

ISSN 2414-3146

Received 11 June 2017 Accepted 20 June 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; quinoline ring; π – π stacking interactions; synthesis.

CCDC reference: 1557337

Structural data: full structural data are available from iucrdata.iucr.org

6-Bromoquinoline-8-carbonitrile

Ísmail Çelik,^a Mehmet Akkurt,^b* Salih Ökten,^c Osman Çakmak^d and Cem Cüneyt Ersanlı^e

^aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Maths and Science Education, Division of Science Education, Faculty of Education, Kırıkkale University, 71450, Yahşihan, Kırıkkale, Turkey, ^dDepartment of Nutrition and Dietetics, School of Health Sciences, İstanbul Gelişim University, 34315 Avcılar, İstanbul, Turkey, and ^eDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey. *Correspondence e-mail: akkurt@erciyes.edu.tr

In the title compound, $C_{10}H_5BrN_2$, the whole molecule is essentially planar (r.m.s. deviation = 0.005 Å). The crystal packing features face-to-face π - π stacking interactions [centroid–centroid distance = 3.755 (3) Å] between the pyridine and benzene rings of the quinoline ring systems of adjacent molecules, along the *a*-axis direction. Short Br···Br contacts of 3.5908 (12) Å (compared to a van der Waals separation of 3.70 Å) are also observed.

Structure description

The asymmetric syntheses of 2-cyano-substituted dihydro and tetrahydroquinolines have been achieved using the Reissert reaction (Pauvert *et al.*, 2005) while 8-cyano substituted quinolines have been prepared by the treatment of cyano substituted aniline with several ketones in polar solvents (Ekiz *et al.*, 2016). As the cyclization methods using cyanosubstituted benzene or cyclohexane allow only the synthesis of mono cyano-substituted quinolines, the synthesis of two or more cyano-substituted quinolines has been limited (Ökten & Çakmak, 2015). As part of our studies in this area, the crystal structure of the title compound is now reported.

The title molecule (Fig. 1) is essentially planar, with a maximum deviation of 0.063 (1) Å for atom Br1. All bond lengths and angles are in normal ranges and are comparable with those reported for similar compounds: 2-chloro-8-methyl-3-[(pyrimidin-4-yloxy)methyl]quinoline (Khan *et al.*, 2010), 6,8-dibromoquinoline (Çelik *et al.*, 2010*a*), 3,6,8-tribromoquinoline (Çelik *et al.*, 2010*b*) and 5,7-dibromo-8-methoxyquinoline (Çelik *et al.*, 2017).

Figure 1

View of the title compound, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the packing features face-to-face $\pi - \pi$ stacking interactions $[Cg1 \cdots Cg2^i = 3.755 (3) \text{ Å};$ symmetry code: (i) -1 + x, y, z] between the pyridine (N1/C1-C4/C9; centroid Cg1) and benzene (C4-C9; centroid Cg2) rings of the quinoline ring systems of adjacent molecules, along the *a*-axis direction. Short Br \cdots Br contacts [3.5908 (12) Å compared to a van der Waals separation of 3.70 Å] are also observed. The packing viewed down the *a*-axis direction is shown in Fig. 2.

Synthesis and crystallization

The title compound was prepared according to the reported method (Ökten *et al.*, 2013). Colourless prisms were obtained by recrystallization from mixed solvents of AcOEt/hexane (1:2).

Figure 2

Experimental details.	
Crystal data	
Chemical formula	$C_{10}H_5BrN_2$
$M_{\rm r}$	233.07
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	296
a, b, c (Å)	3.8484 (8), 12.634 (3), 18.042 (4)
β (°)	92.918 (7)
$V(Å^3)$	876.0 (3)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	4.64
Crystal size (mm)	$0.15\times0.12\times0.10$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2003)
T_{\min}, T_{\max}	0.565, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	26227, 2203, 1501
R _{int}	0.073
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.672
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.058, 0.120, 1.22
No. of reflections	2203
No. of parameters	118
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.53, -0.61

Computer programs: *APEX2* and *SAINT* (Bruker, 2007), *SHELXS97* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *ORTEP3* for Windows (Farrugia, 2012) and *PLATON* (Spek, 2009).

Refinement

Table 1

Crystal data, data collection and structure refinement details are summarized in Table 1.

Acknowledgements

The authors thank the X-ray Laboratory of Sinop University Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

Funding information

This study was supported financially by grants from the Scientific and Technological Research Council of Turkey (TÜBİTAK, Project No. 112 T394).

