hz, 2H), 2.70 (*tt*, *J* = 18.6, 6.9 Hz, 2H) p.p.m. ¹³C NMR (75 MHz, CDCl₃): δ 163.4, 130.3, 124–105 (*m*, 6C), 118.6, 112.8, 101.4, 40.5 (t, J = 5.1 Hz), 29.6 (t, J = 21.5 Hz) p.p.m. IR (neat): v 3133, 3104, 2995, 1643, 1234, 1182, 1139, 1118, 1077, 1062, 894, 694, 647, 509 cm⁻¹.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The terminal C_4F_9 units of the fluoroalkyl chains of both molecules are disordered over two sets of sites, and their disorder components were found to have relative occupancies of approximately 0.7:0.3 and 0.57:0.43 in the two molecules. Occupancies were fixed at these values in the final refinement cycles. The refinement of the disordered fragments was carried out with distance restraints (SAME/SADI) for all chemically equivalent 1,2- and 1,3distances. All other non-H atoms were refined anisotropically, except for those in the minor disorder component of the first molecule, which were refined isotropically.

References

- Adamer, V., Wurst, K., Laus, G. & Schottenberger, H. (2011). Z. *Kristallogr. NCS* 226, 233–236.
- Anderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447-2454.

- Baker, R. J., Colavita, P. E., Murphy, D. M., Platts, J. A. & Wallis, J. D. (2012). J. Phys. Chem. A, **116**, 1435–1444.
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fournier, J. A., Bohn, R. K., Montgomery, J. A. & Onda, M. (2010). J. Phys. Chem. A, **114**, 1118–1122.
- Hummel, M., Markiewicz, M., Stolte, S., Noisternig, M., Braun, D. E., Gelbrich, T., Griesser, U. J., Partl, G., Naier, B., Wurst, K., Krüger, B., Kopacka, H., Laus, G., Huppertz, H. & Schottenberger, H. (2017). *Green Chem.* 19. In the press. DOI: 10.1039/c7gc00571g.
- Jang, S. S., Blanco, M., Goddard, W. A., Caldwell, G. & Ross, R. B. (2003). *Macromolecules*, **36**, 5331–5341.
- Kovalchuk, N. M., Trybala, A., Starov, V., Matar, O. & Ivanova, N. (2014). Adv. Colloid Interface Sci. 210, 65–71.
- Krafft, M. P. & Riess, J. G. (2009). Chem. Rev. 109, 1714-1792.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Laus, G., Kahlenberg, V., Wurst, K., Müller, T., Kopacka, H. & Schottenberger, H. (2013). Z. Naturforsch. 68b, 1239–1252.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Omorodion, H., Twamley, B., Platts, J. A. & Baker, R. J. (2015). Cryst. Growth Des. 15, 2835–2841.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Trzhtsinskaya, B. V. & Abramova, N. D. (1991). Sulfur Rep. 10, 389–421.

full crystallographic data

IUCrData (2017). **2**, x170648 [https://doi.org/10.1107/S2414314617006484]

3-(1H,1H,2H,2H-Perfluorooctyl)-1-vinyl-4-imidazoline-2-thione

Gabriel Partl, Gerhard Laus, Thomas Gelbrich, Klaus Wurst, Hubert Huppertz and Herwig Schottenberger

3-(1H,1H,2H,2H-Perfluorooctyl)-1-vinyl-4-imidazoline-2-thione

Crystal data

C₁₃H₉F₁₃N₂S $M_r = 472.28$ Triclinic, $P\overline{1}$ a = 7.425 (1) Å b = 9.952 (2) Å c = 24.359 (4) Å a = 85.076 (5)° $\beta = 83.431$ (5)° $\gamma = 88.720$ (5)° V = 1781.4 (5) Å³

Data collection

Bruker D8 QUEST PHOTON 100 diffractometer Radiation source: Incoatec Microfocus Multi layered optics monochromator Detector resolution: 10.4 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015) $T_{\min} = 0.449, T_{\max} = 0.490$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.176$ S = 0.996372 reflections 679 parameters 1685 restraints Primary atom site location: structure-invariant direct methods Z = 4 F(000) = 936 $D_x = 1.761 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9960 reflections $\theta = 2.3-25.0^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 193 KPlate, colourless $0.22 \times 0.18 \times 0.04 \text{ mm}$

