

ISSN 2414-3146

Received 5 May 2017 Accepted 9 May 2017

Edited by O. Blacque, University of Zürich, Switzerland

Keywords: crystal structure; dihydrobenzothiazine; hydrogen bond; micelle.

CCDC reference: 1548928

Structural data: full structural data are available from iucrdata.iucr.org

(2*Z*)-2-Benzylidene-4-octadecyl-3,4-dihydro-2*H*-1,4-benzothiazin-3-one

Nada Kheira Sebbar,^a Mohamed Ellouz,^a* Sanae Lahmidi,^a Fouzia Hlimi,^a El Mokhtar Essassi^a and Joel T. Mague^b

^aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de, Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA. *Correspondence e-mail: ellouz.chimie@gmail.com

The octadecyl chain in the title compound, $C_{33}H_{47}NOS$, is in the 'fully extended' conformation. A puckering analysis of the thiazine ring was performed. The molecules form micellar blocks in the crystal by intercalation of the extended octadecyl chains and association of the dihydro benzothiazine units through $C-H\cdots O$ hydrogen bonds. These blocks are associated through intercalation of the pendant phenyl groups which reside on the outer edges of each block.

Structure description

1,4-Benzothiazine derivatives constitute an important class of heterocyclic compounds which, even when part of a complex molecule, possess a wide spectrum of biological activities (Sebbar *et al.*, 2016*a*; Gupta *et al.*, 2009). Several sulfur- and nitrogen-containing heterocycles have been well studied and various 1,4-benzothiazine derivatives have been synthesized by several methods (Dixit *et al.*, 2008, 2009). Benzothiazines have found widespread application as antibacterial (Armenise *et al.*, 2012; Sabatini *et al.*, 2008), analgesic (Warren *et al.*, 1987), anticancer (Jacquot *et al.*, 2001) and anticonvulsant (Kalluraya *et al.*, 2005) agents. As a continuation of our research work devoted to the development of N-substituted benzothiazine derivatives and evaluating their potential pharmacological activities, we have studied the condensation reaction of 1-bromooctadecane with (*E*)-2-(benzylidene)-3,4-dihydro-2*H*-1,4-benzothiazin-3-one under phase-transfer catalysis conditions using tetra-*n*-butylammonium bromide (TBAB) as catalyst and potassium carbonate as base (Sebbar *et al.*, 2016*b*, Sebbar *et al.*, 2014; Ellouz *et al.*, 2016). The crystal structure of the compound obtained is reported in this work (Fig. 1). In the title compound, the octadecyl chain is in the 'fully extended' conformation.

In the title compound, the octadecyl chain is in the 'fully extended' conformation. A Cremer-Pople puckering analysis of the six-membered heterocyclic ring gave the

The title molecule with the labelling scheme and 50% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines.

parameters Q = 0.443 (1) Å, $\theta = 109.7$ (2)° and $\varphi = 154.3$ (2)°. The pendant phenyl ring is rotationally disordered over two sites having approximately equal occupancy about the C9– C10 bond by 41.1 (2)°. The dihedral angle between the C10– C15 and the C1–C6 rings is 58.4 (1)° while that for the other component (C10A–C15A) is 32.9 (1)°. Intramolecular C– H···O and C–H···S interactions occur (Table 1 and Fig. 1).

In the crystal, the molecules form micellar blocks through intercalation of the octadecyl chains and association of the polar head groups along the *c*-axis direction through C3– $H3\cdots O1$ hydrogen bonds (Table 2 and Fig. 2). These blocks are associated through intercalation of the pendant phenyl rings, which reside on the outer edges of each block (Fig. 2).

Synthesis and crystallization

To a solution of 2-(benzylidene)-3,4-dihydro-2H-1,4-benzo-thiazin-3-one (0.5 g, 2 mmol), potassium carbonate (0.55 g,

Figure 2 The packing of the title molecule, viewed along the *b*-axis direction, with $C-H\cdots O$ hydrogen bonds shown as dashed lines.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3\cdots O1^{i}$	0.95 (2)	2.40 (2)	3.298 (2)	158.0 (18)
C9−H9···O1	0.97 (2)	2.367 (19)	2.769 (2)	104.1 (13)
$C11-H11\cdots S1$	0.95	2.58	3.225 (2)	126
C16−H16B···O1	0.97(2)	2.17 (2)	2.679 (2)	111.3 (15)

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

4 mmol) and tetra-*n*-butyl ammonium bromide (0.064 g, 0.2 mmol) in DMF (15 ml) was added 1-bromooctadecane (1.33 g, 4 mmol). Stirring was continued at room temperature for 12 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate-hexane (9/1) as eluent. The solid product was purified by recrystallization from ethanol solution to afford colourless crystals in 63% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The pendant phenyl ring is rotationally disordered over two sites having approximately equal occupancy [ratio 0.503 (4):0.497 (4)]. The two components were refined as rigid hexagons with the attached hydrogen atoms in idealized positions.

