

ISSN 2414-3146

Received 2 May 2017 Accepted 8 May 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; bipyridinium ion; hydrogen bonding; trifluoromethanesulfonate.

CCDC reference: 1548596

Structural data: full structural data are available from iucrdata.iucr.org

2-(Pyridin-2-yl)pyridinium trifluoromethanesulfonate

Ryosuke Abe,^a Tsugiko Takase^b and Dai Oyama^{c*}

^aGraduate School of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, ^bInstitute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and ^cDepartment of Industrial Systems Engineering, Cluster of Science and Engineering, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan. *Correspondence e-mail: daio@sss.fukushima-u.ac.jp

Although in the title salt, $C_{10}H_9N_2^+ \cdot CF_3SO_3^-$, the C–C and C–N bond lengths within the aromatic rings are normal, there is a considerable difference in the C–N–C angles at the protonated and unprotonated N atoms, *viz.* 123.42 (10) and 117.10 (11)°, respectively. Bifurcated N–H···X (X = N or O) hydrogen bonds form within the cation and between cation and anion. As a result, the cation exists in a *cis* conformation in the solid state. An obvious π – π contact is also present between the non-protonated pyridyl rings of neighbouring cations.

Structure description

2,2'-Bipyridine (bpy) and its derivatives not only play important roles in the formation of numerous metal complexes but are also useful model compounds for dinitrogen proton sponges such as 1,8-bis(dimethylamino)naphthalene (DMAN) (Howard, 1996). Since the first report of the monoprotonated bipyridinium cation (bpyH⁺) by Lipkowski *et al.* (1976), several crystal structures of bpyH⁺ compounds having simple counter-anions such as CIO_4^- (Kavitha *et al.*, 2005), PF_6^- (Kraus & Breu, 2002) and BPh_4^- (Bakshi *et al.*, 1996) have been described. To the best of our knowledge, however, no structural characterization of the bpyH⁺ cation with a trifluoromethanesulfonate (OTf⁻) counter-anion has been reported.

The cation in the title salt, $(C_{10}H_9N_2^+)(CF_3SO_3^-)$, comprises the protonated ring 1 (N1/C1–C5) and the non-protonated ring 2 (N2/C6–C10) (Fig. 1). These rings are approximately parallel to each other, making a dihedral angle of 15.967 (4)°, similar to previous reports (Milani *et al.*, 1997; Kraus & Breu, 2002; Kavitha *et al.*, 2005). The deviation from planarity is considered to be caused by intramolecular (N1–H1···N2) and intermolecular hydrogen-bonding interactions (N1–H1···O1, C1–H2···O2;

Figure 1

The structures of the molecular components in the title salt, with atom labels and displacement ellipsoids for non-H atoms drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Table 1). The hydrogen bond involving the protonated nitrogen atom N1 is bifurcated. It is connected with both intra- and intermolecular N-H···X (X = N or O) interactions and leads to a *cis* conformation in the cation. Although the C-C and C–N bond lengths within the aromatic rings are normal, bond angles around the two N atoms are different. The C-N-C angle in ring 1 is $123.42 (10)^\circ$, whereas in ring 2 it is 117.10 (11)°, in agreement with structural data for other monovalent bipyridinium cations reported so far. The protonation is associated with an increase in the C-N-C angle as the result of the strong s-electron-withdrawing effect of the proton. The N1-H1 bond length [0.906 (15) Å] is somewhat longer than the previously reported value [0.827 (18) A; Kraus & Breu, 2002]. This may be due to the difference of the counter-anions. In addition, the distance between two N atoms $(N1 \cdots N2)$ in the bpyH⁺ cation is 2.6556 (15) Å, which is shorter than the corresponding N···N distance in protonated 1,10-phenanthroline (phen) in the structure of (phenH⁺)(BPh₄⁻), 2.709 (6) Å (Bakshi et al., 1996). Although the N1-H1···N2 angle of 105.0 (11)° looks unfavourable even for a branched hydrogen bond, this interaction must be important. As a result, the intramolecular interaction may be strong enough to bend and thus reduce the $N \cdots N$ distance.

An obvious $\pi - \pi$ contact is also revealed $[Cg2\cdots Cg2^{ii} = 3.7416 (8) \text{ Å}; Cg2$ is the centroid of ring 2; symmetry code: (ii)

Figure 2

Overall packing of the compound viewed along b. Hydrogen bonds are drawn as blue dashed lines, representative π - π contacts as green dotted lines (for numerical values see Table 1). Ring centroids are shown as coloured spheres.

 Table 1

 Hydrogen-bond geometry (Å, °).