44091 measured reflections 6372 independent reflections 4851 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -8 \rightarrow 8$ $k = -11 \rightarrow 11$ $l = -29 \rightarrow 29$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0762P)^2 + 3.9492P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.86$ e Å⁻³ $\Delta\rho_{min} = -0.64$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.40414 (12)	0.52354 (9)	0.88826 (5)	0.0443 (3)	
N1	0.7681 (4)	0.5518 (3)	0.89347 (12)	0.0340 (7)	
N2	0.6520 (4)	0.7057 (3)	0.83893 (13)	0.0370 (7)	
C1	0.6094 (4)	0.5939 (3)	0.87344 (15)	0.0327 (7)	
C2	0.9074 (5)	0.6388 (4)	0.87116 (17)	0.0441 (9)	
H2	1.0305	0.6323	0.8783	0.053*	
C3	0.8345 (5)	0.7331 (4)	0.83786 (18)	0.0462 (10)	
Н3	0.8969	0.8063	0.8170	0.055*	
C4	0.7800 (5)	0.4409 (4)	0.93323 (15)	0.0394 (8)	
H4	0.6720	0.3928	0.9457	0.047*	
C5	0.9282 (5)	0.3992 (4)	0.95423 (17)	0.0476 (10)	
H5A	1.0391	0.4446	0.9428	0.057*	
H5B	0.9247	0.3235	0.9809	0.057*	
C6	0.5221 (5)	0.7852 (4)	0.80941 (15)	0.0408 (9)	
H6A	0.5709	0.8765	0.7983	0.049*	
H6B	0.4082	0.7948	0.8343	0.049*	
C7	0.4820 (5)	0.7189 (4)	0.75785 (15)	0.0453 (9)	
H7A	0.5961	0.7096	0.7331	0.054*	
H7B	0.4341	0.6274	0.7691	0.054*	
C8	0.3448 (4)	0.8008 (3)	0.72632 (13)	0.0406 (8)	
F8A	0.1985 (3)	0.8280 (3)	0.76251 (10)	0.0623 (7)	
F8B	0.4136 (4)	0.9224 (2)	0.70743 (11)	0.0669 (7)	
C9	0.2799 (5)	0.7328 (3)	0.67842 (13)	0.0449 (9)	
F9A	0.2100 (5)	0.6147 (3)	0.69848 (12)	0.0874 (10)	
F9B	0.4259 (4)	0.7087 (3)	0.64324 (12)	0.0849 (10)	
C10	0.1424 (5)	0.8101 (4)	0.64541 (14)	0.0553 (11)	
F10A	0.0164 (6)	0.8699 (5)	0.67659 (17)	0.0861 (16)	0.7
F10B	0.2389 (7)	0.9168 (4)	0.6158 (2)	0.0916 (17)	0.7
C11	0.0614 (8)	0.7358 (6)	0.6021 (2)	0.053 (3)	0.7
F11A	0.1752 (8)	0.6416 (6)	0.5817 (2)	0.0975 (19)	0.7
F11B	-0.0764 (8)	0.6655 (5)	0.6313 (2)	0.111 (2)	0.7
C12	-0.0167 (8)	0.8189 (5)	0.5552 (2)	0.070 (2)	0.7
F12A	-0.0968 (7)	0.9311 (4)	0.57322 (19)	0.0761 (14)	0.7
F12B	0.1245 (7)	0.8610 (6)	0.51811 (19)	0.1042 (17)	0.7
C13	-0.1448 (7)	0.7494 (6)	0.5229 (2)	0.056 (3)	0.7
F13A	-0.0747 (10)	0.6335 (5)	0.5060 (3)	0.092 (2)	0.7
F13B	-0.3064 (7)	0.7206 (7)	0.5497 (2)	0.121 (2)	0.7
F13C	-0.1745 (9)	0.8273 (5)	0.47815 (19)	0.1055 (17)	0.7
F10E	0.1515 (15)	0.9404 (7)	0.6429 (5)	0.075 (3)*	0.3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