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Armenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407–416.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dixit, Y., Dixit, R., Gautam, N. & Gautam, D. C. (2008). *E-J. Chem.* 5, 1063–1068.
- Dixit, Y., Dixit, R., Gautam, N. & Gautam, D. C. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 998–1006.
- Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016). *IUCr Data*, **1**, x160764.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	C ₃₃ H ₄₇ NOS
Mr	505.77
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	33.8411 (7), 4.7106 (1), 18.0987 (4)
β (°)	90.470 (1)
$V(\dot{A}^3)$	2885.05 (11)
Z	4
Radiation type	Cu Ka
$\mu (\mathrm{mm}^{-1})$	1.17
Crystal size (mm)	$0.24 \times 0.11 \times 0.03$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
Tmine Tmax	0.81, 0.97
No. of measured, independent and	21375, 5792, 4927
observed $[I > 2\sigma(I)]$ reflections	, ,
R _{int}	0.040
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.120, 1.06
No. of reflections	5792
No. of parameters	524
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.34, -0.46

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

- Gupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). *Jordanian J. Chem.* 4, 209–221.
- Jacquot, Y., Bermont, L., Giorgi, H., Refouvelet, B. L., Adessi, G., Daubrosse, E. & Xicluna, A. (2001). *Eur. J. Med. Chem.* 36, 127– 136.
- Kalluraya, B., Chimbalkar, R. M. & Hegde, J. C. (2005). Indian J. Heterocycl. Chem. 15, 15–18.
- Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.
- Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). *IUCr Data*, **1**, x161012.
- Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845–6862.
- Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o614.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411-415.

full crystallographic data

IUCrData (2017). **2**, x170695 [https://doi.org/10.1107/S2414314617006952]

(2Z)-2-Benzylidene-4-octadecyl-3,4-dihydro-2H-1,4-benzothiazin-3-one

Nada Kheira Sebbar, Mohamed Ellouz, Sanae Lahmidi, Fouzia Hlimi, El Mokhtar Essassi and Joel T. Mague

(2Z)-2-Benzylidene-4-octadecyl-3,4-dihydro-2H-1,4-benzothiazin-3-one

C ₃₃ H ₄₇ NOS	F(000) = 1104
$M_r = 505.77$	$D_{\rm x} = 1.164 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Cu $K\alpha$ radiation, $\lambda = 1.54178$ Å
a = 33.8411 (7) Å	Cell parameters from 9991 reflections
b = 4.7106(1) Å	$\theta = 2.6-74.7^{\circ}$
c = 18.0987 (4) Å	$\mu = 1.17 \text{ mm}^{-1}$
$\beta = 90.470 \ (1)^{\circ}$	T = 150 K
$V = 2885.05 (11) \text{ Å}^3$	Plate, colourless
Z = 4	$0.24 \times 0.11 \times 0.03 \text{ mm}$
Data collection	
Bruker D8 VENTURE PHOTON 100 CMOS	$T_{\rm min} = 0.81, \ T_{\rm max} = 0.97$
diffractometer	21375 measured reflections
Radiation source: INCOATEC IµS micro-focus	5792 independent reflections
source	4927 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.040$
Detector resolution: 10.4167 pixels mm ⁻¹	$\theta_{\rm max} = 74.7^{\circ}, \theta_{\rm min} = 2.6^{\circ}$
ω scans	$h = -42 \rightarrow 42$
Absorption correction: multi-scan	$k = -5 \rightarrow 5$
(SADABS; Bruker, 2016)	$l = -21 \rightarrow 22$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: mixed
$wR(F^2) = 0.120$	H atoms treated by a mixture of independent
<i>S</i> = 1.06	and constrained refinement
5792 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0511P)^2 + 1.3651P]$
524 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Special details

