

ISSN 2414-3146

Received 22 May 2017 Accepted 31 May 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; cyclic oligosilane; chair conformation.

CCDC reference: 1553273

Structural data: full structural data are available from iucrdata.iucr.org

Dodecaallylhexasilacyclohexane

Yoshiyuki Mizuhata, Yamato Omatsu and Norihiro Tokitoh*

Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan. *Correspondence e-mail: tokitoh@boc.kuicr.kyoto-u.ac.jp

The molecule of the title compound, $C_{36}H_{60}Si_6$, exhibits point group symmetry C_i , with the centre of inversion located at the centre of the Si₆ ring. The Si₆ ring has a chair conformation. In the crystal, molecules are linked *via* C-H··· π (allyl) interactions.

Structure description

Hexasilacyclohexane derivatives, *i.e.* six-membered cyclic oligosilanes, are of interest from the viewpoint of their unique structures and properties. However, it is challenging to prepare such cyclic oligosilanes because of synthetic difficulties, low yields and long purification times. While a number of crystal structures for hexasilacyclohexane derivatives have been reported, those for derivatives with twelve identical carbon substituents are limited to dodecamethyl (Carrell & Donohue, 1972) and dodecaphenyl (M'hirsi & Brini, 1968; Dräger & Walter, 1981) as well as to a hexa(1,1-silole) derivative (Yamaguchi *et al.*, 1999). Herein, we describe the synthesis and structural characterization of dodecaallylhexasilacyclohexane by utilizing an effective synthesis method, *viz.* the reaction of [pedeta·SiH₂Cl]₂Si₆Cl₁₄ (pedeta = N,N,N',N''-pentaethyldiethylenetriamine; Choi *et al.*, 2001) with allylmagnesium bromide.

The crystal structure comprises one molecule of the title compound per unit cell (Fig. 1). The molecule exhibits point group symmetry C_i , with the centre of inversion at the centre of the Si₆ ring. The latter has a chair conformation with typical bond lengths in the range of 2.3500 (6)–2.3598 (5) Å. The average value of the Si–Si bond lengths (2.354 Å) lies between those for the dodecamethyl (2.338 Å) and dodecaphenyl derivatives (2.394 Å). The Si–Si–Si angles are almost the same and range from 110.35 (2)–110.46 (2)°; the average Si–Si–Si angle (110.4°) is smaller than that of Si₆Me₁₂ (111.9°) and of Si₆Ph₁₂ (113.8°). In the crystal structure, molecules are linked by several C–H… π (allyl) interactions into a three-dimensional network (Table 1, Fig. 2).

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity. Unlabelled atoms are related by labelled atoms by the symmetry code (-x + 1, -y + 1, -z + 1).

Synthesis and crystallization

To a THF solution of $[pedeta \cdot SiH_2Cl]_2Si_6Cl_{14}$ (1.20 g, 0.936 mmol) was slowly added a 1.0 *M* solution of allylmagnesium bromide in diethyl ether (15 ml, 15 mmol) at 293 K. After stirring for 48 h at 363 K, the mixture was treated

Figure 2

Parts of the crystal packing of the title compound, emphasizing intermolecular C-H··· π (allyl) interactions (light-blue dotted lines). [Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x, -y + 1, -z + 1.]

Table 1			
Hydrogen-bond	geometry	(Å,	°).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
0.95	2.84	3.622 (3)	140
0.99	2.82	3.669 (2)	145
0.95	2.88	3.678 (4)	142
0.99	2.75	3.684 (3)	159
	<i>D</i> -H 0.95 0.99 0.95 0.99	D−H H···A 0.95 2.84 0.99 2.82 0.95 2.88 0.99 2.75	$D-H$ $H \cdots A$ $D \cdots A$ 0.952.843.622 (3)0.992.823.669 (2)0.952.883.678 (4)0.992.753.684 (3)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x, -y + 1, -z + 1.

