

ISSN 2414-3146

Received 3 June 2017 Accepted 15 June 2017

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; natural catalyst; pyrrole derivative.

CCDC reference: 1556327

Structural data: full structural data are available from iucrdata.iucr.org

1-(1-Benzyl-2,5-dimethyl-4-phenyl-1*H*-pyrrol-3-yl)ethanone

data reports

Abdelhadi Louroubi,^a Rachid Outouch,^a Mustapha Ait Ali,^a Anke Spannenberg^b and Larbi El Firdoussi^a*

^aEquipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, 40001 Marrakech, Morocco, and ^bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany. *Correspondence e-mail: elfirdoussi@uca.ma

In the title compound, $C_{21}H_{21}NO$, the dihedral angles between the planes of the phenyl and pyrrole rings are 47.04 (5) and 79.27 (3)°. In the crystal, centrosymmetrically related molecules are linked into dimers by pairs of C– $H \cdots O$ hydrogen bonds, forming rings of graph-set motif $R_2^2(16)$.

Structure description

Pyrrole derivatives, which are widespread in nature (Iwao *et al.*, 2003), are of interest with respect to their versatility in organic synthetic procedures (Loudet & Burgess, 2007) and their biological and medicinal activities (Fan *et al.*, 2008).

The molecular structure of 1-(1-benzyl-2,5-dimethyl-4-phenyl-1*H*-pyrrol-3-yl)ethanone is shown in Fig. 1. The dihedral angles between the planes of the pyrrole ring and the C8–C13 and C16–C21 phenyl rings are 47.04 (5) and 79.27 (3)°, respectively. The molecular conformation is enforced by an intramolecular hydrogen bond involving a methyl H atom and the carbonyl O atom (Table 1). In the crystal, molecules are linked through pairs of C–H···O hydrogen bonds to form $R_2^2(16)$ centrosymmetric dimers.

Synthesis and crystallization

The synthesis of the title compound was carried out by mixing acetylacetone (1.1 mmol), benzylamine (1.0 mmol), benzaldehyde (1.0 mmol) and nitroethane (1.3 mmol) in the presence of $Ca_5(PO_4)_3OH$ (0.05 mmol) as a catalyst. The mixture was stirred at 333 K for 24 h. After extraction with ethyl acetate (3 × 25 ml), the organic layer was dried with Na_2SO_4 and the solvent was removed under reduced pressure. The product was obtained in 74% yield after silica-gel column chromatography using a mixture of *n*-hexane and

Figure 1

ethyl acetate (94:6 v/v) as eluent. White crystals were obtained by slow evaporation of the solvent at room temperature (m.p. 364–365 K). ¹H NMR (DMSO): δ 1.77 (s, 3H), 1.94 (s, 3H), 2.36 (s, 3H), 5.19 (s, 2H), 6.98–7.38 (m, 10H). ¹³C NMR (DMSO): § 9.99, 11.47, 30.64, 46.25, 120.79, 121.42, 125.73, 126.41, 127.16, 128.12, 128.77, 130.29, 133.52, 136.72, 137.33, 195.04.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison,
- Wisconsin, USA. Fan, H., Peng, J., Hamann, M. T. & Hu, J. F. (2008). Chem. Rev. 108,
- 264-287. Iwao, M., Takeuchi, T., Fujikawa, N., Fukuda, T. & Ishibashi, F.
- (2003). Tetrahedron Lett. 44, 4443-4446. Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C5-H5B\cdots O1$	0.98	2.38	3.0007 (17)	121
010-111001	0.95	2.50	5.4114 (17)	101

Symmetry code: (i) -x + 2, -y, -z.

Table 2 Experimental details.

Crystal data	
Chemical formula	$C_{21}H_{21}NO$
M _r	303.39
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	10.7210 (2), 13.7039 (2),
	11.5761 (2)
β (°)	107.0322 (6)
$V(\dot{A}^3)$	1626.16 (5)
Ζ	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.08
Crystal size (mm)	$0.42 \times 0.33 \times 0.27$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.93, 0.98
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	31011, 3926, 3484
R:	0.021
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.661
Refinement	
$R[F^2 > 2\sigma(F^2)] wR(F^2) S$	0.038 0.104 1.04
No of reflections	3926
No of parameters	211
H-atom treatment	H-atom parameters constrained
$\Lambda_0 \qquad \Lambda_0 \qquad (e \ {\rm \AA}^{-3})$	0.27 = 0.22
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} (c r)$	0.27, 0.22