Crystal data

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The pendant phenyl ring is rotationally disordered over two sites having approximately equal occupancies. The two components were refined as rigid hexagons with the attached hydrogen atoms in idealized positions.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.10593 (2)	0.77362 (9)	0.55251 (2)	0.03197 (13)	
01	0.17114 (4)	0.2595 (3)	0.43940 (7)	0.0463 (4)	
N1	0.17320 (4)	0.3357 (3)	0.56293 (7)	0.0261 (3)	
C1	0.15506 (4)	0.4140 (3)	0.63057 (8)	0.0245 (3)	
C2	0.16804 (5)	0.2944 (4)	0.69743 (9)	0.0295 (3)	
H2	0.1873 (6)	0.151 (4)	0.6974 (10)	0.033 (5)*	
C3	0.15261 (5)	0.3838 (4)	0.76417 (9)	0.0348 (4)	
Н3	0.1623 (6)	0.303 (5)	0.8089 (12)	0.047 (6)*	
C4	0.12362 (5)	0.5891 (4)	0.76594 (10)	0.0358 (4)	
H4	0.1125 (7)	0.651 (5)	0.8107 (13)	0.051 (6)*	
C5	0.10945 (5)	0.7024 (4)	0.70018 (10)	0.0339 (4)	
Н5	0.0881 (6)	0.846 (5)	0.7002 (11)	0.040 (5)*	
C6	0.12506 (4)	0.6157 (3)	0.63291 (9)	0.0270 (3)	
C7	0.11658 (4)	0.5095 (4)	0.48802 (9)	0.0273 (3)	
C8	0.15556 (5)	0.3606 (4)	0.49388 (9)	0.0302 (4)	
C9	0.09375 (5)	0.4468 (4)	0.42866 (9)	0.0291 (3)	
H9	0.1057 (6)	0.313 (4)	0.3946 (10)	0.032 (5)*	
C10	0.05477 (6)	0.5456 (5)	0.40246 (18)	0.031 (2)	0.503 (4)
C11	0.03828 (7)	0.7998 (5)	0.42615 (15)	0.0306 (9)	0.503 (4)
H11	0.0532	0.9248	0.4566	0.037*	0.503 (4)
C12	-0.00007 (7)	0.8709 (5)	0.40525 (15)	0.0349 (9)	0.503 (4)
H12	-0.0113	1.0446	0.4214	0.042*	0.503 (4)
C13	-0.02194 (6)	0.6879 (6)	0.36066 (17)	0.036 (2)	0.503 (4)
H13	-0.0482	0.7366	0.3464	0.043*	0.503 (4)
C14	-0.00545 (9)	0.4338 (6)	0.3370 (2)	0.0456 (12)	0.503 (4)
H14	-0.0204	0.3088	0.3065	0.055*	0.503 (4)
C15	0.03290 (9)	0.3627 (5)	0.3579 (2)	0.0388 (10)	0.503 (4)
H15	0.0442	0.1890	0.3417	0.047*	0.503 (4)
C10A	0.05253 (6)	0.5378 (6)	0.41016 (14)	0.0224 (19)	0.497 (4)
C11A	0.02588 (7)	0.6580 (6)	0.45914 (11)	0.0300 (9)	0.497 (4)
H11A	0.0339	0.6986	0.5085	0.036*	0.497 (4)
C12A	-0.01246 (6)	0.7186 (6)	0.43597 (13)	0.0313 (9)	0.497 (4)
H12A	-0.0307	0.8006	0.4694	0.038*	0.497 (4)
C13A	-0.02416 (6)	0.6590 (7)	0.36382 (13)	0.034 (2)	0.497 (4)
H13A	-0.0504	0.7004	0.3480	0.040*	0.497 (4)
C14A	0.00249 (8)	0.5389 (7)	0.31484 (10)	0.0345 (10)	0.497 (4)
H14A	-0.0055	0.4982	0.2655	0.041*	0.497 (4)
C15A	0.04083 (7)	0.4783 (7)	0.33801 (13)	0.0297 (9)	0.497 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H15A	0.0590	0.3962	0.3045	0.036*	0.497 (4)
C16	0.21002 (5)	0.1695 (4)	0.56682(10)	0.0298 (4)	0.137 (1)
H16A	0.2051 (6)	-0.004(5)	0.5980 (11)	0.037 (5)*	
H16B	0.2162 (6)	0.114 (5)	0.5165 (12)	0.043 (6)*	
