ISSN 2414-3146

Received 29 May 2017 Accepted 8 June 2017

Edited by J. Simpson, University of Otago, New Zealand

IUCrData

Keywords: crystal structure; pyrazolone; pyrazole; hydrogen bonds.

CCDC reference: 1554813

Structural data: full structural data are available from iucrdata.iucr.org

5-Methyl-4-(3-methyl-1-phenyl-1*H*-pyrazol-4-yl)-2phenyl-2,3-dihydro-1*H*-pyrazol-3-one

Ismail Ghandour,^a Joel T. Mague,^b Abdelouahed Bouayad,^a* Said Chakroune,^c El Mokhtar Essassi^d and Youssef Kandri Rodi^c

^aLaboratoire de Chimie de la Matière Condensée, Université Sidi Mohamed Ben Abdellah, Facultédes Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, ^cLaboratory of Applied Organic Chemistry, Faculty of Science and Technology, University Sidi Mohammed Ben Abdellah, Fez, Morocco, and ^dLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco. *Correspondence e-mail: abdelouahedbouayad07@gmail.com

In the title compound, $C_{20}H_{18}N_4O$, the dihedral angle between the pyrazole and pyrazolone rings is 69.35 (3)° and an intramolecular C–H···O hydrogen bond encloses an $R_2^2(6)$ ring. In the crystal, the packing features N–H···O and C–H···O hydrogen bonds and C–H··· π (ring) interactions.

Structure description

Materials containing pyrazolone ring systems represent an important class of compounds, not only for their theoretical interest, but also because of their pharmaceutical applications. These include use as anti-inflammatory, analgesic, antipyretic (El-Sayed & El-Ashmawey, 1998) and hypoglycemic agents (Das *et al.*, 2008). They also have fungicidal (Singh & Singh, 1991) and antimicrobial properties (Sahu *et al.*, 2007) and some have been tested as potential cardiovascular drugs (Higashi *et al.*, 2006). In the past year, research has focused on existing molecules and their modifications in order to reduce side effects and to explore other pharmacological and biological effects. As part of our work in this area, the synthesis and structure of the title compound, Fig. 1, are described here.

An intramolecular C6–H6···O1 hydrogen bond encloses an $R_2^2(6)$ ring and affects the conformation of the phenylpyrazalone segment of the molecule. The dihedral angle between the C1–C6 phenyl ring and the N1/N2/C7–C9 pyrazolone ring is 16.56 (6)° while that between the pyrazolone and pyrazole rings is 69.35 (3)°. The corresponding dihedral angle between the C15–C20 phenyl ring and the N3/N4/C11–C13 pyrazole ring is 39.72 (5)°.

Figure 1 The title molecule with the labeling scheme and 50% probability ellipsoids.

In the crystal the strongest intermolecular interaction is the N2-H2A···O1ⁱ hydrogen bond (Table 1, Figs. 2 and 3. This is supported by a C2-H2···O1ⁱ hydrogen bond and together they link molecules into chains along the *c*-axis direction. The packing is further facilitated by four C-H··· π (ring) interactions, as illustrated in Fig. 3.

Figure 2 Packing viewed along the *b* axis with intermolecular $N-H\cdots O$ hydrogen bonds shown as dotted lines.

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg2, Cg3 and Cg4 are the centroids of the N3/N4/C11–C13, C1–C6 and C15–C20 rings, respectively.

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdotsO1^{i}$	0.948 (17)	1.788 (17)	2.7326 (12)	173.8 (15)
$C2-H2\cdots O1^{i}$	0.991 (16)	2.490 (16)	3.2058 (15)	128.8 (12)
C6-H6···O1	0.976 (16)	2.282 (16)	2.9210 (15)	122.2 (12)
$C5-H5\cdots Cg3^{ii}$	0.997 (17)	2.706 (16)	3.6201 (15)	153.0 (12)
$C10-H10A\cdots Cg2^{iii}$	0.94 (2)	2.79 (2)	3.5373 (13)	136.5 (18)
$C10-H10B\cdots Cg4^{iv}$	0.98 (2)	2.83 (2)	3.7117 (14)	150.3 (17)
$C14 - H14B \cdots Cg2^{v}$	0.99 (2)	2.77 (2)	3.6861 (16)	154.9 (16)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x, -y - \frac{1}{2}, z - \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$;

Tak	ole	2	
Exr	beri	mental	details.

