

ISSN 2414-3146

Received 14 April 2017 Accepted 29 April 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; heterocycle; benzothiazine; oxazolidene; hydrogen bonds.

CCDC reference: 1547027

Structural data: full structural data are available from iucrdata.iucr.org

(2Z)-2-(4-Chlorobenzylidene)-4-[2-(2-oxooxazo-

data reports

liden-3-yl)ethyl]-3,4-dihydro-2*H*-1,4-benzothiazin-3-one

Mohamed Ellouz,^a Nada Kheira Sebbar,^a* Mohammed Boulhaoua,^a El Mokhtar Essassi^a and Joel T. Mague^b

^aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: nadouchsebbarkheira@gmail.com

In the title molecule, $C_{20}H_{17}ClN_2O_3S$, the oxazolidine ring is oriented towards the benzothiazine moiety so that the centroid of the former is *ca* 5.05 Å from the sulfur atom of the latter. In the crystal, the molecules are arranged in layers parallel to (101) and held together by the aid of $C-H \cdot \cdot O$ interactions, resulting in a three-dimensional network structure.

Structure description

A number of pharmacological tests have revealed 1,4-benzothiazine derivatives to possess a wide spectrum of biological activities, even when they are part of a complex molecule (Schiaffella *et al.*, 2006; Gupta *et al.*, 2009). As a result of the presence of a fold along the nitrogen–sulfur axis, the biological activities of some 1,4-benzothiazines are similar to that of phenothiazines, featuring the same structural specificity (Bansode *et al.*, 2009; Dixit *et al.*, 2009; Thomas *et al.*, 2003). Generally, 1,4-benzothiazine derivatives have found widespread applications as analgesic (Warren & Knaus, 1987), antibacterial (Armenise *et al.*, 2012; Sabatini *et al.*, 2008), anticancer (Jacquot *et al.*, 2001), anticonvulsant (Kalluraya *et al.*, 2005) or anthelmintic (Munirajasekar *et al.*, 2011) agents. In a continuation of our research activities devoted to the development of N-substituted 1,4-benzothiazine derivatives and the evaluation of their potential pharmacological activities (Sebbar *et al.*, 2016; Ellouz *et al.*, 2015), we have synthesized a new heterocyclic system containing 1,4-benzothiazine and oxazolidinone moieties.

In the title molecule (Fig. 1), the dihedral angle between the two benzene rings (C1–C6 and C10–C15) is 51.62 (5)°. A puckering analysis of the oxazolidine ring revealed a

Figure 1

The molecular structure of the title compound drawn with displacement ellipsoids at the 50% probability level. Intramolecular C-H···O hydrogen bonds are shown by dashed lines.

puckering amplitude with parameters Q(2) = 0.206 (2) Å and $\varphi(2) = 131.9$ (5)°. The ring has an envelope conformation with a twist on the C19–C20 bond and atom C20 as the flap. A similar analysis of the heterocyclic portion of the benzothiazene moiety gave Q = 0.426 (1) Å, $\theta = 73.1$ (6)° and $\varphi = 341.4$ (2)°. The oxazolidine ring is oriented towards the benzothiazine unit such that the centroid of the oxazolidine ring is only 4.094 (2) Å from C7 and 5.053 (2) Å from S1 (Fig. 1). The overall conformation of the molecule is determined in part by intramolecular C–H···O and C–H···S hydrogen bonds (Fig. 1 and Table 1). In the crystal, the layered arrangement of the molecules is sustained by a three-dimensional network of C–H···O interactions (Table 1, Fig. 2).

Synthesis and crystallization

To a solution of (2Z)-2-(4-chlorobenzylidene)-3,4-dihydro-2*H*-1,4-benzothiazin-3-one (0.29 g, 1.00 mmol) in DMF (15 ml), was added tetra-*n*-butylammonium bromide (0.1 mmol), 2.2 eq of bis (2-chloroethyl)amine hydrochloride and 2.00 eq of potassium carbonate. The mixture was stirred at

A portion of the crystal structure with $C-H\cdots O$ and $C-H\cdots S$ hydrogen bonds shown as dashed lines.