C17	0.24455 (5)	0.3396 (4)	0.59860 (10)	0.0304 (4)	
H17A	0.2350 (6)	0.459 (5)	0.6395 (11)	0.039 (5)*	
H17B	0.2534 (6)	0.473 (5)	0.5603 (12)	0.043 (6)*	
C18	0.27795 (5)	0.1485 (4)	0.62544(11)	0.0333 (4)	
H18A	0.2663 (6)	0.011 (5)	0.6624(12)	0.045 (6)*	
H18B	0.2885 (6)	0.046(5)	0.5832(12)	0.047 (6)*	
C19	0.2002(0) 0.31103(5)	0.3118(4)	0.66399(10)	0.0331(4)	
H19A	0 2991 (6)	0.3110(1) 0.421(4)	0.00599(10)	0.038(5)*	
H19R	0.2991(0) 0.3222(6)	0.121(1) 0.448(5)	0.6307 (11)	0.050(5)	
C20	0.3222(0) 0.34370(5)	0.110(3) 0.1221(4)	0.69465 (11)	0.0363(4)	
H20A	0.31570(3)	-0.017(5)	0.09109(11) 0.7293(12)	0.046 (6)*	
H20R	0.3545(7)	0.017(3)	0.7293(12) 0.6542(13)	0.052 (6)*	
C21	0.3345(7) 0.37560(5)	0.012(3) 0.2852(4)	0.0342(13) 0.73656(11)	0.032(0)	
H21A	0.37300 (3)	0.2052(4)	0.73030(11) 0.7700(12)	0.045 (6)*	
1121A 1121B	0.3027(0) 0.3870(6)	0.390(3)	0.7739(12) 0.7020(12)	$0.045(0)^{*}$	
C22	0.3879(0) 0.40833(5)	0.424(3)	0.7029(12) 0.76801(11)	$0.043(0)^{\circ}$	
U22	0.40833(3) 0.3064(7)	-0.048(5)	0.70801(11) 0.8017(13)	0.0379(4)	
1122A 1122D	0.3904(7) 0.4214(7)	-0.016(5)	0.0017(13) 0.7276(13)	$0.051(0)^{*}$	
П22Б	0.4214(7) 0.42008(5)	-0.010(3)	0.7270(13)	$0.032(0)^{\circ}$	
C23	0.43998 (3)	0.2010(3)	0.81013(11)	0.0380(4)	
П23А	0.4209(0)	0.309(3)	0.8312(12) 0.77(2(12))	$0.040(0)^{\circ}$	
H23B	0.4523(7)	0.398(5)	0.7/63(12)	0.048 (6)*	
C24	0.47278(5)	0.0739(3)	0.84179(11)	0.0391(4)	
H24A	0.4852 (7)	-0.046 (5)	0.8010(13)	0.057(7)*	
H24B	0.4609(7)	-0.072(5)	0.8/51(13)	0.053 (6)*	
C25	0.50452 (5)	0.2404 (5)	0.88337 (11)	0.0389 (4)	
H25A	0.4916 (6)	0.354 (5)	0.9245 (12)	0.047 (6)*	
H25B	0.5166 (7)	0.384 (5)	0.8489 (12)	0.050 (6)*	
C26	0.53738 (5)	0.0544 (5)	0.91556 (11)	0.0386 (4)	
H26A	0.5498 (7)	-0.069 (5)	0.8/43 (13)	0.052 (6)*	
H26B	0.5253 (6)	-0.087(5)	0.9512 (12)	0.046 (6)*	
C27	0.56926 (5)	0.2235 (5)	0.95610(11)	0.0388 (4)	
H27A	0.5568 (7)	0.338 (5)	0.9957 (12)	0.049 (6)*	
H27B	0.5805 (6)	0.363 (5)	0.9208 (12)	0.046 (6)*	
C28	0.60229 (5)	0.0411 (4)	0.98870 (11)	0.0374 (4)	
H28A	0.5905 (6)	-0.100 (5)	1.0231 (11)	0.039 (5)*	
H28B	0.6146 (6)	-0.083(5)	0.9474 (12)	0.044 (6)*	
C29	0.63446 (5)	0.2137 (4)	1.02729 (11)	0.0374 (4)	
H29A	0.6453 (7)	0.356 (5)	0.9902 (13)	0.053 (6)*	
H29B	0.6224 (6)	0.331 (5)	1.0664 (12)	0.045 (6)*	
C30	0.66771 (5)	0.0345 (4)	1.06014 (10)	0.0355 (4)	
H30A	0.6799 (6)	-0.094 (5)	1.0206 (12)	0.047 (6)*	
H30B	0.6561 (6)	-0.098 (5)	1.0982 (11)	0.042 (6)*	
C31	0.70000 (5)	0.2102 (4)	1.09748 (11)	0.0374 (4)	
H31A	0.6871 (7)	0.327 (5)	1.1351 (13)	0.052 (6)*	