F10F	-0.0086 (12)	0.7804 (11)	0.6841 (4)	0.077 (3)*	0.3
C11A	0.0840 (11)	0.7482 (11)	0.5963 (3)	0.061 (9)*	0.3
F11E	0.2058 (11)	0.7957 (8)	0.5557 (3)	0.061 (2)*	0.3
F11F	0.1012 (18)	0.6148 (10)	0.6003 (6)	0.071 (4)*	0.3
C12A	-0.1085 (10)	0.7732 (12)	0.5828 (4)	0.059 (4)*	0.3
F12E	-0.170(2)	0.8957 (10)	0.5935 (6)	0.102 (6)*	0.3
F12F	-0.2213(18)	0.6889 (10)	0.6146 (5)	0.104 (4)*	0.3
C13A	-0.1427(17)	0.7621 (17)	0.5233 (4)	0.19 (3)*	0.3
F13G	-0.0388(17)	0.8340(14)	0.4839 (6)	$0.107(4)^{*}$	0.3
F13H	-0.3131(15)	0 7907 (16)	0.5150(7)	0.124(5)*	0.3
F13I	-0.114(3)	0.6331(14)	0.5130(1) 0.5142(13)	0.121(3) 0.148(12)*	0.3
S1'	1 14881 (11)	-0.08928(10)	0.93033(4)	0.140(12) 0.0420(3)	0.5
N1'	1.14001 (11)	-0.0605(3)	0.93033(4)	0.0420(5)	
N2'	1.3143(3) 1 3884(4)	0.0005(3) 0.1043(3)	0.95505(11) 0.88608(12)	0.0304(0)	
NZ C1/	1.3004 (4)	0.1043(3)	0.88008(12) 0.01672(14)	0.0320(0)	
C1	1.5515 (4)	-0.0131(3)	0.91072(14) 0.01272(15)	0.0302(7)	
U2	1.0493 (4)	0.0310 (4)	0.91275 (15)	0.0380 (8)	
H2 ^r	1.//41	0.0238	0.9182	0.046*	
C3'	1.5710 (5)	0.1328 (4)	0.88420 (16)	0.0396 (8)	
H3'	1.6299	0.2106	0.8658	0.048*	
C4′	1.5358 (4)	-0.1827 (3)	0.96593 (14)	0.0338 (8)	
H4′	1.4367	-0.2430	0.9717	0.041*	
C5′	1.6825 (5)	-0.2188 (4)	0.98903 (16)	0.0414 (9)	
H5'1	1.7843	-0.1611	0.9842	0.050*	
H5′2	1.6869	-0.3027	1.0106	0.050*	
C6′	1.2529 (5)	0.1929 (3)	0.86435 (14)	0.0365 (8)	
H6'1	1.3028	0.2848	0.8562	0.044*	
H6′2	1.1469	0.1976	0.8928	0.044*	
C7′	1.1912 (5)	0.1455 (3)	0.81163 (14)	0.0385 (8)	
H7'1	1.2986	0.1317	0.7845	0.046*	
H7′2	1.1295	0.0579	0.8205	0.046*	
C8′	1.0628 (4)	0.2470 (3)	0.78577 (12)	0.0365 (8)	
F8C	0.9324 (3)	0.2841 (2)	0.82534 (9)	0.0545 (6)	
F8D	1.1538 (3)	0.3607 (2)	0.76671 (10)	0.0587 (7)	
C9′	0.9688 (4)	0.1972 (3)	0.73893 (12)	0.0379 (8)	
F9C	0.8781 (4)	0.0847 (2)	0.75896 (11)	0.0676 (8)	
F9D	1.0966 (3)	0.1600 (3)	0.69965 (10)	0.0686 (8)	
C10′	0.8368 (5)	0.2946 (4)	0.71214 (14)	0.0537 (11)	
F10C	0.6801 (6)	0.2835 (7)	0.75193 (19)	0.0753 (17)	0.57
F10D	0.8782(11)	0.4206 (5)	0.7110 (4)	0.096 (3)	0.57
C11′	0.7630 (9)	0.2554(8)	0.6605 (2)	0.044(3)	0.57
FIIC	0.7459(16)	0.1231(8)	0.6598(7)	0.091(3)	0.57
F11D	0.8918 (6)	0.1231(0) 0.2935(8)	0.6201(2)	0.091(3) 0.102(2)	0.57
C12'	0.5910(0)	0.2955(0) 0.3183(7)	0.6261(2)	0.102(2)	0.57
E12C	0.3031(0) 0.4525(7)	0.5105(7) 0.2527(0)	0.0700(2)	0.035(2) 0.128(3)	0.57
F120	0.7525(7)	0.2327(3) 0.4423(9)	0.0777(3)	0.120(3)	0.57
C12'	0.3022(10) 0.5365(10)	0.4423 (0)	0.0000(0)	0.134(7) 0.120(6)	0.57
C13 E12D	0.3303(10) 0.5295(15)	0.3114(10) 0.1940(7)	0.3002(3)	0.120(0)	0.57
F13D	0.5385(15)	0.1849(7)	0.5/66(5)	0.163 (9)	0.5/
FI3E	0.6497 (11)	0.3793 (11)	0.5506 (3)	0.159 (4)	0.57