, , ,	2 ()	/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3\cdots O3^{i}$	0.93	2.60	3.380 (2)	142
C9−H9···O1	0.93	2.34	2.7344 (18)	105
$C11 - H11 \cdot \cdot \cdot S1$	0.93	2.50	3.1463 (15)	127
$C16-H16B\cdots O1$	0.97	2.23	2.6923 (19)	108
$C17 - H17B \cdots O2$	0.97	2.54	2.9049 (18)	102
C20−H20A···O1 ⁱⁱ	0.97	2.43	3.159 (2)	132

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x, -y + 1, -z + 1.

Table	2		
Experi	mental	details.	

Crystal data	
Chemical formula	$C_{20}H_{17}ClN_2O_3S$
M _r	400.86
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
a, b, c (Å)	6.2315 (3), 15.5466 (8), 18.9162 (10)
β (°)	98.845 (1)
$V(\dot{A}^3)$	1810.78 (16)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.35
Crystal size (mm)	$0.45 \times 0.33 \times 0.16$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.86, 0.95
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33990, 4719, 3743
R _{int}	0.032
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.678
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.041, 0.123, 1.09
No. of reflections	4719
No. of parameters	244
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.33, -0.28

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014*/7 (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

353 K for 6 h. After removal of salts by filtration, the solution was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane. The remaining salts were extracted with distilled water, and the mixture obtained was chromatographed on a silica gel column (eluent: ethyl acetate/hexane: 4/1). The solid isolated was recrystallized from ethanol to afford colorless crystals in 64% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

- Armenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407–416.
- Bansode, T. N., Shelke, J. V. & Dongre, V. G. (2009). *Eur. J. Med. Chem.* 44, 5094–5098.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dixit, Y., Dixit, R., Gautam, N. & Gautam, D. C. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 998–1006.
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.
- Gupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). *Jordan. J. Chem.* 4, 209–221.
- Jacquot, Y., Bermont, L., Giorgi, H., Refouvelet, B. L., Adessi, G., Daubrosse, E. & Xicluna, A. (2001). *Eur. J. Med. Chem.* 36, 127– 136.

- Kalluraya, B., Chimbalkar, R. M. & Hegde, J. C. (2005). Indian J. Heterocycl. Chem. 15, 15–18.
- Munirajasekar, D., Himaja, M. & Sunil, M. (2011). Int. Res. J. Pharm. 2, 114–117.
- Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.
- Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). *Bioorg. Med. Chem.* 14, 5196–5203.
- Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). *Res. Chem. Intermed.* 42, 6845–6862.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Thomas, L., Gupta, A. & Gupta, V. (2003). J. Fluor. Chem. **122**, 207–213.
- Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.

full crystallographic data

IUCrData (2017). **2**, x170646 [https://doi.org/10.1107/S2414314617006460]

(2*Z*)-2-(4-Chlorobenzylidene)-4-[2-(2-oxooxazoliden-3-yl)ethyl]-3,4-dihydro-2*H*-1,4-benzothiazin-3-one

Mohamed Ellouz, Nada Kheira Sebbar, Mohammed Boulhaoua, El Mokhtar Essassi and Joel T. Mague

(2Z)-2-(4-Chlorobenzylidene)-4-[2-(2-oxooxazoliden-3-yl)ethyl]-3,4-dihydro-2H-1,4-benzothiazin-3-one

Crystal data

C₂₀H₁₇ClN₂O₃S $M_r = 400.86$ Monoclinic, $P2_1/n$ a = 6.2315 (3) Å b = 15.5466 (8) Å c = 18.9162 (10) Å $\beta = 98.845$ (1)° V = 1810.78 (16) Å³ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2016) $T_{\min} = 0.86, T_{\max} = 0.95$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.123$ S = 1.094719 reflections 244 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 832 $D_x = 1.470 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 9941 reflections $\theta = 2.2-28.5^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.45 \times 0.33 \times 0.16 \text{ mm}$