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). **2**, x170895 [https://doi.org/10.1107/S2414314617008951]

1-(1-Benzyl-2,5-dimethyl-4-phenyl-1H-pyrrol-3-yl)ethanone

Abdelhadi Louroubi, Rachid Outouch, Mustapha Ait Ali, Anke Spannenberg and Larbi El Firdoussi

F(000) = 648

 $\theta = 2.5 - 30.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Prism, colourless

 $0.42 \times 0.33 \times 0.27 \text{ mm}$

T = 150 K

 $D_{\rm x} = 1.239 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9842 reflections

1-(1-Benzyl-2,5-dimethyl-4-phenyl-1H-pyrrol-3-yl)ethanone

Crystal data

C₂₁H₂₁NO $M_r = 303.39$ Monoclinic, P2₁/c a = 10.7210 (2) Å b = 13.7039 (2) Å c = 11.5761 (2) Å $\beta = 107.0322$ (6)° V = 1626.16 (5) Å³ Z = 4

Data collection

Bruker APEXII CCD	31011 measured reflections
diffractometer	3926 independent reflections
Radiation source: fine-focus sealed tube	3484 reflections with $I > 2\sigma(I)$
Detector resolution: 8.3333 pixels mm ⁻¹	$R_{\rm int} = 0.021$
φ and ω scans	$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(SADABS; Bruker, 2014)	$k = -18 \rightarrow 18$
$T_{\min} = 0.93, \ T_{\max} = 0.98$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.0521P)^2 + 0.4997P]$
S = 1.04	where $P = (F_0^2 + 2F_c^2)/3$
3926 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
211 parameters	$\Delta ho_{ m max} = 0.27 \ m e \ m \AA^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.22 \mathrm{e} \mathrm{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.69940 (10)	0.00933 (7)	0.28342 (9)	0.0226 (2)
C2	0.77764 (9)	0.04143 (7)	0.21445 (9)	0.0207 (2)
C3	0.88508 (9)	0.09425 (7)	0.29356 (9)	0.0203 (2)
C4	0.86945 (10)	0.09142 (7)	0.40726 (9)	0.0221 (2)
C5	0.57153 (11)	-0.04261 (8)	0.24566 (11)	0.0301 (2)
H5A	0.5842	-0.1110	0.2711	0.045*
H5B	0.5354	-0.0394	0.1576	0.045*
H5C	0.5110	-0.0115	0.2835	0.045*
C6	0.74045 (9)	0.03075 (7)	0.08261 (9)	0.0223 (2)
C7	0.77732 (11)	0.10944 (8)	0.00737 (9)	0.0271 (2)
H7A	0.8575	0.0906	-0.0112	0.041*
H7B	0.7916	0.1710	0.0525	0.041*
H7C	0.7068	0.1178	-0.0680	0.041*
C8	0.99949 (9)	0.13556 (7)	0.26504 (8)	0.0214 (2)
C9	1.06614 (10)	0.08215 (8)	0.19876 (9)	0.0265 (2)
Н9	1.0369	0.0184	0.1715	0.032*
C10	1.17418 (11)	0.12067 (9)	0.17224 (11)	0.0333 (3)
H10	1.2177	0.0838	0.1263	0.040*
C11	1.21862 (11)	0.21310 (10)	0.21292 (11)	0.0353 (3)
H11	1.2924	0.2397	0.1945	0.042*
C12	1.15563 (11)	0.26646 (9)	0.28026 (11)	0.0322 (2)
H12	1.1871	0.3293	0.3094	0.039*
C13	1.04641 (10)	0.22844 (8)	0.30547 (10)	0.0260 (2)
H13	1.0029	0.2661	0.3508	0.031*
C14	0.95716 (11)	0.12583 (8)	0.52522 (9)	0.0271 (2)
H14A	1.0417	0.1445	0.5154	0.041*
H14B	0.9697	0.0733	0.5849	0.041*
H14C	0.9178	0.1823	0.5529	0.041*
C15	0.70566 (11)	0.02234 (8)	0.50245 (9)	0.0268 (2)
H15A	0.7778	-0.0018	0.5712	0.032*
H15B	0.6384	-0.0294	0.4805	0.032*
C16	0.64695 (10)	0.11232 (7)	0.54209 (9)	0.0231 (2)
C17	0.69601 (10)	0.14761 (8)	0.65922 (9)	0.0252 (2)