$\overline{D - \mathbf{H} \cdot \cdot \cdot A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N1-H101	0.906 (15)	2,054 (15)	2,8705 (13)	149.3 (13)
$N1 - H1 \cdots N2$	0.906 (15)	2.273 (15)	2.6556 (15)	105.0 (11)
$C1 - H2 \cdot \cdot \cdot O2$	0.954 (15)	2.299 (15)	3.2072 (14)	159.0 (13)
$C4-H5\cdotsO1^{1}$	0.910 (15)	2.561 (15)	3.3822 (14)	150.3 (13)

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{10}H_9N_2^+ \cdot CF_3O_3S^-$
M _r	306.26
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	93
a, b, c (Å)	7.37174 (13), 12.5726 (3), 26.4454 (5)
$V(Å^3)$	2451.02 (8)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.31
Crystal size (mm)	$0.22\times0.20\times0.10$
Data collection	
Diffractometer	Rigaku Saturn70
Absorption correction	Multi-scan (<i>REQAB</i> ; Rigaku, 1998)
T_{\min}, T_{\max}	0.892, 0.969
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflection	23637, 2792, 2645
P	0.017
$\begin{pmatrix} \alpha_{\text{int}} \\ \alpha_{\text{int}} \end{pmatrix} \begin{pmatrix} \lambda^{-1} \\ \lambda^{-1} \end{pmatrix}$	0.640
$(\sin \theta/\lambda)_{\max}(\mathbf{A})$	0.049
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.028, 0.077, 1.04
No. of reflections	2792
No. of parameters	208
H-atom treatment	Only H-atom coordinates refined
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	0.55, -0.27

Computer programs: CrystalClear (Rigaku, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 $-x + \frac{1}{2}$, -y, $z + \frac{1}{2}$]. This contact clearly stacks molecules along the *a*-axis direction (Fig. 2).

Synthesis and crystallization

The title compound was synthesized according to the method of Milani *et al.* (1997). Single crystals suitable for X-ray analysis were obtained directly from reaction mixture.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

- Bakshi, P. K., Cameron, T. S. & Knop, O. (1996). Can. J. Chem. 74, 201–220.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Howard, S. T. (1996). J. Am. Chem. Soc. 118, 10269-10274.
- Kavitha, S. J., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, 0473–0474.
- Kraus, F. & Breu, J. (2002). Acta Cryst. C58, o254-o256.
- Lipkowski, J., Sgarabotto, P. & Andreetti, G. D. (1976). Cryst. Struct. Commun. 5, 931–934.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Milani, B., Anzilutti, A., Vicentini, L., Sessanta o Santi, A., Zangrando, E., Geremia, S. & Mestroni, G. (1997). *Organometallics*, **16**, 5064–5075.
- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). **2**, x170689 [https://doi.org/10.1107/S2414314617006897]

2-(Pyridin-2-yl)pyridinium trifluoromethanesulfonate

Ryosuke Abe, Tsugiko Takase and Dai Oyama

2-(Pyridin-2-yl)pyridinium trifluoromethanesulfonate

Crystal data $C_{10}H_9N_2^+ \cdot CF_3O_3S^-$ F(000) = 1248.00 $M_r = 306.26$ $D_{\rm x} = 1.660 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71075$ Å Orthorhombic, Pbca Hall symbol: -P 2ac 2ab Cell parameters from 22516 reflections $\theta = 3.2 - 27.5^{\circ}$ a = 7.37174 (13) Å $\mu = 0.31 \text{ mm}^{-1}$ b = 12.5726 (3) Å c = 26.4454(5) Å T = 93 KV = 2451.02 (8) Å³ Prism, yellow Z = 8 $0.22\times0.20\times0.10~mm$ Data collection Rigaku Saturn70 2792 independent reflections diffractometer 2645 reflections with $F^2 > 2.0\sigma(F^2)$ Detector resolution: 7.143 pixels mm⁻¹ $R_{\rm int} = 0.017$ $\theta_{\rm max} = 27.5^{\circ}$ ω scans $h = -9 \rightarrow 9$ Absorption correction: multi-scan (REQAB; Rigaku, 1998) $k = -16 \rightarrow 16$ $T_{\rm min} = 0.892, T_{\rm max} = 0.969$ $l = -33 \rightarrow 34$ 23637 measured reflections Refinement Refinement on F^2 Secondary atom site location: difference Fourier $R[F^2 > 2\sigma(F^2)] = 0.028$ map $wR(F^2) = 0.077$ Hydrogen site location: inferred from S = 1.04neighbouring sites 2792 reflections Only H-atom coordinates refined 208 parameters $w = 1/[\sigma^2(F_o^2) + (0.0413P)^2 + 1.2577P]$ 0 restraints where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factor (gt).