33990 measured reflections 4719 independent reflections 3743 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 28.8^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -8 \rightarrow 8$ $k = -21 \rightarrow 21$ $l = -25 \rightarrow 25$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0716P)^2 + 0.1928P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω , collected at $\varphi = 0.00, 90.00$ and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ , collected at $\omega = -30.00$ and 210.00° . The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > 2sigma(F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.87886 (7)	-0.06538 (3)	0.34978 (2)	0.06434 (14)	
S1	0.61719 (6)	0.22088 (3)	0.61074 (2)	0.05320 (13)	
O1	0.0726 (2)	0.31674 (8)	0.51581 (6)	0.0664 (3)	
O2	0.63844 (18)	0.47048 (12)	0.70186 (8)	0.0800 (4)	
O3	0.6080(2)	0.54626 (10)	0.59946 (8)	0.0758 (4)	
N1	0.20199 (18)	0.31452 (7)	0.63432 (6)	0.0413 (3)	
N2	0.30695 (17)	0.50294 (8)	0.63633 (7)	0.0459 (3)	
C1	0.5149 (2)	0.23083 (9)	0.69107 (7)	0.0431 (3)	
C2	0.6326 (3)	0.19328 (11)	0.75182 (8)	0.0564 (4)	
H2	0.7598	0.1634	0.7483	0.068*	
C3	0.5618 (3)	0.20006 (12)	0.81746 (9)	0.0660 (5)	
Н3	0.6426	0.1761	0.8581	0.079*	
C4	0.3727 (3)	0.24218 (12)	0.82193 (9)	0.0639 (5)	
H4	0.3245	0.2466	0.8659	0.077*	
C5	0.2508 (3)	0.27862 (10)	0.76182 (9)	0.0545 (4)	
Н5	0.1204	0.3060	0.7658	0.065*	
C6	0.3219 (2)	0.27462 (8)	0.69553 (7)	0.0411 (3)	
C7	0.2053 (2)	0.28940 (9)	0.56473 (8)	0.0432 (3)	
C8	0.3787 (2)	0.22887 (8)	0.54877 (7)	0.0394 (3)	
C9	0.3506 (2)	0.19155 (9)	0.48386 (7)	0.0432 (3)	
H9	0.2205	0.2054	0.4551	0.052*	
C10	0.4893 (2)	0.13308 (9)	0.45089 (7)	0.0424 (3)	
C11	0.7127 (2)	0.12295 (10)	0.47337 (8)	0.0490 (3)	
H11	0.7826	0.1570	0.5103	0.059*	
C12	0.8304 (2)	0.06316 (11)	0.44155 (8)	0.0498 (3)	
H12	0.9787	0.0572	0.4570	0.060*	
C13	0.7282 (2)	0.01232 (10)	0.38690 (8)	0.0475 (3)	
C14	0.5106 (3)	0.02288 (11)	0.36082 (8)	0.0543 (4)	
H14	0.4435	-0.0105	0.3229	0.065*	
C15	0.3944 (2)	0.08405 (11)	0.39213 (8)	0.0500 (3)	
H15	0.2489	0.0929	0.3737	0.060*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C16	0.0506 (2)	0.38381 (9)	0.64572 (8)	0.0445 (3)
H16A	-0.0503	0.3627	0.6760	0.053*
H16B	-0.0327	0.4001	0.6001	0.053*
C17	0.1671 (2)	0.46259 (9)	0.68036 (8)	0.0440 (3)
H17A	0.0599	0.5041	0.6907	0.053*