C₃₆H₆₀Si₆ 661.38

103

1

Triclinic, $P\overline{1}$

1005.90 (5)

Μο Κα

0.23

9.6036 (2), 10.8060 (3), 11.4686 (3)

Multi-scan (MULABS; Blessing,

H-atom parameters constrained

108.617 (2), 100.558 (2), 109.4774 (12)

 $0.25 \times 0.20 \times 0.20$

Rigaku Saturn

1995)

0.45, -0.18

Table 2Experimental details.

Crystal data Chemical formula М., Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) $V(Å^3)$ Ζ Radiation type $\mu \text{ (mm}^{-1}\text{)}$ Crystal size (mm) Data collection Diffractometer Absorption correction $T_{\rm min}$ Τ

	,
T_{\min}, T_{\max}	0.902, 0.953
No. of measured, independent and $2\pi \sigma(D)$ reflections	13675, 3630, 3398
$R_{\rm int}$	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.600
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.032, 0.089, 1.04
No. of reflections	3630
No. of parameters	190

Computer programs: CrystalClear (Rigaku, 1999), HKL-2000 (Otwinowski & Minor, 1997), SHELXT (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), Yadokari-XG (Wakita, 2001; Kabuto et al., 2009), Mercury (Macrae et al., 2008), CrystalMaker (Palmer, 2007) and publCIF (Westrip, 2010).

with a saturated aqueous NH_4Cl solution and extracted with diethyl ether. The combined organic layer was dried over Na_2SO_4 and concentrated under vacuum. The crude material was then purified by column chromatography on silica gel (eluting with hexane) to give the title compound (275 mg, 0.416 mmol, 44%). Single crystals were obtained by recrystallization from a hexane solution.

Refinement

H-atom treatment

 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This work was supported by Integrated Research Consortium on Chemical Science (IRCCS) and Kyoto University Research Coordination Alliance (KURCA). This study was also supported by the Joint Usage/Research Center (JURC, Institute for Chemical Research (ICR), Kyoto University) by providing access to JEOL JNM-ECA600 and Bruker Avance III 600US Plus NMR spectrometers. We are grateful for computation time, which was provided by the Super Computer System (ICR, Kyoto University). Elemental analyses were carried out at the Microanalytical Laboratory of the Institute for Chemical Research (Kyoto University).

Funding information

Funding for this research was provided by: JSPS KAKENHI (award Nos. 16H04110, 26410044, 24109013).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Carrell, H. L. & Donohue, J. (1972). Acta Cryst. B28, 1566-1571.
- Choi, S.-B., Kim, B.-K., Boudjouk, P. & Grier, D. G. (2001). J. Am. Chem. Soc. 123, 8117–8118.

- Dräger, M. & Walter, K. G. (1981). Z. Anorg. Allg. Chem. 479, 65-74.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, **51**, 218–224.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. **41**, 466–470.
- M'hirsi, M. & Brini, M. (1968). Bull. Soc. Chim. Fr. p. 1509.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Palmer, D. (2007). CrystalMaker. CrystalMaker, Bicester, England.
- Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yamaguchi, S., Jin, R. & Tamao, K. (1999). J. Am. Chem. Soc. 121, 2937–2938.

full crystallographic data

IUCrData (2017). 2, x170807 [https://doi.org/10.1107/S2414314617008070]

Dodecaallylhexasilacyclohexane

Yoshiyuki Mizuhata, Yamato Omatsu and Norihiro Tokitoh

1,1,2,2,3,3,4,4,5,5,6,6-Dodecaallylhexasilinane

Crystal data

 $C_{36}H_{60}Si_{6}$ $M_{r} = 661.38$ Triclinic, $P\overline{1}$ a = 9.6036 (2) Å b = 10.8060 (3) Å c = 11.4686 (3) Å $\alpha = 108.617 (2)^{\circ}$ $\beta = 100.558 (2)^{\circ}$ $\gamma = 109.4774 (12)^{\circ}$ $V = 1005.90 (5) Å^{3}$