All H atoms were identified in a difference Fourier map and their positions refined freely with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.73669 (4)	-0.04002 (2)	0.591120 (10)	0.01655 (10)
F1	0.87891 (12)	0.14988 (6)	0.58423 (3)	0.03090 (19)
F2	1.02567 (11)	0.04361 (6)	0.63335 (3)	0.02992 (19)
F3	1.04474 (11)	0.02562 (6)	0.55249 (3)	0.02982 (19)
O1	0.62575 (11)	0.00477 (7)	0.63122 (3)	0.02162 (19)
O2	0.66074 (12)	-0.02773 (7)	0.54113 (3)	0.0240 (2)
O3	0.81362 (12)	-0.14243 (7)	0.60200 (3)	0.0244 (2)
N1	0.38986 (13)	0.17987 (8)	0.60824 (4)	0.0168 (2)
N2	0.36613 (15)	0.16588 (8)	0.70822 (4)	0.0233 (3)
C1	0.38861 (16)	0.16817 (9)	0.55786 (4)	0.0198 (3)
C2	0.30132 (17)	0.24209 (10)	0.52815 (4)	0.0215 (3)
C3	0.21711 (17)	0.32785 (10)	0.55133 (5)	0.0222 (3)
C4	0.21855 (16)	0.33665 (9)	0.60371 (5)	0.0201 (3)
C5	0.30751 (14)	0.26105 (9)	0.63239 (4)	0.0169 (3)
C6	0.31646 (15)	0.25954 (10)	0.68827 (4)	0.0192 (3)
C7	0.27456 (18)	0.34882 (11)	0.71704 (5)	0.0253 (3)
C8	0.2822 (2)	0.33986 (12)	0.76928 (5)	0.0300 (3)
C9	0.32996 (19)	0.24359 (12)	0.79048 (5)	0.0300 (3)
C10	0.3724 (2)	0.15936 (11)	0.75864 (5)	0.0286 (3)
C11	0.93188 (17)	0.04896 (9)	0.59007 (4)	0.0202 (3)
H1	0.450 (2)	0.1312 (12)	0.6272 (6)	0.0202*
H2	0.451 (2)	0.1073 (12)	0.5452 (6)	0.0238*
Н3	0.302 (2)	0.2305 (12)	0.4933 (6)	0.0258*
H4	0.156 (2)	0.3816 (13)	0.5318 (6)	0.0266*
Н5	0.159 (2)	0.3907 (12)	0.6195 (6)	0.0241*
H6	0.243 (3)	0.4154 (14)	0.7015 (6)	0.0303*
H7	0.259 (3)	0.4006 (14)	0.7890 (7)	0.0359*
H8	0.337 (3)	0.2359 (13)	0.8263 (7)	0.0360*
Н9	0.405 (3)	0.0867 (14)	0.7717 (6)	0.0343*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.01725 (15)	0.01533 (15)	0.01708 (15)	0.00033 (10)	0.00052 (10)	0.00012 (9)
0.0425 (5)	0.0156 (4)	0.0346 (5)	-0.0025 (4)	0.0017 (4)	0.0019 (3)
0.0273 (4)	0.0362 (5)	0.0262 (4)	-0.0049 (4)	-0.0077 (3)	-0.0036 (3)
0.0272 (4)	0.0338 (4)	0.0285 (4)	-0.0052 (3)	0.0110 (3)	-0.0019 (3)
0.0217 (4)	0.0236 (5)	0.0196 (4)	0.0039 (4)	0.0040 (4)	0.0014 (4)
0.0241 (5)	0.0279 (5)	0.0199 (5)	0.0020 (4)	-0.0043 (4)	-0.0039 (4)
0.0257 (5)	0.0157 (4)	0.0317 (5)	0.0023 (4)	0.0031 (4)	0.0029 (4)
0.0166 (5)	0.0174 (5)	0.0165 (5)	0.0004 (4)	0.0005 (4)	0.0013 (4)
0.0241 (5)	0.0272 (6)	0.0187 (5)	0.0023 (5)	0.0006 (4)	0.0016 (4)
0.0210 (6)	0.0198 (6)	0.0186 (6)	-0.0008 (5)	0.0027 (5)	-0.0007 (5)
0.0246 (6)	0.0240 (6)	0.0159 (6)	-0.0015 (5)	-0.0006 (5)	0.0006 (5)
0.0221 (6)	0.0220 (6)	0.0225 (6)	0.0010 (5)	-0.0054 (5)	0.0021 (5)
	U^{11} 0.01725 (15) 0.0425 (5) 0.0273 (4) 0.0272 (4) 0.0217 (4) 0.0241 (5) 0.0257 (5) 0.0166 (5) 0.0241 (5) 0.0241 (5) 0.0210 (6) 0.0246 (6) 0.0221 (6)	$\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.01725 (15) & 0.01533 (15) \\ \hline 0.0425 (5) & 0.0156 (4) \\ \hline 0.0273 (4) & 0.0362 (5) \\ \hline 0.0272 (4) & 0.0338 (4) \\ \hline 0.0217 (4) & 0.0236 (5) \\ \hline 0.0241 (5) & 0.0279 (5) \\ \hline 0.0257 (5) & 0.0157 (4) \\ \hline 0.0166 (5) & 0.0174 (5) \\ \hline 0.0241 (5) & 0.0272 (6) \\ \hline 0.0210 (6) & 0.0198 (6) \\ \hline 0.0224 (6) & 0.0220 (6) \\ \end{array}$	U^{11} U^{22} U^{33} $0.01725 (15)$ $0.01533 (15)$ $0.01708 (15)$ $0.0425 (5)$ $0.0156 (4)$ $0.0346 (5)$ $0.0273 (4)$ $0.0362 (5)$ $0.0262 (4)$ $0.0272 (4)$ $0.0338 (4)$ $0.0285 (4)$ $0.0217 (4)$ $0.0236 (5)$ $0.0196 (4)$ $0.0241 (5)$ $0.0279 (5)$ $0.0199 (5)$ $0.0257 (5)$ $0.0157 (4)$ $0.0317 (5)$ $0.0166 (5)$ $0.0174 (5)$ $0.0165 (5)$ $0.0241 (5)$ $0.0272 (6)$ $0.0187 (5)$ $0.0241 (5)$ $0.0272 (6)$ $0.0186 (6)$ $0.0241 (5)$ $0.0240 (6)$ $0.0159 (6)$ $0.0221 (6)$ $0.0220 (6)$ $0.0225 (6)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.01725 (15)$ $0.01533 (15)$ $0.01708 (15)$ $0.00033 (10)$ $0.00052 (10)$ $0.0425 (5)$ $0.0156 (4)$ $0.0346 (5)$ $-0.0025 (4)$ $0.0017 (4)$ $0.0273 (4)$ $0.0362 (5)$ $0.0262 (4)$ $-0.0049 (4)$ $-0.0077 (3)$ $0.0272 (4)$ $0.0338 (4)$ $0.0285 (4)$ $-0.0052 (3)$ $0.0110 (3)$ $0.0217 (4)$ $0.0236 (5)$ $0.0196 (4)$ $0.0039 (4)$ $0.0040 (4)$ $0.0217 (5)$ $0.0279 (5)$ $0.0199 (5)$ $0.0020 (4)$ $-0.0043 (4)$ $0.0257 (5)$ $0.0157 (4)$ $0.0317 (5)$ $0.0023 (4)$ $0.0031 (4)$ $0.0257 (5)$ $0.0174 (5)$ $0.0165 (5)$ $0.0004 (4)$ $0.0005 (4)$ $0.0241 (5)$ $0.0272 (6)$ $0.0187 (5)$ $0.0023 (5)$ $0.0006 (4)$ $0.0241 (5)$ $0.0272 (6)$ $0.0186 (6)$ $-0.0008 (5)$ $0.0027 (5)$ $0.0241 (5)$ $0.0272 (6)$ $0.0186 (6)$ $-0.0008 (5)$ $0.0027 (5)$ $0.0241 (6)$ $0.0220 (6)$ $0.0225 (6)$ $0.0010 (5)$ $-0.0054 (5)$