H17B	0.2530	0.4458	0.7254	0.053*
C18	0.5244 (2)	0.50246 (11)	0.65165 (9)	0.0536 (4)
C19	0.4331 (4)	0.58882 (14)	0.55426 (12)	0.0787 (6)
H19A	0.4513	0.5845	0.5044	0.094*
H19B	0.4264	0.6491	0.5669	0.094*
C20	0.2305 (3)	0.54183 (12)	0.56775 (10)	0.0616 (4)
H20A	0.1113	0.5812	0.5703	0.074*
H20B	0.1858	0.4988	0.5313	0.074*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0707 (3)	0.0563 (2)	0.0708 (3)	0.00881 (19)	0.0257 (2)	-0.00626 (19)
S 1	0.03737 (19)	0.0733 (3)	0.0475 (2)	0.00586 (16)	0.00185 (14)	-0.01277 (17)
01	0.0699 (7)	0.0718 (8)	0.0531 (6)	0.0307 (6)	-0.0048 (5)	0.0007 (6)
O2	0.0369 (6)	0.1218 (13)	0.0767 (8)	0.0130 (7)	-0.0055 (6)	-0.0065 (8)
O3	0.0541 (7)	0.0942 (10)	0.0820 (9)	-0.0240 (7)	0.0199 (6)	-0.0076 (8)
N1	0.0388 (6)	0.0353 (5)	0.0492 (6)	0.0031 (4)	0.0052 (5)	-0.0034 (5)
N2	0.0322 (5)	0.0462 (6)	0.0571 (7)	0.0000 (5)	0.0004 (5)	0.0027 (5)
C1	0.0459 (7)	0.0392 (7)	0.0421 (7)	0.0007 (5)	0.0000 (5)	-0.0066 (5)
C2	0.0614 (9)	0.0510 (8)	0.0519 (8)	0.0117 (7)	-0.0072 (7)	-0.0078 (7)
C3	0.0911 (13)	0.0568 (9)	0.0454 (8)	0.0081 (9)	-0.0046 (8)	0.0007 (7)
C4	0.0907 (14)	0.0563 (10)	0.0462 (8)	0.0019 (9)	0.0153 (8)	-0.0001 (7)
C5	0.0650 (10)	0.0478 (8)	0.0535 (8)	0.0019 (7)	0.0178 (7)	-0.0023 (6)
C6	0.0450 (7)	0.0330 (6)	0.0448 (7)	-0.0014 (5)	0.0051 (5)	-0.0029 (5)
C7	0.0438 (7)	0.0385 (7)	0.0464 (7)	0.0021 (5)	0.0040 (6)	0.0016 (5)
C8	0.0387 (6)	0.0373 (6)	0.0416 (6)	-0.0008 (5)	0.0048 (5)	0.0024 (5)
C9	0.0413 (7)	0.0469 (7)	0.0405 (6)	0.0010 (6)	0.0037 (5)	0.0018 (5)
C10	0.0445 (7)	0.0455 (7)	0.0379 (6)	-0.0022 (6)	0.0088 (5)	0.0012 (5)
C11	0.0437 (7)	0.0597 (9)	0.0436 (7)	-0.0052 (6)	0.0062 (6)	-0.0088 (6)
C12	0.0436 (7)	0.0597 (9)	0.0467 (7)	0.0027 (6)	0.0088 (6)	0.0005 (6)
C13	0.0540 (8)	0.0463 (7)	0.0457 (7)	0.0006 (6)	0.0190 (6)	0.0016 (6)
C14	0.0525 (8)	0.0617 (9)	0.0496 (8)	-0.0085 (7)	0.0110 (6)	-0.0146 (7)
C15	0.0425 (7)	0.0634 (9)	0.0442 (7)	-0.0027 (6)	0.0064 (6)	-0.0070 (6)
C16	0.0328 (6)	0.0392 (7)	0.0613 (8)	0.0022 (5)	0.0069 (6)	-0.0066 (6)
C17	0.0357 (6)	0.0401 (7)	0.0562 (8)	0.0038 (5)	0.0076 (5)	-0.0063 (6)
C18	0.0347 (7)	0.0639 (9)	0.0618 (9)	-0.0036 (6)	0.0066 (6)	-0.0171 (7)
C19	0.0960 (15)	0.0654 (11)	0.0780 (13)	-0.0226 (11)	0.0243 (11)	0.0038 (10)
C20	0.0598 (9)	0.0572 (9)	0.0638 (10)	-0.0026 (8)	-0.0030 (8)	0.0099 (8)