F13F	0.3713 (9)	0.3592 (9)	0.5831 (4)	0.105 (2)	0.57	
F10G	0.9634 (10)	0.3818 (7)	0.6787 (3)	0.082 (3)	0.43	
F10H	0.7523 (13)	0.3770 (10)	0.7450 (4)	0.103 (4)	0.43	
C11B	0.7302 (11)	0.2438 (9)	0.6693 (3)	0.056 (5)	0.43	
F11G	0.5858 (10)	0.1941 (10)	0.7016 (3)	0.106 (3)	0.43	
F11H	0.8144 (19)	0.1406 (15)	0.6462 (8)	0.089 (5)	0.43	
C12B	0.6696 (11)	0.3427 (9)	0.6244 (3)	0.068 (4)	0.43	
F12G	0.8066 (11)	0.3687 (11)	0.5844 (3)	0.117 (3)	0.43	
F12H	0.6144 (17)	0.4608 (11)	0.6416 (6)	0.091 (4)	0.43	
C13B	0.5192 (11)	0.3016 (10)	0.5930 (3)	0.074 (6)	0.43	
F13J	0.567 (2)	0.1878 (12)	0.5705 (6)	0.159 (11)	0.43	
F13K	0.4823 (18)	0.3900 (11)	0.5520 (4)	0.126 (4)	0.43	
F13L	0.3649 (11)	0.2818 (18)	0.6255 (4)	0.215 (10)	0.43	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0262 (5)	0.0372 (5)	0.0702 (7)	-0.0085 (4)	-0.0110 (4)	0.0010 (4)
N1	0.0251 (14)	0.0314 (15)	0.0463 (17)	-0.0011 (11)	-0.0066 (12)	-0.0047 (13)
N2	0.0303 (15)	0.0325 (16)	0.0481 (18)	-0.0015 (12)	-0.0055 (13)	-0.0010 (13)
C1	0.0276 (17)	0.0286 (17)	0.043 (2)	-0.0019 (13)	-0.0062 (14)	-0.0072 (15)
C2	0.0226 (17)	0.046 (2)	0.063 (3)	-0.0060 (15)	-0.0010 (17)	-0.0026 (19)
C3	0.0284 (18)	0.044 (2)	0.063 (3)	-0.0086 (16)	0.0035 (17)	0.0045 (19)
C4	0.0344 (19)	0.038 (2)	0.046 (2)	-0.0018 (15)	-0.0068 (16)	-0.0021 (16)
C5	0.040 (2)	0.050 (2)	0.053 (2)	0.0072 (18)	-0.0094 (18)	-0.0008 (19)
C6	0.041 (2)	0.0322 (19)	0.050 (2)	0.0037 (15)	-0.0080 (17)	-0.0012 (16)
C7	0.047 (2)	0.040 (2)	0.048 (2)	0.0122 (17)	-0.0056 (18)	-0.0048 (17)
C8	0.042 (2)	0.0345 (19)	0.044 (2)	0.0041 (16)	-0.0007 (17)	-0.0015 (16)
F8A	0.0455 (13)	0.0904 (19)	0.0524 (14)	0.0194 (13)	-0.0045 (11)	-0.0209 (13)
F8B	0.0813 (18)	0.0425 (14)	0.0796 (18)	-0.0141 (12)	-0.0314 (15)	0.0126 (12)
C9	0.055 (2)	0.035 (2)	0.043 (2)	0.0083 (17)	-0.0015 (18)	-0.0031 (16)
F9A	0.148 (3)	0.0412 (14)	0.0799 (19)	-0.0284 (16)	-0.053 (2)	0.0146 (13)
F9B	0.0703 (19)	0.120 (3)	0.0662 (18)	0.0339 (18)	-0.0012 (15)	-0.0359 (17)
C10	0.064 (3)	0.047 (2)	0.058 (3)	0.006 (2)	-0.016 (2)	-0.007 (2)
F10A	0.099 (3)	0.091 (3)	0.082 (3)	0.064 (3)	-0.049 (3)	-0.051 (3)
F10B	0.122 (4)	0.061 (3)	0.096 (4)	-0.036 (3)	-0.058 (3)	0.037 (2)
C11	0.079 (6)	0.033 (4)	0.048 (4)	0.007 (3)	-0.012 (3)	-0.005 (3)
F11A	0.126 (5)	0.089 (4)	0.091 (4)	0.053 (4)	-0.047 (4)	-0.054 (3)
F11B	0.149 (5)	0.107 (4)	0.081 (3)	-0.065 (4)	-0.041 (3)	0.030 (3)
C12	0.095 (6)	0.060 (4)	0.059 (4)	0.000 (4)	-0.022 (4)	-0.001 (3)
F12A	0.102 (4)	0.059 (2)	0.075 (3)	0.033 (3)	-0.041 (3)	-0.015 (2)
F12B	0.102 (4)	0.127 (4)	0.080 (3)	-0.033 (3)	-0.013 (3)	0.022 (3)
C13	0.064 (5)	0.063 (5)	0.046 (4)	0.008 (3)	-0.025 (3)	-0.010 (3)
F13A	0.116 (5)	0.085 (4)	0.089 (4)	0.007 (3)	-0.042 (3)	-0.044 (3)
F13B	0.086 (4)	0.164 (6)	0.112 (5)	-0.026 (4)	-0.003 (3)	-0.006 (4)
F13C	0.133 (5)	0.100 (4)	0.087 (4)	-0.020 (3)	-0.039 (3)	0.013 (3)
S1'	0.0220 (4)	0.0404 (5)	0.0627 (6)	-0.0056 (4)	-0.0066 (4)	0.0047 (4)
N1′	0.0218 (13)	0.0340 (15)	0.0357 (16)	-0.0020 (11)	-0.0032 (11)	-0.0049 (12)