data reports

C4	0.0191 (6)	0.0195 (6)	0.0217 (6)	0.0029 (5)	-0.0014 (5)	$\begin{array}{c} -0.0024 \ (5) \\ -0.0011 \ (4) \\ -0.0010 \ (5) \\ -0.0035 \ (5) \\ -0.0084 \ (6) \\ -0.0010 \ (6) \\ 0.0040 \ (5) \end{array}$
C5	0.0135 (5)	0.0189 (5)	0.0182 (5)	-0.0011 (4)	0.0003 (4)	
C6	0.0151 (5)	0.0248 (6)	0.0178 (6)	-0.0002 (5)	0.0005 (4)	
C7	0.0262 (7)	0.0277 (7)	0.0219 (6)	0.0028 (5)	-0.0006 (5)	
C8	0.0317 (8)	0.0368 (8)	0.0213 (6)	0.0036 (6)	-0.0004 (5)	
C9	0.0303 (7)	0.0438 (8)	0.0161 (6)	0.0004 (6)	-0.0000 (5)	
C10	0.0316 (7)	0.0343 (7)	0.0199 (6)	0.0023 (6)	-0.0009 (5)	
C10	0.0316 (7)	0.0343 (7)	0.0199 (6)	0.0023 (6)	-0.0009 (5)	0.0040 (5)
C11	0.0228 (6)	0.0190 (6)	0.0189 (6)	-0.0018 (5)	0.0007 (5)	-0.0006 (4)

Geometric parameters (Å, °)