References

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Çelik, Í., Akkurt, M., Çakmak, O., Ökten, S. & García-Granda, S. (2010a). Acta Cryst. E66, o2997–o2998.
- Çelik, Í., Akkurt, M., Ökten, S., Çakmak, O. & García-Granda, S. (2010b). Acta Cryst. E66, 03133.
- Çelik, İ., Ökten, S., Akkurt, M., Ersanlı, C. C., Çakmak, O. & Özbakır, R. (2017). *IUCrData*, 2, x170643–x170643.

Ekiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323-5330.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Khan, F. N., Roopan, S. M., Hathwar, V. R. & Akkurt, M. (2010). Acta Cryst. E66, o1010.

Ökten, S. & Çakmak, O. (2015). Tetrahedron Lett. 56, 5337–5340.

- Ökten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). *Turk. J. Chem.* **37**, 896–908.
- Pauvert, M., Collet, S. C., Bertrand, M., Guingant, A. Y. & Evain, M. (2005). *Tetrahedron Lett.* 46, 2983–2987.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

full crystallographic data

IUCrData (2017). **2**, x170930 [https://doi.org/10.1107/S2414314617009300]

6-Bromoquinoline-8-carbonitrile

Ísmail Çelik, Mehmet Akkurt, Salih Ökten, Osman Çakmak and Cem Cüneyt Ersanlı

6-Bromoquinoline-8-carbonitrile

Crystal data	
$C_{10}H_5BrN_2$ $M_r = 233.07$ Monoclinic, $P2_1/c$ $a = 3.8484 (8) Å$ $b = 12.634 (3) Å$ $c = 18.042 (4) Å$ $\beta = 92.918 (7)^{\circ}$ $V = 876.0 (3) Å^3$ $Z = 4$	F(000) = 456 $D_x = 1.767 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9362 reflections $\theta = 3.2-25.3^{\circ}$ $\mu = 4.64 \text{ mm}^{-1}$ T = 296 K Prism, colourless $0.15 \times 0.12 \times 0.10 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{min} = 0.565, T_{max} = 0.746$ 26227 measured reflections	2203 independent reflections 1501 reflections with $I > 2\sigma(I)$ $R_{int} = 0.073$ $\theta_{max} = 28.5^{\circ}, \ \theta_{min} = 3.2^{\circ}$ $h = -4 \rightarrow 5$ $k = -16 \rightarrow 16$ $l = -24 \rightarrow 24$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.120$ S = 1.22 2203 reflections 118 parameters 0 restraints	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0088P)^2 + 3.5104P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.53$ e Å ⁻³ $\Delta\rho_{min} = -0.61$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.0305 (16)	0.4253 (5)	0.8151 (3)	0.0491 (15)

H1	-0.0601	0.4759	0.8462	0.059*	
C2	0.1004 (16)	0.3254 (5)	0.8451 (3)	0.0482 (15)	
H2	0.0526	0.3104	0.8940	0.058*	
C3	0.2403 (15)	0.2500 (5)	0.8014 (3)	0.0449 (14)	
H3	0.2927	0.1832	0.8206	0.054*	
C4	0.3047 (14)	0.2741 (4)	0.7272 (3)	0.0346 (11)	
C5	0.4372 (14)	0.1998 (4)	0.6781 (3)	0.0375 (12)	
Н5	0.4966	0.1322	0.6948	0.045*	
C6	0.4792 (14)	0.2268 (4)	0.6057 (3)	0.0339 (11)	
C7	0.3995 (14)	0.3287 (4)	0.5793 (3)	0.0371 (12)	
H7	0.4317	0.3460	0.5300	0.045*	
C8	0.2738 (14)	0.4027 (4)	0.6266 (3)	0.0337 (11)	
C9	0.2174 (13)	0.3781 (4)	0.7021 (2)	0.0332 (10)	
C10	0.1862 (16)	0.5105 (5)	0.5988 (3)	0.0438 (14)	
N1	0.0822 (12)	0.4542 (4)	0.7461 (2)	0.0412 (11)	
N2	0.1305 (16)	0.5879 (4)	0.5762 (3)	0.0606 (15)	
Br1	0.63809 (18)	0.12498 (5)	0.53862 (3)	0.0525 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.052 (4)	0.058 (4)	0.038 (3)	-0.006 (3)	0.006 (3)	-0.015 (3)
C2	0.049 (4)	0.068 (4)	0.028 (3)	-0.008 (3)	0.006 (2)	-0.003 (3)
C3	0.049 (4)	0.050(3)	0.035 (3)	-0.003 (3)	0.002 (2)	0.008 (2)
C4	0.035 (3)	0.036 (3)	0.031 (2)	-0.005 (2)	-0.004(2)	0.000(2)
C5	0.039 (3)	0.033 (3)	0.040 (3)	-0.002 (2)	0.001 (2)	0.002 (2)
C6	0.033 (3)	0.033 (3)	0.035 (2)	-0.002(2)	0.001 (2)	-0.003(2)
C7	0.037 (3)	0.043 (3)	0.031 (2)	-0.001 (2)	0.003 (2)	0.001 (2)
C8	0.037 (3)	0.030(3)	0.034 (2)	-0.004(2)	-0.004(2)	0.0005 (19)
C9	0.036 (3)	0.033 (2)	0.031 (2)	-0.003 (2)	0.0006 (19)	-0.002 (2)
C10	0.056 (4)	0.047 (3)	0.029 (2)	0.002 (3)	0.007 (2)	-0.001 (2)
N1	0.043 (3)	0.043 (3)	0.038 (2)	-0.004 (2)	0.004 (2)	-0.0097 (19)
N2	0.085 (5)	0.047 (3)	0.051 (3)	0.010 (3)	0.011 (3)	-0.001 (2)
Br1	0.0572 (4)	0.0517 (4)	0.0490 (3)	0.0076 (3)	0.0052 (2)	-0.0145 (3)