H31B	0.7112 (7)	0.341 (5)	1.0589 (13)	0.057 (7)*
C32	0.73361 (5)	0.0345 (4)	1.13048 (11)	0.0392 (4)
H32A	0.7216 (7)	-0.103 (5)	1.1672 (13)	0.053 (6)*
H32B	0.7455 (7)	-0.088 (5)	1.0913 (13)	0.054 (6)*
C33	0.76560 (6)	0.2158 (5)	1.16623 (14)	0.0476 (5)
H33A	0.7546 (8)	0.322 (6)	1.2070 (15)	0.067 (8)*
H33B	0.7871 (8)	0.105 (6)	1.1857 (14)	0.065 (7)*
H33C	0.7764 (8)	0.352 (6)	1.1291 (16)	0.076 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0329 (2)	0.0295 (2)	0.0333 (2)	0.00240 (16)	-0.01019 (16)	0.00035 (16)
01	0.0316 (6)	0.0827 (11)	0.0247 (6)	0.0151 (7)	-0.0012 (5)	-0.0048 (6)
N1	0.0202 (6)	0.0350 (7)	0.0230 (6)	-0.0002(5)	-0.0045 (5)	-0.0004 (5)
C1	0.0185 (6)	0.0308 (8)	0.0240 (7)	-0.0039 (6)	-0.0033 (6)	-0.0003 (6)
C2	0.0244 (7)	0.0367 (9)	0.0272 (8)	0.0018 (7)	-0.0040 (6)	0.0034 (7)
C3	0.0333 (8)	0.0463 (10)	0.0248 (8)	-0.0042 (8)	-0.0043 (7)	0.0030 (7)
C4	0.0350 (9)	0.0454 (10)	0.0270 (8)	-0.0031 (8)	0.0017 (7)	-0.0054 (7)
C5	0.0293 (8)	0.0375 (9)	0.0349 (9)	0.0003 (7)	-0.0012 (7)	-0.0046 (7)
C6	0.0226 (7)	0.0293 (8)	0.0290 (8)	-0.0039 (6)	-0.0047 (6)	-0.0008 (6)
C7	0.0232 (7)	0.0326 (8)	0.0260 (8)	-0.0018 (6)	-0.0018 (6)	0.0052 (6)
C8	0.0230 (7)	0.0426 (9)	0.0250 (8)	-0.0015 (7)	-0.0035 (6)	0.0017 (7)
C9	0.0249 (7)	0.0373 (9)	0.0251 (8)	-0.0019 (7)	-0.0027 (6)	0.0035 (7)
C10	0.016 (3)	0.035 (5)	0.043 (4)	-0.004 (3)	0.007 (3)	0.003 (3)
C11	0.0276 (16)	0.036 (2)	0.0277 (17)	-0.0018 (14)	-0.0063 (14)	0.0041 (15)
C12	0.0316 (17)	0.041 (2)	0.0325 (18)	0.0055 (16)	-0.0018 (14)	0.0077 (16)
C13	0.024 (3)	0.037 (3)	0.047 (5)	0.004 (3)	-0.012 (3)	0.016 (3)
C14	0.033 (2)	0.052 (3)	0.052 (3)	-0.008 (2)	-0.021 (2)	0.005 (2)
C15	0.033 (2)	0.040 (2)	0.043 (2)	-0.0020 (18)	-0.0105 (17)	-0.0011 (19)
C10A	0.030 (3)	0.028 (4)	0.009 (2)	-0.004 (3)	-0.012 (2)	0.009 (2)
C11A	0.0283 (16)	0.0331 (19)	0.0285 (18)	-0.0023 (14)	-0.0025 (14)	0.0014 (15)
C12A	0.0259 (16)	0.0324 (19)	0.0357 (19)	-0.0026 (14)	-0.0003 (14)	0.0028 (15)
C13A	0.028 (4)	0.039 (4)	0.035 (4)	-0.009 (3)	-0.006 (3)	0.007 (3)
C14A	0.034 (2)	0.041 (2)	0.029 (2)	-0.0054 (17)	-0.0120 (16)	0.0041 (16)
C15A	0.0301 (18)	0.036 (2)	0.0224 (19)	0.0003 (16)	-0.0055 (14)	0.0004 (15)
C16	0.0222 (7)	0.0362 (9)	0.0308 (9)	0.0022 (7)	-0.0042 (6)	-0.0034 (7)
C17	0.0195 (7)	0.0363 (9)	0.0352 (9)	0.0005 (7)	-0.0031 (6)	0.0007 (7)
C18	0.0218 (7)	0.0388 (9)	0.0393 (10)	0.0013 (7)	-0.0058 (7)	-0.0014 (8)
C19	0.0209 (7)	0.0401 (10)	0.0383 (9)	0.0013 (7)	-0.0051 (7)	-0.0007 (8)
C20	0.0219 (7)	0.0456 (11)	0.0413 (10)	0.0032 (7)	-0.0058 (7)	-0.0013 (9)
C21	0.0223 (8)	0.0477 (11)	0.0395 (10)	0.0005 (7)	-0.0054 (7)	-0.0001 (8)
C22	0.0223 (8)	0.0505 (11)	0.0408 (10)	0.0019 (8)	-0.0048 (7)	-0.0015 (9)
C23	0.0235 (8)	0.0538 (12)	0.0385 (10)	0.0007 (8)	-0.0063 (7)	0.0008 (9)
C24	0.0223 (8)	0.0557 (12)	0.0392 (10)	0.0023 (8)	-0.0053 (7)	-0.0025 (9)
C25	0.0238 (8)	0.0555 (12)	0.0373 (10)	-0.0001 (8)	-0.0067 (7)	0.0012 (9)
C26	0.0233 (8)	0.0538 (12)	0.0385 (10)	0.0024 (8)	-0.0048 (7)	-0.0028 (9)
C27	0.0261 (8)	0.0523 (12)	0.0378 (10)	0.0012 (8)	-0.0067 (7)	0.0016 (9)