N2′	0.0275(14)	0.0293(15)	0.0398 (16)	-0.0032(11)	-0.0055(12)	-0.0034(12)
C1′	0.0248 (16)	0.0299 (17)	0.0370 (19)	-0.0010(13)	-0.0055(12)	-0.0071(14)
C2′	0.0228 (17)	0.042 (2)	0.050 (2)	-0.0082(15)	-0.0018(15)	-0.0045(17)
C3′	0.0302 (18)	0.036(2)	0.052 (2)	-0.0099(15)	-0.0017(16)	-0.0023(17)
C4′	0.0279 (17)	0.0335 (18)	0.040 (2)	-0.0002 (14)	-0.0042(15)	-0.0028(15)
C5′	0.0353 (19)	0.043 (2)	0.047 (2)	0.0026 (16)	-0.0072 (16)	-0.0031 (17)
C6′	0.0377 (19)	0.0275 (17)	0.045 (2)	0.0031 (14)	-0.0091 (16)	-0.0043 (15)
C7′	0.041 (2)	0.0318 (19)	0.043 (2)	0.0041 (15)	-0.0080 (16)	-0.0044 (15)
C8′	0.0368 (19)	0.0301 (18)	0.041 (2)	-0.0023 (15)	-0.0009 (16)	-0.0010 (15)
F8C	0.0446 (13)	0.0722 (16)	0.0489 (13)	0.0176 (11)	-0.0077 (10)	-0.0196 (12)
F8D	0.0648 (15)	0.0399 (13)	0.0732 (17)	-0.0168 (11)	-0.0268 (13)	0.0135 (11)
C9′	0.0382 (19)	0.0344 (19)	0.040 (2)	-0.0004 (15)	-0.0008 (16)	-0.0021 (15)
F9C	0.0842 (19)	0.0488 (14)	0.0737 (17)	-0.0302(13)	-0.0348 (15)	0.0141 (12)
F9D	0.0536 (15)	0.100 (2)	0.0551 (15)	0.0205 (14)	-0.0059 (12)	-0.0324 (14)
C10′	0.061 (3)	0.043 (2)	0.060 (3)	0.009 (2)	-0.021 (2)	-0.009(2)
F10C	0.054 (3)	0.131 (5)	0.041 (3)	0.040 (3)	-0.006 (2)	-0.023 (3)
F10D	0.142 (8)	0.035 (3)	0.129 (8)	0.021 (4)	-0.090 (6)	-0.018 (4)
C11′	0.042 (5)	0.056 (7)	0.035 (5)	0.005 (5)	-0.006 (4)	-0.005 (5)
F11C	0.111 (9)	0.048 (4)	0.131 (9)	0.019 (4)	-0.072 (7)	-0.029 (4)
F11D	0.048 (3)	0.211 (8)	0.040 (3)	-0.001 (4)	0.001 (2)	0.013 (4)
C12′	0.041 (5)	0.067 (6)	0.053 (5)	0.016 (4)	-0.009 (4)	-0.010 (4)
F12C	0.036 (3)	0.262 (10)	0.082 (4)	-0.001 (4)	-0.007 (3)	0.013 (5)
F12D	0.239 (13)	0.113 (9)	0.140 (11)	0.128 (9)	-0.136 (9)	-0.063 (8)
C13′	0.109 (11)	0.181 (13)	0.078 (10)	0.030 (10)	-0.070 (8)	0.023 (10)
F13D	0.202 (15)	0.092 (7)	0.238 (17)	0.035 (7)	-0.185 (14)	-0.050 (8)
F13E	0.143 (7)	0.262 (11)	0.070 (4)	0.013 (7)	-0.046 (5)	0.043 (5)
F13F	0.086 (5)	0.141 (6)	0.101 (6)	0.042 (5)	-0.057 (4)	-0.028 (5)
F10G	0.100 (6)	0.035 (4)	0.121 (7)	-0.027 (4)	-0.074 (5)	0.030 (4)
F10H	0.124 (9)	0.089 (8)	0.116 (9)	0.070 (7)	-0.075 (7)	-0.064 (7)
C11B	0.055 (8)	0.055 (11)	0.060 (9)	-0.004 (7)	-0.012 (7)	-0.002 (7)
F11G	0.075 (5)	0.158 (8)	0.085 (5)	-0.063 (5)	-0.026 (4)	0.041 (5)
F11H	0.087 (9)	0.098 (9)	0.102 (9)	0.048 (7)	-0.058 (7)	-0.070 (8)
C12B	0.064 (9)	0.082 (10)	0.055 (8)	0.005 (7)	-0.004 (7)	0.000 (7)
F12G	0.090 (6)	0.179 (9)	0.076 (5)	-0.022 (6)	-0.016 (5)	0.034 (6)
F12H	0.132 (8)	0.054 (5)	0.102 (9)	0.018 (6)	-0.085 (6)	-0.007 (5)
C13B	0.065 (11)	0.070 (10)	0.090 (15)	-0.007 (9)	-0.012 (10)	-0.027 (9)
F13J	0.137 (14)	0.26 (3)	0.102 (11)	0.050 (14)	-0.040 (9)	-0.115 (14)
F13K	0.130 (10)	0.136 (9)	0.117 (9)	-0.001 (8)	-0.071 (8)	0.036 (7)
F13L	0.062 (6)	0.44 (3)	0.131 (10)	-0.063 (10)	-0.036 (6)	0.087 (14)