Data collection

Rigaku Saturn diffractometer Radiation source: fine-focus sealed tube Detector resolution: 28.5714 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*MULABS*; Blessing, 1995) $T_{\min} = 0.902, T_{\max} = 0.953$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.089$	$w = 1/[\sigma^2(F_o^2) + (0.0439P)^2 + 0.4743P]$
S = 1.04	where $P = (F_0^2 + 2F_c^2)/3$
3630 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
190 parameters	$\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Z = 1 F(000) = 360 $D_x = 1.092 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 13675 reflections $\theta = 2.2-25.3^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 103 K Prism, colorless $0.25 \times 0.20 \times 0.20 \text{ mm}$

13675 measured reflections 3630 independent reflections 3398 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 25.3^\circ, \ \theta_{min} = 2.2^\circ$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Sil	0.62028 (5)	0.70739 (4)	0.68222 (4)	0.02374 (12)	
Si2	0.39667 (5)	0.66287 (4)	0.52192 (4)	0.02298 (12)	
Si3	0.38195 (5)	0.51111 (4)	0.31623 (4)	0.02389 (12)	
C1	0.79247 (18)	0.80929 (17)	0.63994 (16)	0.0298 (3)	
H1	0.777913	0.756251	0.547308	0.036*	
H1A	0.795241	0.904968	0.651480	0.036*	
C2	0.94384 (19)	0.82874 (18)	0.72153 (16)	0.0328 (4)	
H2	0.962604	0.744968	0.706635	0.039*	
C3	1.0536 (2)	0.9493 (2)	0.81160 (18)	0.0437 (4)	
Н3	1.040539	1.036134	0.830237	0.052*	
H3A	1.146668	0.950252	0.858559	0.052*	
C4	0.6406 (2)	0.82817 (18)	0.85323 (15)	0.0340 (4)	
H4	0.564939	0.771180	0.884893	0.041*	
H4A	0.746680	0.858916	0.911725	0.041*	
C5	0.6143 (2)	0.95884 (18)	0.86206 (16)	0.0385 (4)	
Н5	0.509679	0.948784	0.846449	0.046*	
C6	0.7207 (2)	1.0850 (2)	0.88904 (19)	0.0476 (5)	
H6	0.827075	1.100392	0.905397	0.057*	
H6A	0.692275	1.161954	0.892422	0.057*	
C7	0.40334 (19)	0.84318 (16)	0.52689 (16)	0.0321 (4)	
H7	0.405292	0.901263	0.614148	0.038*	
H7A	0.501467	0.895855	0.514069	0.038*	
C8	0.2692 (2)	0.82944 (17)	0.42707 (17)	0.0369 (4)	
H8	0.272856	0.804777	0.340775	0.044*	
C9	0.1460 (2)	0.8484 (2)	0.4476 (2)	0.0471 (5)	
H9	0.137296	0.873155	0.532377	0.057*	
H9A	0.065728	0.837287	0.377657	0.057*	
C10	0.20865 (18)	0.57289 (16)	0.55145 (15)	0.0283 (3)	
H10	0.119715	0.562799	0.484119	0.034*	
H10A	0.194912	0.475100	0.542961	0.034*	
C11	0.20665 (19)	0.65531 (18)	0.68227 (17)	0.0346 (4)	
H11	0.220179	0.751764	0.702115	0.041*	
C12	0.1882 (2)	0.6082 (2)	0.77254 (18)	0.0476 (5)	