Crystal data	
Chemical formula	$C_{20}H_{18}N_4O$
$M_{\rm r}$	330.38
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	150
a, b, c (Å)	18.2838 (13), 7.7956 (6),
	11.8081 (8)
β (°)	100.393 (3)
$V(Å^3)$	1655.4 (2)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.68
Crystal size (mm)	$0.22 \times 0.18 \times 0.10$
Data collection	
Diffractometer	Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2016)
T_{\min}, T_{\max}	0.86, 0.94
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12696, 3308, 3049
Rint	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.626
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.093, 1.05
No. of reflections	3308
No. of parameters	299
H-atom treatment	All H-atom parameters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.22, -0.18

Computer programs: *APEX3* and *SAINT* (Bruker, 2016), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *DIAMOND* (Brandenburg & Putz, 2012) and *SHELXTL* (Sheldrick, 2008).

Details of the C-H··· π (ring) interactions (purple dotted lines) and the N-H···O hydrogen bond (blue dotted line) [symmetry codes: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $1 - x, -\frac{1}{2} + y, \frac{3}{2} - z$; (iii) $-x, -\frac{1}{2} + y, \frac{3}{2} - z$; (iv) $x, \frac{3}{2} - y, \frac{1}{2} + z$].

Synthesis and crystallization

To a solution of dehydroacetic acid (0.168 g, 1 mmol), copper(II) sulfate pentahydrate (0.249 g, 1 mmol) was added as a catalyst together with a solution of phenylhydrazine (0.099 ml, 1 mmol) in absolute ethanol (30 ml). The reaction mixture was stirred for 3 h at 351 K. Colorless block-like crystals were obtained after cooling the reaction to 298 K (yield = 67%; m.p. = 523 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the

Tulane Crystallography Laboratory are gratefully acknowledged.

References

- Badawey, E. A. M. & El-Ashmawey, I. M. (1998). *Eur. J. Med. Chem.* **33**, 349–361.
- Brandenburg, K. & Putz, H. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Das, N., Verma, A., Shrivastava, P. K. & Shrivastava, S. K. (2008). Indian J. Chem. Sect. B, 47, 1555–1558.
- Sahu, S. K., Azam, A. M., Banerjee, M., Choudhary, P., Sutradhar, S., Panda, P. K. & Misra, P. K. (2007). J. Indian Chem. Soc. 84, 1011– 1015.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Singh, D. & Singh, D. (1991). J. Indian. Chem. Soc. 68, 165–167.
- Higashi, Y., Jitsuiki, D., Chayama, K. & Yoshizumi, M. (2006). Recent Patents Cardiovascular Drug Discov. 1, 85–93.

full crystallographic data

IUCrData (2017). **2**, x170853 [https://doi.org/10.1107/S2414314617008537]

5-Methyl-4-(3-methyl-1-phenyl-1*H*-pyrazol-4-yl)-2-phenyl-2,3-dihydro-1*H*-pyrazol-3-one

Ismail Ghandour, Joel T. Mague, Abdelouahed Bouayad, Said Chakroune, El Mokhtar Essassi and Youssef Kandri Rodi

5-Methyl-4-(3-methyl-1-phenyl-1*H*-pyrazol-4-yl)-2-phenyl-2,3-dihydro-1*H*-pyrazol-3-one