Geometric parameters (Å, °)

S1—C1	1.679 (3)	S1′—C1′	1.676 (3)
N1—C1	1.370 (4)	N1′—C1′	1.372 (4)
N1—C2	1.395 (4)	N1′—C2′	1.393 (4)
N1—C4	1.412 (5)	N1′—C4′	1.415 (4)
N2—C1	1.357 (4)	N2′—C1′	1.363 (4)
N2—C3	1.385 (5)	N2'—C3'	1.386 (4)

N2—C6	1,449 (4)	N2′—C6′	1,440 (4)
C2—C3	1.333 (6)	C2'—C3'	1.335 (5)
C2—H2	0.9500	C2'—H2'	0.9500
C3—H3	0.9500	C3'—H3'	0.9500
C4-C5	1,310(5)	C4' - C5'	1.311(5)
$C_4 = C_5$	0.9500	CA' HA'	0.9500
C5 H5A	0.9500	C5' H5'1	0.9500
C5_H5B	0.9500	C5' H5'2	0.9500
C6 C7	1.529(4)	C6' - C7'	1 526 (4)
С6 Н6А	0.0000	C6' = C7'	0.0000
Cé Hép	0.9900	C6' = H6'2	0.9900
C7 $C8$	1.525(4)	C0 - 102	0.9900
$C_{1} = C_{0}$	1.323 (4)	C7 - C8	1.321(4)
$C/-\Pi/A$	0.9900	C/-H/I	0.9900
	0.9900	C/-H/2	0.9900
	1.348 (4)	C8 - F8D	1.350(3)
C8—F8A	1.356 (4)	C8 - F8C	1.354 (4)
C8-C9	1.527 (4)	C8'-C9'	1.526 (4)
C9—F9A	1.327 (4)	C9'—F9D	1.338 (4)
C9—F9B	1.333 (4)	C9′—F9C	1.346 (4)
C9—C10	1.525 (4)	C9'—C10'	1.523 (4)
C10—F10E	1.296 (6)	C10'—F10D	1.295 (5)
C10—F10A	1.302 (4)	C10'—F10H	1.297 (6)
C10—F10B	1.394 (5)	C10′—F10C	1.426 (5)
C10—F10F	1.400 (6)	C10'—F10G	1.429 (6)
C10—C11A	1.502 (6)	C10′—C11B	1.506 (6)
C10—C11	1.524 (5)	C10'—C11'	1.512 (6)
C11—F11A	1.337 (5)	C11′—F11D	1.327 (7)
C11—F11B	1.350 (6)	C11′—F11C	1.328 (6)
C11—C12	1.514 (5)	C11'—C12'	1.514 (6)
C12—F12A	1.337 (5)	C12'—F12D	1.313 (6)
C12—F12B	1.352 (6)	C12′—F12C	1.328 (6)
C12—C13	1.515 (6)	C12′—C13′	1.500 (6)
C13—F13C	1.320 (5)	C13'—F13D	1.313 (7)
C13—F13B	1.324 (5)	C13'—F13F	1.321 (6)
C13—F13A	1.333 (5)	C13′—F13E	1.321 (7)
C11A—F11E	1.325 (7)	C11B—F11H	1.324 (7)
C11A—F11F	1.327 (7)	C11B—F11G	1.333 (7)
C11A—C12A	1.514 (7)	C11B—C12B	1.508 (6)
C12A—F12E	1.328 (7)	C12B—F12H	1.322 (7)
C12A—F12F	1.333 (7)	C12B—F12G	1.339 (7)
C12A—C13A	1.514 (7)	C12B—C13B	1.507 (6)
С13А—F13Н	1.324 (7)	C13B—F13K	1.322 (6)
C13A—F13G	1.329 (7)	C13B—F13J	1.323 (7)
C13A—F13I	1.330 (7)	C13B—F13L	1.324 (7)
C1—N1—C2	109.7 (3)	C1'—N1'—C2'	109.8 (3)
C1—N1—C4	123.3 (3)	C1' - N1' - C4'	123.5 (3)
C2—N1—C4	126.9 (3)	C2'—N1'—C4'	126.7 (3)
	(-)		(-)