H12	0.174187	0.512519	0.757449	0.057*	
H12A	0.188669	0.669719	0.853299	0.057*	
C13	0.55616 (19)	0.59051 (17)	0.26470 (16)	0.0321 (4)	
H13	0.648570	0.589225	0.318371	0.039*	
H13A	0.535167	0.527929	0.173060	0.039*	
C14	0.5950 (2)	0.7412 (2)	0.2765 (2)	0.0416 (4)	
H14	0.638415	0.815402	0.361902	0.050*	
C15	0.5749 (3)	0.7797 (2)	0.1812 (2)	0.0544 (5)	
H15	0.531764	0.709246	0.093991	0.065*	
H15A	0.603140	0.878307	0.198303	0.065*	
C16	0.2031 (2)	0.48798 (18)	0.19265 (16)	0.0345 (4)	
H16	0.114083	0.466976	0.226362	0.041*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	0 222759	0.570007	0 102665	0.041*
HIOA	0.223758	0.5/999/	0.183003	0.041*
C17	0.1580 (2)	0.37190 (19)	0.06203 (17)	0.0397 (4)
H17	0.105052	0.275635	0.051906	0.048*
C18	0.1842 (3)	0.3903 (3)	-0.0389 (2)	0.0637 (6)
H18	0.236804	0.484745	-0.033199	0.076*
H18A	0.151028	0.309423	-0.118898	0.076*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sil	0.0259 (2)	0.0202 (2)	0.0237 (2)	0.00853 (16)	0.00824 (16)	0.00849 (16)
Si2	0.0256 (2)	0.0194 (2)	0.0252 (2)	0.00936 (16)	0.00987 (17)	0.00997 (16)
Si3	0.0279 (2)	0.0223 (2)	0.0239 (2)	0.01044 (17)	0.01077 (17)	0.01121 (17)
C1	0.0302 (8)	0.0251 (8)	0.0317 (8)	0.0087 (6)	0.0105 (7)	0.0117 (6)
C2	0.0299 (8)	0.0325 (8)	0.0394 (9)	0.0129 (7)	0.0151 (7)	0.0169 (7)
C3	0.0344 (9)	0.0455 (11)	0.0412 (10)	0.0133 (8)	0.0100 (8)	0.0104 (8)
C4	0.0406 (9)	0.0321 (8)	0.0265 (8)	0.0171 (7)	0.0090 (7)	0.0078 (7)
C5	0.0460 (10)	0.0358 (9)	0.0295 (9)	0.0205 (8)	0.0081 (7)	0.0070 (7)
C6	0.0543 (12)	0.0375 (10)	0.0427 (11)	0.0194 (9)	0.0101 (9)	0.0093 (8)
C7	0.0360 (9)	0.0238 (8)	0.0388 (9)	0.0134 (7)	0.0128 (7)	0.0144 (7)
C8	0.0546 (11)	0.0264 (8)	0.0330 (9)	0.0196 (8)	0.0113 (8)	0.0150 (7)
C9	0.0438 (10)	0.0429 (10)	0.0576 (12)	0.0192 (9)	0.0082 (9)	0.0278 (9)
C10	0.0264 (8)	0.0276 (8)	0.0319 (8)	0.0105 (6)	0.0108 (6)	0.0135 (7)
C11	0.0293 (8)	0.0324 (9)	0.0398 (9)	0.0129 (7)	0.0155 (7)	0.0097 (7)
C12	0.0481 (11)	0.0658 (13)	0.0377 (10)	0.0340 (10)	0.0197 (9)	0.0182 (9)
C13	0.0365 (9)	0.0326 (8)	0.0359 (9)	0.0161 (7)	0.0196 (7)	0.0186 (7)
C14	0.0468 (10)	0.0387 (10)	0.0523 (11)	0.0202 (8)	0.0303 (9)	0.0242 (9)
C15	0.0679 (14)	0.0512 (12)	0.0698 (14)	0.0315 (11)	0.0393 (12)	0.0396 (11)
C16	0.0388 (9)	0.0373 (9)	0.0311 (9)	0.0195 (8)	0.0104 (7)	0.0156 (7)
C17	0.0420 (10)	0.0356 (9)	0.0348 (9)	0.0158 (8)	0.0038 (8)	0.0117 (8)
C18	0.0889 (18)	0.0539 (13)	0.0342 (11)	0.0196 (12)	0.0166 (11)	0.0138 (10)