Crystal data

 $C_{20}H_{18}N_4O$ $M_r = 330.38$ Monoclinic, $P2_1/c$ a = 18.2838 (13) Å b = 7.7956 (6) Å c = 11.8081 (8) Å $\beta = 100.393 (3)^{\circ}$ $V = 1655.4 (2) Å^3$ Z = 4

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro-focus source
Mirror monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2016)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.093$ S = 1.053308 reflections 299 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 696 $D_x = 1.326 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9980 reflections $\theta = 2.5-74.7^{\circ}$ $\mu = 0.68 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.22 \times 0.18 \times 0.10 \text{ mm}$

 $T_{\min} = 0.86, T_{\max} = 0.94$ 12696 measured reflections 308 independent reflections 3049 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{\max} = 74.7^{\circ}, \theta_{\min} = 4.9^{\circ}$ $h = -22 \rightarrow 21$ $k = -9 \rightarrow 8$ $l = -14 \rightarrow 14$

Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map All H-atom parameters refined $w = 1/[\sigma^2(F_o^2) + (0.0463P)^2 + 0.5397P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.22$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³ Extinction correction: *SHELXL2014* (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc²\lambda³/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0106 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.21528 (5)	0.21776 (12)	0.67688 (6)	0.0285 (2)	
N1	0.19857 (5)	0.27643 (12)	0.86378 (7)	0.0197 (2)	
N2	0.24072 (5)	0.35100 (12)	0.96039 (7)	0.0201 (2)	
H2A	0.2330 (9)	0.319 (2)	1.0348 (14)	0.038 (4)*	
N3	0.43012 (5)	0.45260 (12)	0.61521 (8)	0.0230 (2)	
N4	0.36552 (5)	0.46088 (12)	0.65819 (8)	0.0200 (2)	
C1	0.12381 (6)	0.22855 (14)	0.86357 (9)	0.0205 (2)	
C2	0.08809 (7)	0.28638 (17)	0.95115 (10)	0.0284 (3)	
H2	0.1155 (9)	0.361 (2)	1.0123 (14)	0.037 (4)*	
C3	0.01570 (7)	0.2340 (2)	0.95303 (12)	0.0366 (3)	
H3	-0.0102 (10)	0.275 (2)	1.0193 (16)	0.053 (5)*	
C4	-0.02153 (7)	0.12675 (19)	0.86882 (12)	0.0368 (3)	
H4	-0.0718 (10)	0.086 (2)	0.8707 (15)	0.046 (4)*	
C5	0.01404 (7)	0.07181 (18)	0.78120 (12)	0.0339 (3)	
Н5	-0.0117 (9)	-0.007(2)	0.7206 (14)	0.045 (4)*	
C6	0.08652 (7)	0.12168 (16)	0.77770 (10)	0.0279 (3)	
H6	0.1116 (9)	0.084 (2)	0.7157 (13)	0.034 (4)*	
C7	0.23913 (6)	0.27631 (14)	0.77497 (9)	0.0203 (2)	
C8	0.30915 (6)	0.35407 (13)	0.82245 (9)	0.0193 (2)	
C9	0.30790 (6)	0.39215 (13)	0.93601 (9)	0.0194 (2)	
C10	0.36562 (7)	0.46954 (16)	1.02632 (10)	0.0260 (3)	
H10A	0.3676 (12)	0.418 (3)	1.099 (2)	0.080 (7)*	
H10B	0.3533 (12)	0.589 (3)	1.0386 (18)	0.072 (6)*	
H10C	0.4149 (13)	0.468 (3)	1.0048 (19)	0.073 (6)*	
C11	0.37120 (6)	0.37597 (14)	0.76121 (9)	0.0196 (2)	
C12	0.44289 (6)	0.31276 (15)	0.78571 (10)	0.0229 (2)	