data reports

C28	0.0245 (8)	0.0507 (11)	0.0369 (10)	0.0025 (8)	-0.0057 (7)	-0.0034 (8)
C29	0.0274 (8)	0.0457 (11)	0.0388 (10)	0.0019 (8)	-0.0086 (7)	0.0006 (8)
C30	0.0261 (8)	0.0436 (10)	0.0367 (9)	0.0040 (7)	-0.0061 (7)	-0.0018 (8)
C31	0.0306 (8)	0.0414 (10)	0.0402 (10)	0.0044 (8)	-0.0111 (8)	0.0006 (8)
C32	0.0309 (8)	0.0441 (11)	0.0424 (10)	0.0060 (8)	-0.0091 (8)	-0.0007 (9)
C33	0.0365 (10)	0.0537 (13)	0.0524 (13)	0.0048 (9)	-0.0201 (9)	-0.0014 (10)

Geometric parameters (Å, °)

S1—C7	1.7456 (17)	C18—C19	1.523 (2)
S1—C6	1.7536 (16)	C18—H18A	1.01 (2)
O1—C8	1.219 (2)	C18—H18B	0.98 (2)
N1—C8	1.386 (2)	C19—C20	1.523 (2)
N1—C1	1.423 (2)	C19—H19A	1.00 (2)
N1—C16	1.473 (2)	C19—H19B	0.96 (2)
C1—C6	1.391 (2)	C20—C21	1.522 (2)
C1—C2	1.402 (2)	C20—H20A	1.00 (2)
C2—C3	1.385 (2)	C20—H20B	0.97 (2)
С2—Н2	0.94 (2)	C21—C22	1.527 (2)
C3—C4	1.378 (3)	C21—H21A	1.03 (2)
С3—Н3	0.95 (2)	C21—H21B	0.99 (2)
C4—C5	1.386 (3)	C22—C23	1.522 (3)
C4—H4	0.94 (2)	C22—H22A	1.00 (2)
C5—C6	1.392 (2)	C22—H22B	1.01 (2)
С5—Н5	0.99 (2)	C23—C24	1.525 (3)
С7—С9	1.351 (2)	С23—Н23А	1.01 (2)
C7—C8	1.497 (2)	С23—Н23В	0.99 (2)
C9—C10	1.474 (2)	C24—C25	1.524 (3)
C9—C10A	1.495 (2)	C24—H24A	1.02 (2)
С9—Н9	0.97 (2)	C24—H24B	1.00 (2)
C10-C11	1.3900	C25—C26	1.527 (3)
C10—C15	1.3900	С25—Н25А	1.02 (2)
C11—C12	1.3900	С25—Н25В	1.01 (2)
C11—H11	0.9500	C26—C27	1.524 (3)
C12—C13	1.3900	C26—H26A	1.04 (2)
C12—H12	0.9500	С26—Н26В	1.02 (2)
C13—C14	1.3900	C27—C28	1.525 (2)
С13—Н13	0.9500	С27—Н27А	0.99 (2)
C14—C15	1.3900	С27—Н27В	0.99 (2)
C14—H14	0.9500	C28—C29	1.524 (3)
C15—H15	0.9500	C28—H28A	1.00 (2)
C10A—C11A	1.3900	C28—H28B	1.04 (2)
C10A—C15A	1.3900	C29—C30	1.524 (2)
C11A—C12A	1.3900	С29—Н29А	1.02 (2)
C11A—H11A	0.9500	C29—H29B	0.99 (2)
C12A—C13A	1.3900	C30—C31	1.524 (2)
C12A—H12A	0.9500	С30—Н30А	1.03 (2)
C13A—C14A	1.3900	С30—Н30В	1.01 (2)

C13A—H13A	0.9500	C31—C32	1.525 (2)
C14A—C15A	1.3900	C31—H31A	0.98 (2)
C14A—H14A	0.9500	C31—H31B	1.01 (3)
C15A—H15A	0.9500	$C_{32} - C_{33}$	1 519 (3)
	1.526(2)	C_{32} H_{32A}	1.02(2)
	1.320(2)	C32—1132A	1.02(2)
	1.01 (2)	C32—H32B	1.00 (2)
С16—Н16В	0.97 (2)	С33—Н33А	0.97 (3)
C17—C18	1.521 (2)	С33—Н33В	0.96 (3)
C17—H17A	0.99 (2)	С33—Н33С	1.00 (3)
С17—Н17В	0.98 (2)		
C7—S1—C6	100.11 (8)	С18—С19—Н19А	107.8 (12)
C8—N1—C1	124.64 (13)	C20—C19—H19B	109.4(12)
C8-N1-C16	116 50 (13)	C18— $C19$ — $H19B$	1100(12)
C1 N1 $C16$	117.99(12)		107.0(12)
$C_1 = N_1 = C_{10}$	117.00(15)	C21 C20 C10	107.0(17)
	118.15 (15)	$C_{21} = C_{20} = C_{19}$	113.28 (10)
C6C1N1	121.57 (14)	C21—C20—H20A	108.1 (12)
C2—C1—N1	120.28 (14)	С19—С20—Н20А	108.3 (12)
C3—C2—C1	120.85 (16)	C21—C20—H20B	112.1 (13)
С3—С2—Н2	119.1 (11)	C19—C20—H20B	108.3 (13)
С1—С2—Н2	120.0 (11)	H20A—C20—H20B	106.3 (18)
C4—C3—C2	120.47 (16)	C20—C21—C22	113.64 (16)
С4—С3—Н3	120.2 (13)	C20—C21—H21A	108.6 (12)
С2—С3—Н3	1193(13)	C22—C21—H21A	107.9(12)
C_{3} C_{4} C_{5}	119.42 (17)	C_{20} C_{21} H_{21B}	1091(12)
$C_3 C_4 H_4$	119.42(17) 1217(14)	C_{20} C_{21} H_{21B}	107.0(12)
$C_5 = C_4 = 114$	121.7(14)		107.9(13)
С3—С4—П4	110.0 (14)	$H_2IA = C_2I = H_2IB$	109.7(18)
C4—C5—C6	120.45 (17)	C23—C22—C21	113.26 (17)
C4—C5—H5	120.6 (12)	C23—C22—H22A	109.1 (13)
С6—С5—Н5	118.9 (12)	C21—C22—H22A	109.2 (13)
C1—C6—C5	120.61 (15)	C23—C22—H22B	108.7 (13)
C1—C6—S1	121.94 (12)	C21—C22—H22B	110.8 (13)
C5—C6—S1	117.44 (13)	H22A—C22—H22B	105.5 (19)
C9—C7—C8	116.86 (15)	C22—C23—C24	113.61 (17)
C9—C7—S1	124.60 (13)	C22—C23—H23A	108.4 (12)
C8-C7-S1	118 24 (11)	C24—C23—H23A	109.8(12)
01_C8_N1	120.71(15)	C^{22} C^{23} H^{23} H	109.0(12) 108.8(13)
$O_1 = C_2 = C_7$	120.71(13) 120.82(14)	C24 C23 H23D	107.6(13)
01 - 03 - 07	120.03(14)	$\begin{array}{c} C_{24} \\ \hline \\ C_{23} \\ \hline $	107.0(13)
NI	118.45 (14)	H23A—C23—H23B	108.4 (19)
C/C9C10	133./5 (18)	C25—C24—C23	113.32 (17)
C7—C9—C10A	129.94 (18)	C25—C24—H24A	110.4 (14)
С7—С9—Н9	114.1 (11)	C23—C24—H24A	110.5 (13)
С10—С9—Н9	112.1 (11)	C25—C24—H24B	109.9 (13)
С10А—С9—Н9	115.8 (11)	C23—C24—H24B	109.2 (13)
C11—C10—C15	120.0	H24A—C24—H24B	103.0 (19)
C11—C10—C9	122.23 (17)	C24—C25—C26	113.65 (17)
C15—C10—C9	117.51 (17)	C24—C25—H25A	109.0 (12)
C12—C11—C10	120.0	C26—C25—H25A	109.8 (12)