Geometric parameters (Å, °)

Sil—Cl	1.8980 (16)	С8—С9	1.315 (3)
Sil—C4	1.9089 (16)	C8—H8	0.9500
Si1—Si2	2.3500 (6)	С9—Н9	0.9500
Si1—Si3 ⁱ	2.3598 (6)	С9—Н9А	0.9500
Si2-C10	1.8931 (15)	C10—C11	1.488 (2)
Si2—C7	1.9100 (16)	C10—H10	0.9900
Si2—Si3	2.3511 (6)	C10—H10A	0.9900
Si3—C13	1.9009 (16)	C11—C12	1.306 (3)
Si3—C16	1.9015 (17)	C11—H11	0.9500
C1—C2	1.485 (2)	C12—H12	0.9500
C1—H1	0.9900	C12—H12A	0.9500
C1—H1A	0.9900	C13—C14	1.499 (2)
C2—C3	1.304 (2)	C13—H13	0.9900
С2—Н2	0.9500	C13—H13A	0.9900

С3—Н3	0.9500	C14—C15	1.292 (3)
С3—НЗА	0.9500	C14—H14	0.9500
C4—C5	1.491 (2)	C15—H15	0.9500
C4—H4	0.9900	C15—H15A	0.9500
C4—H4A	0.9900	C16—C17	1.485 (2)
C5—C6	1.298 (3)	С16—Н16	0.9900
С5—Н5	0.9500	С16—Н16А	0.9900
С6—Н6	0.9500	C17—C18	1.290 (3)
C6—H6A	0.9500	С17—Н17	0.9500
C7—C8	1.489 (2)	C18—H18	0.9500
C7—H7	0.9900	C18—H18A	0.9500
C7—H7A	0.9900		0.9500
	0.9900		
C1—Si1—C4	106.79 (8)	С8—С7—Н7А	108.8
C1—Si1—Si2	105.58 (5)	Si2—C7—H7A	108.8
C4—Si1—Si2	113.40 (6)	Н7—С7—Н7А	107.7
C1—Si1—Si3 ⁱ	112.49 (5)	C9—C8—C7	125.87 (17)
C4—Si1—Si3 ⁱ	108.24 (5)	С9—С8—Н8	117.1
Si2—Si1—Si3 ⁱ	110.35 (2)	С7—С8—Н8	117.1
C10—Si2—C7	105.65 (7)	С8—С9—Н9	120.0
C10—Si2—Si1	113.07 (5)	С8—С9—Н9А	120.0
C7—Si2—Si1	108.47 (5)	Н9—С9—Н9А	120.0
C10— $Si2$ — $Si3$	107.10 (5)	C_{11} C_{10} S_{12}	112.41 (11)
C7— $Si2$ — $Si3$	112.04 (5)	$C_{11} - C_{10} - H_{10}$	109.1
Si1—Si2—Si3	110.46(2)	Si2—C10—H10	109.1
C13 = Si3 = C16	106 55 (8)	C11—C10—H10A	109.1
C13— $Si3$ — $Si2$	113.06 (5)	Si2—C10—H10A	109.1
C16—Si3—Si2	107 39 (5)	H10-C10-H10A	107.9
$C13 = Si3 = Si1^{1}$	105.61 (5)	C_{12} C_{11} C_{10}	12647(17)
C16—Si3—Si1 ⁱ	113 91 (6)	C12—C11—H11	116.8
Si2_Si3_Si1 ⁱ	110.38(2)	C10-C11-H11	116.8
C_{2} C_{1} S_{11}	112 56 (11)	$C_{11} - C_{12} - H_{12}$	120.0
$C_2 = C_1 = H_1$	109.1	$C_{11} = C_{12} = H_{12}$	120.0
Sil Cl H1	109.1	$H_{12} C_{12} H_{12A}$	120.0
$C_2 - C_1 - H_1 A$	109.1	C14 - C13 - Si3	114 81 (11)
Sil Cl HIA	109.1	$C_{14} = C_{13} = S_{13}$	108.6
$H_1 = C_1 = H_1 A$	107.8	Si3 C13 H13	108.6
111 - C1 - 111A $C_2 - C_2 - C_1$	107.0	$C_{14} C_{13} H_{13}$	108.6
$C_3 = C_2 = C_1$	120.34 (10)	Si2 C12 H12A	108.6
$C_{1} = C_{2} = H_{2}$	116.7	H12 C12 H12A	107.5
$C_1 = C_2 = H_2$	120.0	1115 - C15 - 1115 A	107.3
$C_2 = C_3 = H_2 \Lambda$	120.0	$C_{13} - C_{14} - C_{13}$	120.00 (19)
$U_2 = C_3 = H_2 A$	120.0	$C_{13} = C_{14} = H_{14}$	117.0
113 - 03 - 113 - 03 - 113 - 03 - 113 - 03 - 113 - 03 - 113 - 03 - 113 - 03 - 0	120.0 114.20(12)	$C_{13} - C_{14} - \Pi_{14}$	117.0
$C_5 = C_4 = S_{11}$	114.30 (12)	$C_{14} = C_{13} = \Pi_{13}$	120.0
$C_3 - C_4 - \Pi_4$ Sil CA HA	100.7	$U_{14} = U_{13} = \Pi_{13}A$	120.0
SII = C4 = II4	100.7	$\Pi J \longrightarrow \Box J \longrightarrow \Pi \Box J \longrightarrow \Box J \square J \longrightarrow \Box J \square J$	120.0
$C_3 - C_4 - H_4 A$	100.7	C17 - C10 - S13	114.17 (12)
511—C4—H4A	108./	UI/UI0HI0	108.7