Geometric parameters (Å, °)

Cl1—C13	1.7426 (15)	С8—С9	1.3448 (19)
S1—C1	1.7427 (15)	C9—C10	1.459 (2)
S1—C8	1.7501 (13)	С9—Н9	0.9300
O1—C7	1.2190 (17)	C10—C11	1.4004 (19)
O2—C18	1.203 (2)	C10—C15	1.4015 (19)
O3—C18	1.367 (2)	C11—C12	1.378 (2)
Q3—C19	1.439 (3)	C11—H11	0.9300
N1—C7	1.3763 (18)	C12—C13	1.377 (2)
N1—C6	1 4207 (18)	C12—H12	0.9300
N1-C16	1 4696 (16)	C13 - C14	1 380 (2)
N2-C18	1.3416(17)	C14— $C15$	1.383(2)
N2C17	1.3110(17) 1.4386(19)	C14 $H14$	0.9300
N2-C20	1.4300(17) 1 444 (2)	C15H15	0.9300
C_1 C_2	1 303 (2)	C16 C17	1,5201 (10)
$C_1 = C_2$	1.393(2) 1 306(2)	C_{16} H_{16A}	0.0700
$C_1 = C_0$	1.390(2) 1.284(2)		0.9700
$C_2 = C_3$	1.364 (2)		0.9700
C2—H2	0.9500		0.9700
$C_3 - C_4$	1.362 (3)	С17—Н17В	0.9700
C3—H3	0.9300	C19 - C20	1.514 (3)
C4—C5	1.388 (3)	CI9—HI9A	0.9700
C4—H4	0.9300	С19—Н19В	0.9700
C5—C6	1.394 (2)	C20—H20A	0.9700
C5—H5	0.9300	C20—H20B	0.9700
С7—С8	1.4980 (19)		
C1—S1—C8	101.01 (7)	C10—C11—H11	119.5
C18—O3—C19	108.68 (13)	C13—C12—C11	119.94 (14)
C7—N1—C6	124.90 (11)	C13—C12—H12	120.0
C7—N1—C16	116.93 (11)	C11—C12—H12	120.0
C6—N1—C16	118.01 (11)	C12—C13—C14	121.05 (14)
C18—N2—C17	123.65 (13)	C12—C13—C11	118.99 (12)
C18—N2—C20	112.28 (14)	C14—C13—Cl1	119.95 (12)
C17—N2—C20	123.86 (12)	C13—C14—C15	118.65 (14)
C2—C1—C6	120.25 (14)	C13—C14—H14	120.7
C2—C1—S1	117.74 (12)	C15—C14—H14	120.7
C6—C1—S1	122.01 (11)	C14—C15—C10	121.91 (14)
C3—C2—C1	120.54 (15)	C14—C15—H15	119.0
C3—C2—H2	119.7	C10—C15—H15	119.0
C1—C2—H2	119.7	N1-C16-C17	112 26 (11)
C4-C3-C2	119.37 (16)	N1—C16—H16A	109.2
C4—C3—H3	120.3	C17—C16—H16A	109.2
C2—C3—H3	120.3	N1-C16-H16B	109.2
C_{3} C_{4} C_{5}	121.02 (16)	C17— $C16$ — $H16B$	109.2
C3—C4—H4	119 5	H_{16A} C_{16} H_{16B}	107.9
C5-C4-H4	119.5	N^2 —C17—C16	113 18 (12)
C4-C5-C6	120.60 (16)	N2-C17-H174	108.9
	120.00 (10)	$112 \cup 1 / 111 / 11$	100.7