C1—N2—C3	109.8 (3)	C1'—N2'—C3'	109.9 (3)
C1—N2—C6	124.1 (3)	C1′—N2′—C6′	124.2 (3)
C3—N2—C6	126.1 (3)	C3'—N2'—C6'	125.6 (3)
N2—C1—N1	105.5 (3)	N2′—C1′—N1′	105.2 (3)
N2—C1—S1	126.7 (3)	N2'—C1'—S1'	126.7 (2)
N1—C1—S1	127.8 (3)	N1′—C1′—S1′	128.1 (3)
C3-C2-N1	106.8 (3)	C3'—C2'—N1'	107.1 (3)
C3—C2—H2	126.6	C3'—C2'—H2'	126.4
N1-C2-H2	126.6	N1'-C2'-H2'	126.4
C2-C3-N2	108.2 (3)	C2'—C3'—N2'	108.0 (3)
С2—С3—Н3	125.9	C2'-C3'-H3'	126.0
N2-C3-H3	125.9	N2'-C3'-H3'	126.0
$C_{5}-C_{4}-N_{1}$	125.2 (4)	C5' - C4' - N1'	120.0 124.8(3)
C5-C4-H4	117.4	C5'-C4'-H4'	117.6
N1-C4-H4	117.4	N1' - C4' - H4'	117.6
C4—C5—H5A	120.0	C4' - C5' - H5'1	120.0
C4-C5-H5B	120.0	C4' - C5' - H5'2	120.0
H_{5A} C_{5} H_{5B}	120.0	H5'1 - C5' - H5'2	120.0
N2-C6-C7	120.0 111 1 (3)	N2'-C6'-C7'	120.0 112.1(3)
N2-C6-H6A	109.4	N2'-C6'-H6'1	109.2
C7-C6-H6A	109.1	C7'-C6'-H6'1	109.2
N2-C6-H6B	109.4	N2'-C6'-H6'2	109.2
C7—C6—H6B	109.4	C7'-C6'-H6'2	109.2
H6A—C6—H6B	108.0	H6'1 - C6' - H6'2	107.9
C8-C7-C6	111.9 (3)	C8'-C7'-C6'	111.6 (3)
C8—C7—H7A	109.2	C8′—C7′—H7′1	109.3
C6—C7—H7A	109.2	C6'-C7'-H7'1	109.3
C8—C7—H7B	109.2	C8'-C7'-H7'2	109.3
С6—С7—Н7В	109.2	C6'—C7'—H7'2	109.3
H7A—C7—H7B	107.9	H7′1—C7′—H7′2	108.0
F8B—C8—F8A	104.9 (3)	F8D—C8′—F8C	105.8 (3)
F8B—C8—C7	109.9 (3)	F8D—C8'—C7'	109.4 (3)
F8A	108.6 (3)	F8C—C8'—C7'	109.5 (3)
F8B—C8—C9	109.5 (3)	F8D—C8'—C9'	109.0 (2)
F8A—C8—C9	108.5 (3)	F8C—C8′—C9′	107.7 (2)
C7—C8—C9	115.0 (3)	C7′—C8′—C9′	115.0 (3)
F9A—C9—F9B	107.7 (3)	F9D—C9′—F9C	106.3 (3)
F9A—C9—C10	108.6 (3)	F9D—C9'—C10'	108.9 (3)
F9B—C9—C10	107.7 (3)	F9C—C9′—C10′	108.0 (3)
F9A—C9—C8	108.1 (3)	F9D—C9′—C8′	108.2 (2)
F9B—C9—C8	107.2 (3)	F9C—C9′—C8′	107.9 (2)
С10—С9—С8	117.3 (3)	C10′—C9′—C8′	117.0 (3)
F10A—C10—F10B	103.6 (4)	F10D—C10′—F10C	102.9 (5)
F10E—C10—F10F	103.6 (5)	F10H—C10′—F10G	101.8 (5)
F10E—C10—C11A	117.7 (7)	F10H—C10′—C11B	116.3 (6)
F10F-C10-C11A	99.7 (6)	F10G—C10′—C11B	101.8 (5)
F10A-C10-C11	111.0 (4)	F10D—C10′—C11′	114.7 (5)
F10B—C10—C11	105.5 (4)	F10C—C10′—C11′	101.8 (4)