H12	0.4657 (9)	0.2424 (19)	0.8532 (13)	0.033 (4)*	
C13	0.47676 (6)	0.36365 (15)	0.69282 (10)	0.0234 (2)	
C14	0.55367 (7)	0.32664 (19)	0.67266 (12)	0.0324 (3)	
H14A	0.5929 (12)	0.389 (3)	0.7326 (19)	0.071 (6)*	
H14B	0.5649 (12)	0.203 (3)	0.6810 (18)	0.072 (6)*	
H14C	0.5598 (10)	0.364 (2)	0.5934 (15)	0.046 (5)*	
C15	0.30487 (6)	0.55447 (13)	0.59520 (9)	0.0202 (2)	
C16	0.29122 (7)	0.54406 (14)	0.47580 (9)	0.0237 (2)	
H16	0.3224 (8)	0.4722 (18)	0.4379 (12)	0.028 (4)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C17	0.23177 (7)	0.63393 (16)	0.41357 (10)	0.0291 (3)	
H17	0.2205 (8)	0.622 (2)	0.3278 (14)	0.035 (4)*	
C18	0.18726 (7)	0.73638 (16)	0.46884 (12)	0.0322 (3)	
H18	0.1438 (10)	0.800(2)	0.4241 (15)	0.045 (4)*	
C19	0.20264 (7)	0.74963 (17)	0.58769 (12)	0.0316 (3)	
H19	0.1711 (9)	0.821 (2)	0.6277 (14)	0.045 (4)*	
C20	0.26126 (7)	0.65856 (15)	0.65170 (10)	0.0253 (3)	
H20	0.2732 (8)	0.6686 (19)	0.7353 (13)	0.031 (4)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0274 (4)	0.0447 (5)	0.0145 (4)	-0.0073 (4)	0.0070 (3)	-0.0068 (3)
N1	0.0204 (5)	0.0261 (5)	0.0134 (4)	-0.0009 (3)	0.0052 (3)	-0.0016 (3)
N2	0.0233 (5)	0.0250 (5)	0.0127 (4)	-0.0012 (4)	0.0050 (4)	-0.0012 (3)
N3	0.0205 (5)	0.0274 (5)	0.0239 (5)	-0.0001 (4)	0.0111 (4)	0.0004 (4)
N4	0.0203 (5)	0.0234 (5)	0.0184 (4)	0.0008 (3)	0.0087 (4)	0.0019 (3)
C1	0.0193 (5)	0.0243 (5)	0.0189 (5)	0.0019 (4)	0.0058 (4)	0.0043 (4)
C2	0.0238 (6)	0.0416 (7)	0.0211 (5)	0.0027 (5)	0.0078 (5)	0.0000 (5)
C3	0.0257 (6)	0.0572 (9)	0.0302 (6)	0.0025 (6)	0.0136 (5)	0.0023 (6)
C4	0.0228 (6)	0.0478 (8)	0.0416 (7)	-0.0027 (5)	0.0109 (5)	0.0065 (6)
C5	0.0261 (6)	0.0376 (7)	0.0380 (7)	-0.0055 (5)	0.0058 (5)	-0.0031 (6)
C6	0.0252 (6)	0.0320 (6)	0.0277 (6)	-0.0014 (5)	0.0080 (5)	-0.0036 (5)
C7	0.0226 (5)	0.0247 (5)	0.0150 (5)	0.0010 (4)	0.0069 (4)	0.0009 (4)
C8	0.0218 (5)	0.0214 (5)	0.0158 (5)	-0.0001 (4)	0.0063 (4)	0.0015 (4)
C9	0.0225 (5)	0.0192 (5)	0.0171 (5)	0.0008 (4)	0.0051 (4)	0.0019 (4)
C10	0.0291 (6)	0.0291 (6)	0.0193 (5)	-0.0039 (5)	0.0033 (5)	-0.0025 (4)
C11	0.0226 (5)	0.0211 (5)	0.0160 (5)	-0.0011 (4)	0.0060 (4)	0.0000 (4)
C12	0.0229 (6)	0.0250 (6)	0.0210 (5)	0.0011 (4)	0.0048 (4)	0.0008 (4)
C13	0.0215 (5)	0.0247 (6)	0.0252 (5)	0.0000 (4)	0.0073 (4)	-0.0018 (4)
C14	0.0231 (6)	0.0401 (7)	0.0365 (7)	0.0047 (5)	0.0117 (5)	0.0007 (6)
C15	0.0207 (5)	0.0202 (5)	0.0204 (5)	-0.0025 (4)	0.0056 (4)	0.0022 (4)
C16	0.0282 (6)	0.0228 (5)	0.0209 (5)	-0.0051 (4)	0.0071 (5)	0.0005 (4)
C17	0.0336 (7)	0.0282 (6)	0.0236 (6)	-0.0082 (5)	0.0000 (5)	0.0055 (5)
C18	0.0277 (6)	0.0300 (6)	0.0367 (7)	-0.0001 (5)	-0.0004 (5)	0.0090 (5)
C19	0.0287 (6)	0.0302 (6)	0.0368 (7)	0.0056 (5)	0.0086 (5)	0.0034 (5)
C20	0.0266 (6)	0.0268 (6)	0.0239 (6)	0.0031 (4)	0.0079 (5)	0.0013 (4)