S1—O1	1.4528 (9)	C5—C6	1.4794 (15)
S1—O2	1.4440 (9)	C6—C7	1.3908 (19)
S1—O3	1.4360 (10)	C7—C8	1.3872 (19)
S1—C11	1.8228 (13)	C8—C9	1.380 (2)
F1—C11	1.3365 (14)	C9—C10	1.389 (2)
F2—C11	1.3389 (14)	N1—H1	0.906 (15)
F3—C11	1.3289 (14)	C1—H2	0.954 (15)
N1—C1	1.3404 (15)	С2—Н3	0.934 (16)
N1—C5	1.3484 (15)	С3—Н4	0.962 (16)
N2—C6	1.3413 (16)	C4—H5	0.911 (15)
N2-C10	1.3367 (17)	С7—Н6	0.961 (17)
C1—C2	1.3766 (17)	С8—Н7	0.940 (17)
C2—C3	1.3870 (18)	С9—Н8	0.953 (19)
C3—C4	1.3897 (19)	С10—Н9	1.006 (17)
C4—C5	1.3816 (17)		
F1…O1	2.8906 (12)	F1…H3 ⁱⁱ	2.605 (16)
F1…O2	2.9786 (12)	F1…H4 ⁱⁱ	3.503 (16)
F2…O1	2.9888 (12)	F1…H8 ^{iv}	2.620 (18)
F2…O3	2.9329 (12)	F2…H1 ⁱⁱⁱ	3.318 (15)
F3…O2	2.9246 (12)	F2···H5 ^v	3.040 (15)
F3…O3	3.0135 (12)	F2···H6 ^v	2.956 (17)
N1…N2	2.6556 (15)	F2…H7 ^{viii}	3.443 (17)
N1…C3	2.7108 (17)	F2…H8 ^{iv}	2.986 (17)
N2…C8	2.7883 (18)	F2…H9 ^{iv}	2.719 (17)
C1…C4	2.7439 (17)	F3…H2 ⁱⁱⁱ	3.173 (16)
C2…C5	2.7673 (15)	F3…H3 ⁱⁱⁱ	3.561 (16)
C4…C7	3.0292 (19)	F3…H4 ^v	2.905 (16)
C6…C9	2.7122 (17)	F3····H5 ^v	3.286 (15)
C7…C10	2.721 (2)	O1…H1	2.054 (15)
F1···O3 ⁱ	3.0089 (12)	O1…H2	2.914 (15)
F1…C2 ⁱⁱ	3.3173 (14)	O1····H5 ^{vii}	2.560 (15)
F1····C3 ⁱⁱⁱ	3.4611 (15)	O1…H6 ^{vii}	3.481 (17)
F1····C4 ⁱⁱⁱ	3.4710 (15)	O1…H7 ^{viii}	2.626 (17)
F1····C9 ^{iv}	3.5351 (16)	O1…H8 ^{viii}	3.572 (17)
F2…N1 ⁱⁱⁱ	3.2532 (13)	O1…H8 ^{iv}	3.485 (17)
F2…N2 ⁱⁱⁱ	3.5472 (14)	O1…H9 ^{iv}	3.448 (17)