C4—C5—H5	119.7	C16—C17—H17A	108.9
С6—С5—Н5	119.7	N2—C17—H17B	108.9
C5—C6—C1	118.19 (14)	C16—C17—H17B	108.9
C5—C6—N1	120.89 (13)	H17A—C17—H17B	107.8
C1-C6-N1	120.92 (13)	02-C18-N2	128.85 (17)
01—C7—N1	121.25(13)	02	122.14 (14)
01	119.49 (13)	N2-C18-O3	109.02 (14)
N1-C7-C8	119.24 (12)	03-C19-C20	104.66 (15)
C9—C8—C7	117.29 (12)	03—C19—H19A	110.8
C9-C8-S1	123 97 (11)	C20—C19—H19A	110.8
C7 - C8 - S1	118 30 (10)	O_3 — C_{19} —H19B	110.8
C_{8} C_{9} C_{10}	131.05 (13)	C20-C19-H19B	110.8
C8-C9-H9	114 5	H19A - C19 - H19B	108.9
C10-C9-H9	114.5	N_{2} C_{20} C_{19}	100.5
C_{11} C_{10} C_{15}	117.29 (13)	$N_2 = C_2 O = H_2 O \Delta$	111.6
$C_{11} = C_{10} = C_{13}$	124 53 (12)	C19 - C20 - H20A	111.6
$C_{10} = C_{10} = C_{10}$	124.33(12) 118 18 (12)	$N_2 C_{20} H_{20}B$	111.6
$C_{12} = C_{10} = C_{2}$	110.10(12) 120.02(13)	C_{10} C_{20} H_{20B}	111.0
$C_{12} = C_{11} = C_{10}$	120.92 (13)	$H_{20A} = C_{20} = H_{20B}$	100 4
	119.5	1120A—C20—1120B	109.4
$C_{8} = S_{1} = C_{1} = C_{2}$	153 67 (12)	S1 - C8 - C9 - C10	53(2)
$C_{0} = S_{1} = C_{1} = C_{2}$	-26.30(13)	$C_{8} = C_{9} = C_{10} = C_{11}$	-10.8(2)
$C_{6} = C_{1} = C_{2} = C_{3}$	-10(2)	$C_{8} = C_{9} = C_{10} = C_{15}$	19.8(2)
$c_0 - c_1 - c_2 - c_3$	1.0(2) 178.08(14)	$C_{15} = C_{10} = C_{11} = C_{12}$	-3.0(2)
$S_1 = C_1 = C_2 = C_3$	1/0.90(14) 1.5(2)	$C_{13} = C_{10} = C_{11} = C_{12}$	-3.9(2)
$C_1 = C_2 = C_3 = C_4$	1.3(3)	C_{9} C_{10} C_{11} C_{12} C_{12}	1/0.77(14) -0.1(2)
$C_2 = C_3 = C_4 = C_5$	-0.5(3) -1.5(3)	$C_{10} - C_{11} - C_{12} - C_{13}$	-0.1(2)
$C_{3} - C_{4} - C_{5} - C_{6}$	-1.3(3)	$C_{11} = C_{12} = C_{13} = C_{14}$	5.1(2)
C4 = C5 = C6 = N1	1.9(2)	C12 - C12 - C13 - C11	-1/7.73(12)
$C_{4} = C_{5} = C_{6} = C_{5}$	-1/7.07(13)	$C_{12} = C_{13} = C_{14} = C_{15}$	-2.0(2)
$C_2 - C_1 - C_0 - C_3$	-0.7(2)	C12 - C14 - C15	1/8.92(12)
SI = CI = CG = CS	1/9.28 (11)	C13 - C14 - C15 - C10	-2.3(2)
$C_2 = C_1 = C_6 = N_1$	1/8.92 (13)	C11 - C10 - C15 - C14	5.2(2)
SI-CI-C6-NI	-1.12(18)	C_{9} C_{10} C_{15} C_{14}	-1/5.49 (15)
C/=NI=C6=C5	-154.04(14)	C = NI = CI6 = CI7	-118.43 (14)
C10-N1-C6-C3	21.29(19)	$C_0 = N_1 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	05.80 (10)
C = N = C = C I	26.4 (2)	C18 = N2 = C17 = C16	-110.69(16)
C10-N1-C0-C1	-158.30(12)	$C_{20} = N_2 = C_1 / = C_{16}$	63.64 (18)
$C_6 = N_1 = C_7 = O_1$	16/.61 (14)	N1 - C16 - C17 - N2	63.91 (16)
C16-N1-C7-O1	-7.8(2)	C1/-N2-C18-O2	-0.1(3)
C6-NI-C7-C8	-13.8(2)	$C_{20} = N_2 = C_{18} = O_2$	-1/5.00 (18)
C16 - N1 - C7 - C8	170.82 (12)	C17 - N2 - C18 - O3	-179.91 (13)
01	-15.3 (2)	C20—N2—C18—O3	5.18 (19)
N1	166.08 (13)	C19—O3—C18—O2	-170.22 (18)
01—C/—C8—S1	157.32 (12)	C19—O3—C18—N2	9.62 (19)
N1 - C' - C8 - S1	-21.29 (17)	C18 - O3 - C19 - C20	-19.5 (2)
C1—S1—C8—C9	-151.29 (12)	C18—N2—C20—C19	-16.49 (19)
C1—S1—C8—C7	36.61 (12)	C17—N2—C20—C19	168.61 (15)
C7—C8—C9—C10	177.49 (14)	O3—C19—C20—N2	20.9 (2)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C3—H3…O3 ⁱ	0.93	2.60	3.380 (2)	142
С9—Н9…О1	0.93	2.34	2.7344 (18)	105
C11—H11…S1	0.93	2.50	3.1463 (15)	127
C16—H16 <i>B</i> …O1	0.97	2.23	2.6923 (19)	108
C17—H17 <i>B</i> ····O2	0.97	2.54	2.9049 (18)	102
C20—H20A····O1 ⁱⁱ	0.97	2.43	3.159 (2)	132

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+3/2, y-1/2, -z+3/2; (ii) -x, -y+1, -z+1.