Geometric parameters (Å, °)

C1—N1	1.321 (7)	С5—Н5	0.9300
C1—C2	1.394 (8)	C6—C7	1.401 (7)
С1—Н1	0.9300	C6—Br1	1.889 (5)
C2—C3	1.364 (8)	C7—C8	1.371 (7)
С2—Н2	0.9300	С7—Н7	0.9300
C3—C4	1.408 (7)	C8—C9	1.425 (6)
С3—Н3	0.9300	C8—C10	1.484 (7)
C4—C5	1.404 (7)	C9—N1	1.366 (6)
C4—C9	1.425 (7)	C10—N2	1.077 (7)
C5—C6	1.368 (7)		

N1—C1—C2	125.5 (5)	C5—C6—C7	121.3 (5)
N1—C1—H1	117.3	C5C6Br1	120.0 (4)
C2—C1—H1	117.3	C7—C6—Br1	118.7 (4)
C3—C2—C1	118.8 (5)	C8—C7—C6	119.5 (4)
С3—С2—Н2	120.6	С8—С7—Н7	120.2
C1—C2—H2	120.6	С6—С7—Н7	120.2
C2—C3—C4	119.5 (5)	C7—C8—C9	121.5 (4)
С2—С3—Н3	120.3	C7—C8—C10	119.8 (4)
C4—C3—H3	120.3	C9—C8—C10	118.7 (4)
C5—C4—C3	122.9 (5)	N1—C9—C8	118.9 (4)
C5—C4—C9	120.2 (4)	N1—C9—C4	123.7 (4)
C3—C4—C9	116.8 (5)	C8—C9—C4	117.4 (4)
C6—C5—C4	120.0 (5)	N2-C10-C8	177.0 (6)
С6—С5—Н5	120.0	C1—N1—C9	115.7 (5)
C4—C5—H5	120.0		
N1—C1—C2—C3	1.4 (10)	C7—C8—C9—N1	-178.1 (5)
C1—C2—C3—C4	-1.1 (9)	C10-C8-C9-N1	0.5 (7)
C2—C3—C4—C5	-177.9 (5)	C7—C8—C9—C4	1.5 (8)
C2—C3—C4—C9	0.0 (8)	C10-C8-C9-C4	-179.9 (5)
C3—C4—C5—C6	177.0 (5)	C5-C4-C9-N1	178.9 (5)
C9—C4—C5—C6	-0.8 (8)	C3—C4—C9—N1	1.0 (8)
C4—C5—C6—C7	1.5 (8)	C5—C4—C9—C8	-0.6 (7)
C4—C5—C6—Br1	-177.2 (4)	C3—C4—C9—C8	-178.6 (5)
C5—C6—C7—C8	-0.6 (8)	C2-C1-N1-C9	-0.4 (9)
Br1—C6—C7—C8	178.0 (4)	C8—C9—N1—C1	178.8 (5)
C6—C7—C8—C9	-0.9 (8)	C4—C9—N1—C1	-0.8 (8)
C6—C7—C8—C10	-179.5 (5)		