H17	0.7676	0.1155	0.7143	0.030*
C18	0.64164 (11)	0.22944 (8)	0.69680 (10)	0.0274 (2)
H18	0.6760	0.2528	0.7771	0.033*
C19	0.53749 (11)	0.27678 (8)	0.61709 (10)	0.0284 (2)
H19	0.5005	0.3329	0.6424	0.034*
C20	0.48743 (11)	0.24209 (8)	0.50021 (10)	0.0300 (2)
H20	0.4156	0.2742	0.4455	0.036*
C21	0.54191 (10)	0.16052 (8)	0.46281 (9)	0.0277 (2)
H21	0.5073	0.1373	0.3824	0.033*
N1	0.75568 (8)	0.04036 (6)	0.39956 (8)	0.02273 (19)
01	0.67584 (8)	-0.03911 (6)	0.03179 (7)	0.03149 (19)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0272 (5)	0.0185 (4)	0.0237 (5)	0.0001 (4)	0.0102 (4)	-0.0007 (4)
C2	0.0232 (5)	0.0183 (4)	0.0213 (5)	0.0004 (3)	0.0078 (4)	-0.0003 (3)
C3	0.0220 (4)	0.0186 (4)	0.0207 (4)	0.0017 (3)	0.0068 (4)	-0.0003 (3)
C4	0.0244 (5)	0.0208 (4)	0.0213 (5)	0.0031 (4)	0.0071 (4)	0.0004 (4)
C5	0.0317 (5)	0.0280 (5)	0.0343 (6)	-0.0083 (4)	0.0154 (4)	-0.0046 (4)
C6	0.0228 (4)	0.0230 (5)	0.0218 (5)	0.0008 (4)	0.0078 (4)	-0.0018 (4)
C7	0.0318 (5)	0.0291 (5)	0.0211 (5)	-0.0023 (4)	0.0088 (4)	0.0014 (4)
C8	0.0199 (4)	0.0237 (5)	0.0193 (4)	0.0011 (3)	0.0041 (3)	0.0015 (4)
C9	0.0257 (5)	0.0281 (5)	0.0264 (5)	0.0007 (4)	0.0086 (4)	-0.0028 (4)
C10	0.0268 (5)	0.0435 (6)	0.0326 (6)	0.0018 (5)	0.0136 (4)	-0.0035 (5)
C11	0.0236 (5)	0.0456 (7)	0.0378 (6)	-0.0066 (5)	0.0109 (5)	0.0019 (5)
C12	0.0271 (5)	0.0307 (6)	0.0360 (6)	-0.0067 (4)	0.0049 (4)	-0.0005 (4)
C13	0.0249 (5)	0.0252 (5)	0.0270 (5)	-0.0001 (4)	0.0062 (4)	-0.0023 (4)
C14	0.0294 (5)	0.0299 (5)	0.0207 (5)	0.0041 (4)	0.0052 (4)	-0.0015 (4)
C15	0.0365 (6)	0.0245 (5)	0.0240 (5)	0.0030 (4)	0.0162 (4)	0.0041 (4)
C16	0.0269 (5)	0.0232 (5)	0.0228 (5)	-0.0008 (4)	0.0129 (4)	0.0030 (4)
C17	0.0263 (5)	0.0282 (5)	0.0221 (5)	-0.0001 (4)	0.0089 (4)	0.0035 (4)
C18	0.0310 (5)	0.0290 (5)	0.0249 (5)	-0.0054 (4)	0.0124 (4)	-0.0035 (4)
C19	0.0296 (5)	0.0241 (5)	0.0358 (6)	-0.0012 (4)	0.0163 (4)	-0.0019 (4)
C20	0.0264 (5)	0.0305 (5)	0.0324 (5)	0.0026 (4)	0.0073 (4)	0.0031 (4)
C21	0.0300 (5)	0.0297 (5)	0.0227 (5)	-0.0008 (4)	0.0071 (4)	0.0001 (4)
N1	0.0277 (4)	0.0216 (4)	0.0212 (4)	0.0010 (3)	0.0109 (3)	0.0008 (3)
O1	0.0374 (4)	0.0303 (4)	0.0272 (4)	-0.0095 (3)	0.0100 (3)	-0.0083 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N1	1.3701 (13)	C11—C12	1.3808 (17)
C1—C2	1.3881 (13)	C11—H11	0.9500
C1—C5	1.4920 (14)	C12—C13	1.3885 (15)
C2—C3	1.4393 (13)	C12—H12	0.9500
C2—C6	1.4674 (13)	C13—H13	0.9500
C3—C4	1.3752 (13)	C14—H14A	0.9800
C3—C8	1.4735 (13)	C14—H14B	0.9800
C4—N1	1.3861 (13)	C14—H14C	0.9800
C4—C14	1.4896 (14)	C15—N1	1.4634 (12)
С5—Н5А	0.9800	C15—C16	1.5154 (14)
С5—Н5В	0.9800	C15—H15A	0.9900
C5—H5C	0.9800	C15—H15B	0.9900
C6—01	1.2262 (12)	C16—C17	1.3897 (14)
C6—C7	1.5098 (14)	C16—C21	1.3934 (15)
С7—Н7А	0.9800	C17—C18	1.3912 (15)
С7—Н7В	0.9800	C17—H17	0.9500
С7—Н7С	0.9800	C18—C19	1.3840 (16)
C8—C13	1.3980 (14)	C18—H18	0.9500
С8—С9	1.3987 (14)	C19—C20	1.3854 (16)