C12—C11—H11	120.0	C24—C25—H25B	109.1 (13)
C10-C11-H11	120.0	C26—C25—H25B	109.0 (13)
C13—C12—C11	120.0	H25A—C25—H25B	106.0 (18)
C13—C12—H12	120.0	C27—C26—C25	113.19 (17)
C11—C12—H12	120.0	C27—C26—H26A	110.5 (13)
C12—C13—C14	120.0	C25—C26—H26A	110.1 (13)
C12—C13—H13	120.0	C27—C26—H26B	108.9 (12)
C14—C13—H13	120.0	C25—C26—H26B	108.9 (12)
C13—C14—C15	120.0	H26A—C26—H26B	104.9 (18)
C13—C14—H14	120.0	C26—C27—C28	113.91 (17)
C15—C14—H14	120.0	С26—С27—Н27А	109.1 (13)
C14—C15—C10	120.0	С28—С27—Н27А	109.9 (13)
C14—C15—H15	120.0	С26—С27—Н27В	108.0 (13)
C10—C15—H15	120.0	С28—С27—Н27В	109.8 (13)
C11A—C10A—C15A	120.0	H27A—C27—H27B	105.9 (19)
C11A—C10A—C9	125.66 (17)	C29—C28—C27	113.29 (17)
C15A—C10A—C9	114.25 (17)	C29—C28—H28A	111.0 (12)
C10A—C11A—C12A	120.0	C27—C28—H28A	108.8 (12)
C10A—C11A—H11A	120.0	C29—C28—H28B	109.9 (12)
C12A—C11A—H11A	120.0	C27—C28—H28B	109.6 (12)
C13A—C12A—C11A	120.0	H28A—C28—H28B	103.8 (17)
C13A—C12A—H12A	120.0	C30—C29—C28	113.95 (16)
C11A—C12A—H12A	120.0	С30—С29—Н29А	110.6 (13)
C12A—C13A—C14A	120.0	С28—С29—Н29А	108.0 (13)
C12A—C13A—H13A	120.0	С30—С29—Н29В	109.7 (13)
C14A—C13A—H13A	120.0	C28—C29—H29B	109.2 (13)
C15A—C14A—C13A	120.0	H29A—C29—H29B	105.0 (18)
C15A—C14A—H14A	120.0	C29—C30—C31	113.38 (16)
C13A—C14A—H14A	120.0	С29—С30—Н30А	110.7 (12)
C14A—C15A—C10A	120.0	С31—С30—Н30А	109.8 (12)
C14A—C15A—H15A	120.0	С29—С30—Н30В	108.5 (12)
C10A—C15A—H15A	120.0	C31—C30—H30B	108.3 (12)
N1—C16—C17	112.56 (14)	H30A-C30-H30B	105.8 (18)
N1—C16—H16A	108.3 (11)	C30—C31—C32	114.12 (16)
C17—C16—H16A	110.1 (11)	C30—C31—H31A	106.9 (14)
N1—C16—H16B	106.6 (12)	С32—С31—Н31А	111.5 (13)
C17—C16—H16B	108.8 (13)	C30—C31—H31B	107.2 (14)
H16A—C16—H16B	110.3 (17)	С32—С31—Н31В	108.7 (14)
C18—C17—C16	111.98 (15)	H31A—C31—H31B	108 (2)
С18—С17—Н17А	110.1 (12)	C33—C32—C31	112.85 (17)
С16—С17—Н17А	109.3 (12)	С33—С32—Н32А	111.6 (13)
C18—C17—H17B	111.8 (12)	С31—С32—Н32А	107.6 (13)
С16—С17—Н17В	107.8 (12)	С33—С32—Н32В	109.6 (13)
H17A—C17—H17B	105.5 (17)	С31—С32—Н32В	109.8 (13)
C17—C18—C19	112.89 (15)	H32A—C32—H32B	105.1 (19)
C17—C18—H18A	107.3 (12)	С32—С33—Н33А	109.8 (16)
C19—C18—H18A	107.9 (12)	C32—C33—H33B	112.7 (16)
C17—C18—H18B	108.6 (13)	H33A—C33—H33B	107 (2)
	()		- · (-)