F2····C4 ^v	3.3076 (14)	O2…H1	3.404 (15)
F2····C5 ⁱⁱⁱ	3.4338 (14)	O2…H2	2.298 (16)
F2····C9 ^{iv}	3.5300 (17)	O2…H2 ^{ix}	2.626 (15)
F2…C10 ^{iv}	3.3991 (16)	O2…H3 ^{ix}	2.721 (16)
F3…F3 ^{vi}	2.9253 (12)	O2…H4 ^{vii}	2.611 (16)
F3…O2 ^{vi}	3.2931 (12)	O2…H4 ⁱⁱ	2.664 (16)
F3…N1 ⁱⁱⁱ	3.5224 (13)	O2····H5 ^{vii}	3.301 (15)
F3…C1 ⁱⁱⁱ	3.1077 (14)	O3…H1 ^v	3.404 (15)
F3…C2 ⁱⁱⁱ	3.3762 (15)	O3····H3 ^{ix}	2.881 (16)
F3…C3 ^v	3.0439 (15)	O3····H5 ^{vii}	3.538 (15)
F3····C4 ^v	3.2441 (15)	O3…H7 ^{viii}	2.982 (17)
O1…N1	2.8705 (13)	O3…H8 ^{viii}	2.678 (18)
O1…N2	3.4514 (14)	N2…H6 ^{vii}	3.255 (17)
01···C1	3.3227 (14)	N2…H9 ^{xiii}	3.583 (17)
O1····C4 ^{vii}	3.3821 (15)	C1····H3 ⁱⁱ	3.568 (16)
O1····C8 ^{viii}	3.4180 (17)	C1····H4 ⁱⁱ	3.147 (16)
O2···F3 ^{vi}	3.2931 (12)	C2····H4 ⁱⁱ	3.431 (16)
$\Omega^2 \cdots \Omega^2^{ix}$	3.2916 (12)	C3···H2 ^{xi}	3.320 (15)
02···C1	3.2072 (15)	C3···H3 ^{xi}	3.362 (16)
O2···C1 ^{ix}	3,1785 (14)	C4···H8 ^{xiii}	3.596 (18)
O2····C2 ^{ix}	3.2708 (15)	C6···H8 ^{xiii}	3.565 (18)
02C3 ^{vii}	3.3359 (16)	C7···H9 ^{xii}	3.575 (17)
O2…C3 ⁱⁱ	3.5308 (16)	C8···H9 ^{xii}	3.396 (17)
03…F1 ^v	3.0089 (12)	C10····H6 ^{vii}	3.524 (17)
O3…N1 ^v	3,1300 (14)	C10····H7 ^{vii}	3.487 (18)
O3···C1 ^v	3.4426 (15)	C11····H8 ^{iv}	3.302 (18)
O3···C4 ^v	3,4590 (15)	H1···S1	3.165 (15)
03···C5 ^v	3.1494 (14)	H1···F1	3.370 (15)
O3…C8 ^{viii}	3.4837 (16)	H1···F2 ^x	3.318 (15)
O3…C9 ^{viii}	3.3554 (16)	H1···O1	2.054 (15)
N1…F2 ^x	3.2532 (13)	H1···O2	3.404 (15)
N1···F3×	3.5224 (13)	H1···O3 ⁱ	3.404 (15)
N1…O1	2.8705 (13)	H1····H5 ^{vii}	3.13 (2)
N1O3 ⁱ	3.1300 (14)	H1…H8 ^{iv}	3.38 (3)
N2…F2 ^x	3.5472 (14)	H2…S1	3.055 (15)
N2…O1	3.4514 (14)	H2…F1	3.361 (16)
N2····C9 ^{iv}	3.5562 (18)	H2…F3 ^x	3.173 (16)
C1···F3 ^x	3.1077 (14)	H2…O1	2.914 (15)
C1…O1	3.3227 (14)	H2···O2	2.298 (16)
C1…O2	3.2072 (15)	H2···O2 ^{ix}	2.626 (15)
C1···O2 ^{ix}	3,1785 (14)	H2···C3 ⁱⁱ	3.320 (15)
C1···O3 ⁱ	3.4426 (15)	H2···H3 ⁱⁱ	3.45 (3)
C2···F1 ^{xi}	3,3173 (14)	H2…H4 ^{vii}	2.97 (3)
C2…F3 ^x	3.3762 (15)	H2…H4 ⁱⁱ	2.54 (3)
C2…O2 ^{ix}	3.2708 (15)	H2…H5 ^{vii}	3.45 (3)
C3···F1×	3.4611 (15)	H3····S1 ^{ix}	3.286 (16)
C3…F3 ⁱ	3.0439 (15)	H3…F1 ^{xi}	2.605 (16)
C3…O2 ^{xii}	3.3359 (16)	H3…F3 ^x	3.561 (16)
	× /		\ ' /