C9—C10	1.3866 (15)	C19—H19	0.9500
С9—Н9	0.9500	C20—C21	1.3878 (16)
C10—C11	1.3864 (18)	С20—Н20	0.9500
C10—H10	0.9500	C21—H21	0.9500
N1—C1—C2	107.42 (9)	C11—C12—C13	120.13 (10)
N1—C1—C5	122.57 (9)	C11—C12—H12	119.9
C2—C1—C5	129.85 (9)	C13—C12—H12	119.9
C1—C2—C3	107.41 (8)	C12—C13—C8	120.94 (10)
C1—C2—C6	122.73 (9)	С12—С13—Н13	119.5
C3—C2—C6	129.42 (9)	C8—C13—H13	119.5
C4—C3—C2	107.19 (9)	C4—C14—H14A	109.5
C4—C3—C8	124.62 (9)	C4—C14—H14B	109.5
C2—C3—C8	127.90 (9)	H14A—C14—H14B	109.5
C3—C4—N1	107.71 (9)	C4—C14—H14C	109.5
C3—C4—C14	130.33 (10)	H14A—C14—H14C	109.5
N1—C4—C14	121.74 (9)	H14B—C14—H14C	109.5
C1—C5—H5A	109.5	N1—C15—C16	113.13 (8)
C1—C5—H5B	109.5	N1—C15—H15A	109.0
H5A—C5—H5B	109.5	C16—C15—H15A	109.0
C1C5H5C	109.5	N1—C15—H15B	109.0
H5A—C5—H5C	109.5	C16—C15—H15B	109.0
H5B-C5-H5C	109.5	H15A—C15—H15B	107.8
01 - C6 - C2	121 34 (9)	C17-C16-C21	118 66 (10)
01-C6-C7	119.17 (9)	C17 - C16 - C15	120.43 (9)
C_{2} C_{6} C_{7}	119.44 (9)	C_{21} — C_{16} — C_{15}	120.90(9)
C6-C7-H7A	109 5	C_{16} $-C_{17}$ $-C_{18}$	120.80(10)
C6-C7-H7B	109.5	C16—C17—H17	119.6
H7A—C7—H7B	109.5	C18—C17—H17	119.6
C6-C7-H7C	109.5	C19-C18-C17	119.97 (10)
H7A—C7—H7C	109.5	C19—C18—H18	120.0
H7B-C7-H7C	109.5	C17—C18—H18	120.0
C13 - C8 - C9	117.94 (9)	C18 - C19 - C20	119.76 (10)
$C_{13} = C_{8} = C_{3}$	121.08 (9)	C18 - C19 - H19	120.1
C9-C8-C3	120.96 (9)	C20-C19-H19	120.1
C10-C9-C8	121.08 (10)	C_{19} C_{20} C_{21}	120.11 120.20(10)
C10-C9-H9	119 5	$C_{19} - C_{20} - H_{20}$	119.9
C8-C9-H9	119.5	C_{21} C_{20} H_{20}	119.9
$C_{11} - C_{10} - C_{9}$	119.93 (11)	C_{20} C_{21} C_{20} C_{120} C_{120} C_{120}	120.61 (10)
C11—C10—H10	120.0	C_{20} C_{21} H_{21}	119 7
C9-C10-H10	120.0	C_{16} C_{21} H_{21}	119.7
C_{12} C_{11} C_{10}	119.95 (10)	C1 - N1 - C4	110.26 (8)
C12_C11_H11	120.0	C1 N1 $C15$	125 82 (9)
C10-C11-H11	120.0	C4 - N1 - C15	123.82(9) 123.93(9)
	120.0	CT -111-C13	123.95 (7)