Geometric parameters (Å, °)

01—C7	1.2482 (13)	C8—C11	1.4611 (14)
N1—N2	1.3842 (12)	C9—C10	1.4862 (16)
N1—C7	1.3894 (13)	C10—H10A	0.94 (2)
N1-C1	1.4165 (14)	C10—H10B	0.98 (2)
N2-C9	1.3498 (14)	C10—H10C	0.98 (2)
N2—H2A	0.948 (17)	C11—C12	1.3813 (16)
N3—C13	1.3289 (15)	C12—C13	1.4102 (15)
N3—N4	1.3686 (12)	C12—H12	0.995 (16)

N4—C11	1.3723 (13)	C13—C14	1.4961 (16)
N4—C15	1.4204 (14)	C14—H14A	1.03 (2)
C1—C6	1.3920 (17)	C14—H14B	0.99 (2)
C1—C2	1.3939 (15)	C14—H14C	1.006 (18)
C2—C3	1.3890 (18)	C15—C16	1.3892 (15)
C2—H2	0.991 (16)	C15—C20	1.3897 (15)
C3—C4	1.381 (2)	C16—C17	1.3871 (17)
С3—Н3	1.036 (19)	C16—H16	0.965 (15)
C4—C5	1.386 (2)	C17—C18	1.3848 (19)
C4—H4	0.977 (18)	C17—H17	1,000 (16)
C5-C6	1 3887 (17)	C18-C19	1 3845 (19)
C5—H5	0.997(17)	C18—H18	1.001(17)
Сб—Нб	0.976 (16)	C19-C20	1 3899 (18)
C7-C8	14359(15)	C19—H19	0.983(18)
C_{8}	1.3777(14)	C_{20} H20	0.905(10)
0-09	1.5777 (14)	C20—1120	0.975 (15)
N2—N1—C7	109.19 (9)	C9—C10—H10B	110.0 (13)
N2—N1—C1	120.38 (8)	H10A—C10—H10B	104.2 (18)
C7—N1—C1	130.15 (9)	C9—C10—H10C	112.2 (13)
C9—N2—N1	108.47 (8)	H10A—C10—H10C	110.2 (18)
C9—N2—H2A	123.6 (10)	H10B—C10—H10C	107.3 (18)
N1—N2—H2A	120.0 (10)	N4—C11—C12	105.95 (9)
C13—N3—N4	104.96 (9)	N4—C11—C8	123.62 (10)
N3—N4—C11	111.94 (9)	C12—C11—C8	130.31 (10)
N3—N4—C15	118.33 (8)	C11—C12—C13	105.67 (10)
C11—N4—C15	129.72 (9)	C11—C12—H12	127.6 (9)
C6-C1-C2	120.03(11)	C13—C12—H12	1267(9)
C6-C1-N1	120.32(10)	N3-C13-C12	11147(10)
C2-C1-N1	119.64(10)	N3-C13-C14	119 70 (10)