C3····O2 ^{xi}	3.5308 (16)	H3…O2 ^{ix}	2.721 (16)
C4…F1 ^x	3.4710 (15)	H3····O3 ^{ix}	2.881 (16)
C4···F2 ⁱ	3.3076 (14)	H3…C1 ^{xi}	3.568 (16)
C4…F3 ⁱ	3.2441 (15)	H3····C3 ⁱⁱ	3.362 (16)
C4…O1 ^{xii}	3.3822 (15)	H3…H2 ^{xi}	3.45 (3)
C4…O3 ⁱ	3.4590 (15)	H3…H4 ⁱⁱ	3.04 (3)
C5···F2 ^x	3.4338 (14)	H4…S1 ^{xii}	3.438 (16)
C5…O3 ⁱ	3.1494 (14)	H4…F1 ^{xi}	3.503 (16)
C7…C9 ^{xiii}	3.540 (2)	H4…F3 ⁱ	2.905 (16)
C8…O1 ^{xiv}	3.4180 (17)	H4…O2 ^{xii}	2.611 (16)
C8····O3 ^{xiv}	3.4837 (16)	H4…O2 ^{xi}	2.664 (16)
C9…F1 ^{xiii}	3.5351 (16)	H4…C1 ^{xi}	3.147 (16)
C9…F2 ^{xiii}	3.5300 (17)	H4…C2 ^{xi}	3.431 (16)
C9O3 ^{xiv}	3.3554 (16)	H4…H2 ^{xii}	2.97 (3)
C9…N2 ^{xiii}	3.5562 (18)	H4…H2 ^{xi}	2.54 (3)
C9····C7 ^{iv}	3.540 (2)	H4····H3 ^{xi}	3.04 (3)
C10…F2 ^{xiii}	3.3991 (16)	H5…S1 ^{xii}	3.134 (15)
N1…H3	3.173 (16)	H5…F2 ⁱ	3.040 (15)
N1…H5	3.165 (15)	H5…F3 ⁱ	3.286 (15)
N2…H1	2.273 (15)	H5…O1 ^{xii}	2.560 (15)
N2…H6	3.271 (17)	H5…O2 ^{xii}	3.301 (15)
N2…H8	3.251 (19)	H5…O3 ^{xii}	3.538 (15)
C1…H4	3.257 (16)	H5…H1 ^{xii}	3.13 (2)
С2…Н1	3.162 (15)	H5…H2 ^{xii}	3.45 (3)
С2…Н5	3.230 (16)	H5…H8 ^{xiii}	3.38 (3)
С3…Н2	3.270 (16)	H6…F2 ⁱ	2.956 (17)
C4…H1	3.157 (15)	H6…O1 ^{xii}	3.481 (17)
С4…Н3	3.269 (16)	H6…N2 ^{xii}	3.255 (17)
С4…Н6	2.774 (16)	H6…C10 ^{xii}	3.524 (17)
С5…Н2	3.189 (15)	H6…H7 ^{xiii}	3.59 (3)
С5…Н4	3.259 (16)	H6…H9 ^{xii}	3.05 (3)
С5…Н6	2.707 (17)	H6…H9 ^{xiv}	3.44 (3)
С6…Н1	2.486 (15)	H7…S1 ^{xiv}	3.258 (17)
С6…Н5	2.716 (15)	H7…F2 ^{xiv}	3.443 (17)
С6…Н7	3.227 (17)	H7…O1 ^{xiv}	2.626 (17)
С6…Н9	3.165 (17)	H7…O3 ^{xiv}	2.982 (17)
С7…Н5	2.767 (16)	H7…C10 ^{xii}	3.487 (18)
С7…Н8	3.252 (18)	H7…H6 ^{iv}	3.59 (3)
С8…Н9	3.310 (17)	H7…H9 ^{xii}	2.67 (3)
С9…Н6	3.259 (17)	H8…F1 ^{xiii}	2.620 (18)
C10…H1	3.541 (15)	H8…F2 ^{xiii}	2.986 (17)
С10…Н7	3.247 (18)	H8…O1 ^{xiv}	3.572 (17)
H1…H2	2.19 (2)	H8…O1 ^{xiii}	3.485 (17)
Н2…Н3	2.34 (3)	H8····O3 ^{xiv}	2.678 (18)
Н3…Н4	2.41 (3)	H8…C4 ^{iv}	3.596 (18)
H4…H5	2.32 (3)	H8…C6 ^{iv}	3.565 (18)
Н5…Н6	2.28 (3)	H8…C11 ^{xiii}	3.302 (18)
Н6…Н7	2.32 (3)	H8…H1 ^{xiii}	3.38 (3)