N1 - C1 - C2 - C3	-0.20(11)	C10-C11-C12-C13	-1.16(18)
$C_{5}-C_{1}-C_{2}-C_{3}$	175 30 (10)	$C_{11} - C_{12} - C_{13} - C_{8}$	0.93(17)
$N_1 - C_1 - C_2 - C_5$	-173.26(9)	$C_{12} - C_{13} - C_{13} - C_{13}$	0.15(17)
111 - 01 - 02 - 00	115.20 (9)	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.15 (15)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2.24 \ (17) \\ 0.73 \ (11) \\ 173.16 \ (10) \\ 174.70 \ (9) \\ -12.87 \ (17) \\ -0.96 \ (11) \\ -175.18 \ (9) \\ 173.69 \ (10) \\ -0.53 \ (17) \\ -32.75 \ (15) \\ 155.84 \ (10) \\ 144.56 \ (10) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 178.85\ (10)\\ -121.33\ (10)\\ 59.56\ (13)\\ -0.06\ (15)\\ -179.19\ (9)\\ -0.07\ (16)\\ 0.30\ (16)\\ -0.39\ (16)\\ 0.26\ (17)\\ -0.03\ (15)\\ 179.09\ (10)\\ -0.41\ (11) \end{array}$
$C_{1}-C_{2}-C_{6}-C_{1}$ $C_{3}-C_{2}-C_{6}-C_{7}$ $C_{3}-C_{2}-C_{6}-C_{7}$ $C_{4}-C_{3}-C_{8}-C_{13}$ $C_{2}-C_{3}-C_{8}-C_{13}$ $C_{4}-C_{3}-C_{8}-C_{9}$ $C_{2}-C_{3}-C_{8}-C_{9}$ $C_{1}-C_{3}-C_{8}-C_{9}-C_{10}$ $C_{3}-C_{8}-C_{9}-C_{10}$ $C_{3}-C_{8}-C_{9}-C_{10}$ $C_{8}-C_{9}-C_{10}-C_{11}$ $C_{9}-C_{10}-C_{11}-C_{12}$	$\begin{array}{c} -52.75 (13) \\ 155.84 (10) \\ 144.56 (10) \\ -26.86 (15) \\ -49.76 (14) \\ 137.25 (10) \\ 128.90 (11) \\ -44.10 (15) \\ -1.01 (15) \\ -179.71 (10) \\ 0.79 (17) \\ 0.31 (18) \end{array}$	$\begin{array}{c} C17-C10-C21-C20\\ C15-C16-C21-C20\\ C2-C1-N1-C4\\ C5-C1-N1-C4\\ C2-C1-N1-C15\\ C5-C1-N1-C15\\ C3-C4-N1-C1\\ C14-C4-N1-C1\\ C3-C4-N1-C15\\ C14-C4-N1-C15\\ C16-C15-N1-C1\\ C16-C15-N1-C1\\ C16-C15-N1-C4\\ \end{array}$	$\begin{array}{c} -0.03 (13) \\ 179.09 (10) \\ -0.41 (11) \\ -176.30 (9) \\ -179.82 (9) \\ 4.28 (15) \\ 0.87 (11) \\ -174.33 (9) \\ -179.70 (9) \\ 5.09 (14) \\ -106.93 (11) \\ 73.73 (12) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C5—H5 <i>B</i> …O1	0.98	2.38	3.0007 (17)	121
C10—H10…O1 ⁱ	0.95	2.50	3.4114 (17)	161

Symmetry code: (i) -x+2, -y, -z.