$C_3 - C_2 - C_1$	119.49 (12)	C12-C13-C14	128 81 (11)
$C_3 - C_2 - H_2$	121 3 (9)	C13 - C14 - H14A	120.01(11) 110.9(12)
C1 - C2 - H2	119 2 (9)	C13— $C14$ — $H14B$	110.9(12)
C4-C3-C2	120.90(12)	$H_{14} - C_{14} - H_{14}B$	106.5(17)
C4-C3-H3	120.90(12)	C13 - C14 - H14C	100.9(17)
C2-C3-H3	119 1 (10)	$H_{14} - C_{14} - H_{14} C_{14}$	108.7(15)
$C_{2} = C_{3} = C_{4} = C_{5}$	119.22 (12)	$H_{14B} - C_{14} - H_{14C}$	108.7(15) 108.8(15)
$C_3 - C_4 - H_4$	121.7(10)	C_{16} C_{15} C_{20}	100.0(13) 120 51 (11)
C_{5} C_{4} H_{4}	121.7(10) 1191(10)	C_{16} C_{15} C_{20}	118 80 (10)
C_{4}	120.97(13)	$C_{10} - C_{15} - N_{4}$	120.66 (10)
$C_{4} = C_{5} = H_{5}$	120.97(13) 120.3(10)	$C_{20} = C_{15} = N_{4}$	120.00(10) 110.23(11)
C4-C5-H5	120.3(10) 118.7(10)	C17 - C16 - C15	119.23(11) 121.2(8)
$C_{0} = C_{0} = C_{0}$	110.7(10) 110.28(11)	$C_{17} = C_{10} = 110$	121.3(8)
$C_{5} = C_{6} = U_{6}$	117.30 (11)	C_{13} C_{10} C_{10} C_{16}	117.4 (0)
$C_{1} C_{6} H_{6}$	121.2(9) 1104(0)	$C_{10} = C_{17} = C_{10}$	120.04(11)
C1 = C0 = 110 O1 = C7 = N1	117. 4 (7) 122.78 (10)	$C_{10} - C_{17} - \Pi_{17}$	120.0(9)
$O_1 = C_7 = O_1$	123.70(10) 130.87(10)	$C_{10} = C_{17} = C_{17}$	119.2 (9) 110.44 (12)
$\begin{array}{c} 01 \\ -0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	150.07 (10) 105.25 (0)	$C_{17} - C_{10} - C_{17}$	119.44(12) 110.7(10)
$\frac{1}{2} - \frac{1}{2} - \frac{1}$	103.33 (9)	$C_{17} = C_{10} = H_{10}$	119.7(10)
U7-U0-U/	107.30 (9)	U1/U10	120.9 (10)