C19—C18—H18B	109.7 (13)	С32—С33—Н33С	109.8 (16)
H18A—C18—H18B	110.3 (18)	H33A—C33—H33C	109 (2)
C20-C19-C18	113.54 (16)	H33B—C33—H33C	108 (2)
С20—С19—Н19А	108.8 (12)		
C8—N1—C1—C6	-24.7 (2)	C10-C11-C12-C13	0.0
C16—N1—C1—C6	167.07 (14)	C11—C12—C13—C14	0.0
C8—N1—C1—C2	157.30 (16)	C12-C13-C14-C15	0.0
C16—N1—C1—C2	-10.9 (2)	C13-C14-C15-C10	0.0
C6-C1-C2-C3	-2.8 (2)	C11—C10—C15—C14	0.0
N1—C1—C2—C3	175.29 (15)	C9-C10-C15-C14	174.3 (3)
C1—C2—C3—C4	1.2 (3)	C7—C9—C10A—C11A	-15.3 (3)
C2—C3—C4—C5	1.1 (3)	C7—C9—C10A—C15A	168.19 (19)
C3—C4—C5—C6	-1.7 (3)	C15A—C10A—C11A—C12A	0.0
C2-C1-C6-C5	2.2 (2)	C9-C10A-C11A-C12A	-176.3 (3)
N1—C1—C6—C5	-175.88 (15)	C10A—C11A—C12A—C13A	0.0
C2-C1-C6-S1	-178.72 (12)	C11A—C12A—C13A—C14A	0.0
N1-C1-C6-S1	3.2 (2)	C12A—C13A—C14A—C15A	0.0
C4—C5—C6—C1	0.1 (3)	C13A—C14A—C15A—C10A	0.0
C4—C5—C6—S1	-179.09 (14)	C11A—C10A—C15A—C14A	0.0
C7—S1—C6—C1	25.40 (15)	C9—C10A—C15A—C14A	176.7 (2)
C7—S1—C6—C5	-155.46 (13)	C8—N1—C16—C17	122.78 (16)
C6—S1—C7—C9	146.07 (15)	C1—N1—C16—C17	-68.02 (19)
C6—S1—C7—C8	-40.46 (14)	N1-C16-C17-C18	161.52 (15)
C1—N1—C8—O1	-171.61 (16)	C16—C17—C18—C19	-174.54 (15)
C16—N1—C8—O1	-3.2 (2)	C17—C18—C19—C20	177.06 (16)
C1—N1—C8—C7	7.2 (2)	C18—C19—C20—C21	-177.02 (16)
C16—N1—C8—C7	175.62 (14)	C19—C20—C21—C22	179.56 (16)
C9—C7—C8—O1	21.7 (3)	C20-C21-C22-C23	-179.70 (16)
S1—C7—C8—O1	-152.32 (15)	C21—C22—C23—C24	179.97 (16)
C9—C7—C8—N1	-157.19 (16)	C22—C23—C24—C25	179.53 (16)
S1—C7—C8—N1	28.8 (2)	C23—C24—C25—C26	179.72 (16)
C8—C7—C9—C10	-179.2 (2)	C24—C25—C26—C27	179.20 (16)
S1—C7—C9—C10	-5.6 (3)	C25—C26—C27—C28	179.93 (16)
C8—C7—C9—C10A	174.2 (2)	C26—C27—C28—C29	178.50 (16)
S1—C7—C9—C10A	-12.3 (3)	C27—C28—C29—C30	-179.97 (16)
C7—C9—C10—C11	20.0 (4)	C28—C29—C30—C31	179.07 (16)
C7—C9—C10—C15	-154.1 (2)	C29—C30—C31—C32	-179.82 (17)
C15—C10—C11—C12	0.0	C30—C31—C32—C33	179.12 (18)
C9—C10—C11—C12	-174.0 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C3—H3…O1 ⁱ	0.95 (2)	2.40 (2)	3.298 (2)	158.0 (18)
С9—Н9…О1	0.97 (2)	2.367 (19)	2.769 (2)	104.1 (13)

			data reports	
0.95	2.58	3.225 (2)	126	
0.97 (2)	2.17 (2)	2.679 (2)	111.3 (15)	
	0.95 0.97 (2)	0.95 2.58 0.97 (2) 2.17 (2)	0.952.583.225 (2)0.97 (2)2.17 (2)2.679 (2)	

Symmetry code: (i) x, -y+1/2, z+1/2.