F10E—C10—C9	115.7 (6)	F10D—C10′—C9′	114.5 (4)
F10A—C10—C9	113.1 (3)	F10H—C10′—C9′	114.9 (4)
F10B—C10—C9	105.0 (3)	F10C—C10′—C9′	101.8 (3)
F10FC10C9	96.0 (5)	F10G—C10′—C9′	99.4 (4)
C11A—C10—C9	118.1 (4)	C11B—C10′—C9′	118.0 (4)
C11—C10—C9	117.1 (3)	C11′—C10′—C9′	117.9 (4)
F11A—C11—F11B	104.6 (5)	F11D—C11′—F11C	106.8 (6)
F11A—C11—C12	110.0 (5)	F11D—C11′—C10′	103.5 (5)
F11B-C11-C12	107.1 (5)	F11C—C11′—C10′	112.9 (9)
F11A—C11—C10	111.7 (4)	F11D—C11′—C12′	108.3 (5)
F11B-C11-C10	104.1 (4)	F11C—C11′—C12′	106.4 (8)
C12—C11—C10	118.1 (4)	C10'—C11'—C12'	118.3 (5)
F12A—C12—F12B	105.7 (5)	F12D—C12′—F12C	107.2 (6)
F12A—C12—C11	110.6 (4)	F12D—C12′—C13′	112.4 (9)
F12B—C12—C11	107.1 (5)	F12C—C12′—C13′	104.0 (6)
F12A—C12—C13	109.1 (5)	F12D—C12′—C11′	106.6 (7)
F12B-C12-C13	106.2 (4)	F12C—C12′—C11′	107.6 (6)
C11—C12—C13	117.4 (4)	C13'—C12'—C11'	118.4 (5)
F13C—C13—F13B	106.1 (4)	F13D—C13′—F13F	107.0 (6)
F13C-C13-F13A	107.2 (5)	F13D—C13′—F13E	108.4 (7)
F13B-C13-F13A	106.3 (5)	F13F—C13′—F13E	107.8 (6)
F13C—C13—C12	109.5 (5)	F13D—C13'—C12'	109.4 (8)
F13B—C13—C12	115.6 (5)	F13F—C13'—C12'	111.6 (7)
F13A—C13—C12	111.6 (5)	F13E—C13'—C12'	112.5 (7)
F11E—C11A—F11F	107.3 (7)	F11H—C11B—F11G	106.7 (7)
F11E-C11A-C10	102.0 (7)	F11H—C11B—C10'	111.1 (10)
F11F-C11A-C10	112.6 (9)	F11G-C11B-C10'	100.5 (6)
F11E-C11A-C12A	112.4 (7)	F11H—C11B—C12B	109.1 (11)
F11F-C11A-C12A	103.9 (10)	F11G-C11B-C12B	109.6 (7)
C10-C11A-C12A	118.4 (7)	C10'—C11B—C12B	118.9 (7)
F12E—C12A—F12F	105.0 (7)	F12H—C12B—F12G	106.1 (7)
F12E-C12A-C11A	112.6 (10)	F12H—C12B—C13B	103.9 (9)
F12F-C12A-C11A	110.3 (10)	F12G—C12B—C13B	103.1 (7)
F12E-C12A-C13A	104.1 (12)	F12H—C12B—C11B	114.2 (10)
F12F-C12A-C13A	107.2 (10)	F12G—C12B—C11B	110.2 (7)
C11A—C12A—C13A	116.8 (7)	C13B—C12B—C11B	118.1 (6)
F13H—C13A—F13G	106.8 (7)	F13K—C13B—F13J	106.7 (6)
F13H—C13A—F13I	106.8 (7)	F13K—C13B—F13L	106.2 (6)
F13G-C13A-F13I	106.8 (8)	F13J—C13B—F13L	108.4 (7)
F13H-C13A-C12A	112.5 (12)	F13K-C13B-C12B	114.3 (8)
F13G-C13A-C12A	117.5 (12)	F13J—C13B—C12B	108.8 (10)
F13I—C13A—C12A	105.7 (18)	F13L—C13B—C12B	112.2 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C3—H3····F8A ⁱ	0.95	2.47	3.201 (5)	133
C3′—H3′…F8 <i>C</i> ⁱ	0.95	2.45	3.233 (4)	140

data reports

C6'— $H6'1$ ···S1 ⁱ	0.99	2.71	3.616 (3)	152
C4—H4…S1	0.95	2.80	3.179 (4)	105
C4'—H4'…S1'	0.95	2.83	3.191 (3)	104
C7′—H7′2…F9C	0.99	2.52	2.880 (5)	101
C7—H7 <i>B</i> …F9 <i>A</i>	0.99	2.54	2.875 (5)	100

Symmetry code: (i) x+1, y, z.