H7…H8	2.37 (3)	H8····H5 ^{iv}	3.38 (3)
H8…H9	2.42 (3)	H9····F2 ^{xiii}	2.719 (17)
S1…H1	3.165 (15)	H9…O1 ^{xiii}	3.448 (17)
S1…H2	3.055 (15)	H9…N2 ^{iv}	3.583 (17)
S1…H3 ^{ix}	3.286 (16)	H9····C7 ^{vii}	3.575 (17)
S1…H4 ^{vii}	3.438 (16)	H9····C8 ^{vii}	3.396 (17)
S1…H5 ^{vii}	3.134 (15)	H9····H6 ^{vii}	3.05 (3)
S1…H7 ^{viii}	3.258 (17)	H9····H6 ^{viii}	3.44 (3)
F1…H1	3.370 (15)	H9···H7 ^{vii}	2.67 (3)
F1…H2	3.361 (16)		()
O1—S1—O2	114.11 (5)	S1—C11—F2	111.33 (8)
01—81—03	115.06 (5)	S1—C11—F3	111.72 (8)
O1—S1—C11	102.57 (5)	F1—C11—F2	107.30 (9)
02-81-03	115.63 (5)	F1—C11—F3	107.83 (9)
02—S1—C11	103.09 (5)	F2—C11—F3	107.75 (10)
03— <u>81</u> — <u>C11</u>	103.98 (6)	C1—N1—H1	118.6 (10)
C1 - N1 - C5	12342(10)	C5—N1—H1	118.0(10)
C6-N2-C10	117 10 (11)	N1-C1-H2	115.7 (9)
N1 - C1 - C2	119 76 (11)	$C^2 - C^1 - H^2$	124 6 (9)
C1 - C2 - C3	118 80 (11)	C1-C2-H3	127.0(9)
$C_{2} - C_{3} - C_{4}$	119.94 (12)	C3-C2-H3	124.0(10)
C_{3} C_{4} C_{5}	119.54 (12)	$C^{2}-C^{3}-H^{4}$	121.0(10) 121.2(10)
N1 - C5 - C4	118.32 (11)	C4 - C3 - H4	121.2(10) 118.9(10)
N1 - C5 - C6	116.32 (11)	C3-C4-H5	120.9(10)
C4-C5-C6	125 34 (11)	C5-C4-H5	120.9(10) 119.4(10)
$N_{2} - C_{6} - C_{5}$	114 61 (11)	C6-C7-H6	121.5(10)
$N_2 = C_6 = C_7$	123 64 (11)	C8-C7-H6	121.5(10) 120.5(10)
C_{5}	123.04(11) 121.75(11)	C7 - C8 - H7	120.5(10) 1185(11)
$C_{0}^{-} = C_{0}^{-} = C_{1}^{-}$	121.75(11) 118.05(13)	$C_{9} - C_{8} - H_{7}$	110.3(11) 122 3(11)
C_{7} C_{8} C_{9}	110.05(13) 110.10(13)	C_{8} C_{9} H8	122.3(11) 120.4(10)
$C_{1}^{2} = C_{2}^{2} = C_{3}^{2}$	119.10 (13)	$C_{0} = C_{0} = H_{0}$	120.4(10) 120.8(10)
$N_{2} = C_{10} = C_{10}$	110.09(13) 123.39(13)	$N_2 C_{10} H_9$	120.3(10) 114.0(10)
112 - C10 - C9	123.39(13) 110.72(0)	$C_{0} = C_{10} = H_{0}$	114.0(10) 122.6(10)
51-011-11	110.72 (9)	09-010-119	122.0 (10)
01 - 81 - C11 - F1	-54.89(8)	N1 - C1 - C2 - C3	0.38(17)
01 - 81 - C11 - F2	64 39 (8)	C1 - C2 - C3 - C4	-140(18)
01 - 81 - C11 - F3	-17508(7)	$C^{2}-C^{3}-C^{4}-C^{5}$	1 45 (18)
02-81-C11-F1	63 90 (8)	C_{3} C_{4} C_{5} N_{1}	-0.46(16)
02 - 81 - C11 - F2	-176.82(7)	C_{3} C_{4} C_{5} C_{6}	-17867(10)
02 - 81 - C11 - F3	-56.30(9)	N1 - C5 - C6 - N2	-1539(14)
03 - 81 - C11 - F1	-17507(7)	N1 - C5 - C6 - C7	165 14 (9)
03 - 81 - C11 - F2	-55.79(8)	C4-C5-C6-N2	163.14(0) 162.84(10)
03 - S1 - C11 - F3	64 73 (8)	C4 - C5 - C6 - C7	-16.62(17)
C1 - N1 - C5 - C4	-0.60 (16)	N_{2} C_{6} C_{7} C_{8}	-0.03(18)
C1 = N1 = C5 = C6	177 77 (9)	$112 \ 00 \ 07 \ 00$	178 48 (10)
$C_{5}N_{1}C_{1}C_{2}$	0.64(17)	$C_{6} = C_{7} = C_{8} = C_{9}$	
$C_{1} = C_{1} = C_{1} = C_{2}$	0.07(17)	$C_{7} = C_{8} = C_{9} = C_{10}$	0.23(17)
CU-112-CIU-C9	0.20 (19)	U/U9U10	1.3 (2)

C10—N2—C6—C5	-178.50 (10)	C8—C9—C10—N2	-1.3 (3)
C10—N2—C6—C7	0.95 (17)		

Symmetry codes: (i) -*x*+3/2, *y*+1/2, *z*; (ii) *x*+1/2, -*y*+1/2, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) *x*+1/2, *y*, -*z*+3/2; (v) -*x*+3/2, *y*-1/2, *z*; (vi) -*x*+2, -*y*, -*z*+1; (vii) -*x*+1/2, *y*-1/2, *z*; (viii) -*x*+1, *y*-1/2, -*z*+3/2; (ix) -*x*+1, -*y*, -*z*+1; (x) *x*-1, *y*, *z*; (xi) *x*-1/2, -*y*+1/2, -*z*+1; (xii) -*x*+1/2, *y*+1/2, *z*; (xiii) *x*-1/2, *y*, -*z*+3/2; (xiv) -*x*+1, *y*+1/2, -*z*+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H…A
N1—H1…O1	0.906 (15)	2.054 (15)	2.8705 (13)	149.3 (13)
N1—H1…N2	0.906 (15)	2.273 (15)	2.6556 (15)	105.0 (11)
C1—H2···O2	0.954 (15)	2.299 (15)	3.2072 (14)	159.0 (13)
C4—H5···O1 ^{xii}	0.910 (15)	2.561 (15)	3.3822 (14)	150.3 (13)

Symmetry code: (xii) –*x*+1/2, *y*+1/2, *z*.