C9—C8—C11	127.39 (10)	C18—C19—C20	120.58 (12)
C7—C8—C11	124.98 (9)	C18—C19—H19	120.0 (10)
N2—C9—C8	109.39 (9)	С20—С19—Н19	119.4 (10)
N2-C9-C10	119.95 (9)	C15—C20—C19	119.35 (11)
C8—C9—C10	130.65 (10)	C15—C20—H20	119.3 (9)
C9—C10—H10A	112.6 (14)	С19—С20—Н20	121.3 (9)
C7—N1—N2—C9	-2.24 (12)	C7—C8—C9—C10	178.44 (11)
C1—N1—N2—C9	-176.77 (9)	C11—C8—C9—C10	2.4 (2)
C13—N3—N4—C11	-0.78 (12)	N3—N4—C11—C12	0.82 (12)
C13—N3—N4—C15	177.91 (9)	C15—N4—C11—C12	-177.69 (10)
N2—N1—C1—C6	-166.17 (10)	N3—N4—C11—C8	-175.64 (10)
C7—N1—C1—C6	20.60 (18)	C15—N4—C11—C8	5.86 (17)
N2—N1—C1—C2	12.62 (15)	C9—C8—C11—N4	-128.38 (12)
C7—N1—C1—C2	-160.61 (11)	C7—C8—C11—N4	56.22 (16)
C6—C1—C2—C3	1.15 (19)	C9—C8—C11—C12	56.09 (18)
N1—C1—C2—C3	-177.64 (11)	C7—C8—C11—C12	-119.31 (14)
C1—C2—C3—C4	-0.5 (2)	N4-C11-C12-C13	-0.51 (12)
C2—C3—C4—C5	-0.3 (2)	C8-C11-C12-C13	175.62 (11)
C3—C4—C5—C6	0.6 (2)	N4—N3—C13—C12	0.43 (13)
C4—C5—C6—C1	0.0 (2)	N4—N3—C13—C14	178.99 (10)
C2—C1—C6—C5	-0.85 (18)	C11—C12—C13—N3	0.05 (13)
N1—C1—C6—C5	177.93 (11)	C11—C12—C13—C14	-178.34 (12)
N2—N1—C7—O1	-179.69 (10)	N3—N4—C15—C16	39.09 (14)
C1—N1—C7—O1	-5.87 (19)	C11—N4—C15—C16	-142.49 (11)
N2—N1—C7—C8	0.41 (12)	N3—N4—C15—C20	-139.05 (11)
C1—N1—C7—C8	174.23 (10)	C11—N4—C15—C20	39.37 (16)
O1—C7—C8—C9	-178.38 (12)	C20-C15-C16-C17	-2.36 (16)
N1—C7—C8—C9	1.52 (12)	N4-C15-C16-C17	179.50 (10)
O1—C7—C8—C11	-2.21 (19)	C15—C16—C17—C18	1.51 (17)
N1—C7—C8—C11	177.68 (10)	C16—C17—C18—C19	0.29 (18)
N1—N2—C9—C8	3.23 (12)	C17—C18—C19—C20	-1.27 (19)
N1—N2—C9—C10	-177.99 (9)	C16—C15—C20—C19	1.40 (17)
C7—C8—C9—N2	-2.95 (12)	N4-C15-C20-C19	179.50 (11)
C11—C8—C9—N2	-179.00 (10)	C18—C19—C20—C15	0.44 (19)

Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg4 are the centroids of the N3/N4/C11–C13, C1–C6 and C15–C20 rings, respectively.

D—H…A	<i>D</i> —Н	H <i>A</i>	D····A	D—H…A
		1,500 (15)	2 722 ((12)	
$N2-H2A\cdotsO1^{4}$	0.948 (17)	1.788 (17)	2.7326 (12)	173.8 (15)
C2—H2···O1 ⁱ	0.991 (16)	2.490 (16)	3.2058 (15)	128.8 (12)
С6—Н6…О1	0.976 (16)	2.282 (16)	2.9210 (15)	122.2 (12)
С5—Н5…Сд3іі	0.997 (17)	2.706 (16)	3.6201 (15)	153.0 (12)
C10—H10 A ···Cg2 ⁱⁱⁱ	0.94 (2)	2.79 (2)	3.5373 (13)	136.5 (18)

				data reports
C10—H10 <i>B</i> ··· <i>Cg</i> 4 ^{iv}	0.98 (2)	2.83 (2)	3.7117 (14)	150.3 (17)
C14—H14 B ···Cg2 ^v	0.99 (2)	2.77 (2)	3.6861 (16)	154.9 (16)

Symmetry codes: (i) *x*, -*y*+1/2, *z*+1/2; (ii) -*x*, *y*-1/2, -*z*+3/2; (iii) *x*, -*y*-1/2, *z*-1/2; (iv) *x*, -*y*+1/2, *z*-1/2; (v) -*x*+1, *y*-1/2, -*z*+3/2.