H4—C4—H4A C6—C5—C4 C6—C5—H5 C4—C5—H5 C5—C6—H6 C5—C6—H6A H6—C6—H6A C8—C7—Si2 C8—C7—H7 Si2—C7—H7	107.6 126.23 (18) 116.9 120.0 120.0 120.0 113.75 (11) 108.8 108.8	Si3—C16—H16 C17—C16—H16A Si3—C16—H16A H16—C16—H16A C18—C17—C16 C18—C17—H17 C16—C17—H17 C17—C18—H18 C17—C18—H18A H18—C18—H18A	108.7 108.7 108.7 107.6 125.72 (19) 117.1 117.1 120.0 120.0 120.0
C4—Si1—C1—C2	66.90 (13)	C7—Si2—C10—C11	-63.26 (13)
Si2—Si1—C1—C2	-172.12 (10)	Si1—Si2—C10—C11	55.23 (12)
Si3 ⁱ —Si1—C1—C2	-51.71 (12)	Si3—Si2—C10—C11	177.14 (10)
Si1—C1—C2—C3	-109.91 (18)	Si2—C10—C11—C12	-121.92 (18)
Si1—C4—C5—C6	-92.8 (2)	Si3—C13—C14—C15	-109.0 (2)
Si2—C7—C8—C9	101.37 (18)	Si3—C16—C17—C18	-102.9 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H··· A
C2 ⁱⁱ —H2 ⁱⁱ ····C11	0.95	2.84	3.622 (3)	140
С7—Н7А…С8ііі	0.99	2.82	3.669 (2)	145
С6—Н6А…С15 ^{ііі}	0.95	2.88	3.678 (4)	142
C16 ^{iv} —H16 ^{iv} …C12	0.99	2.75	3.684 (3)	159

Symmetry codes: (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) -*x*, -*y*+1, -*z*+1.