

ISSN 2414-3146

Received 19 June 2017 Accepted 6 July 2017

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; bromobutoxy; C— $H \cdots \pi$ interactions.

CCDC reference: 1560690

Structural data: full structural data are available from iucrdata.iucr.org

1,4-Bis(4-bromobutoxy)benzene

Gunasekaran Maragatham,^a Sivasamy Selvarani,^b Perumal Rajakumar^b and Srinivasakannan Lakshmi^a*

^aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: lakssdnbvc@gmail.com

The complete molecule of the title compound, $C_{14}H_{20}Br_2O_2$, is generated by crystallographic inversion symmetry and the 4-bromobutoxy side chain adopts an extended conformation. In the crystal, weak $C-H\cdots\pi$ interactions are observed, which help to consolidate a herringbone packing motif.

Structure description

Compounds with alkyloxy substituents act as intermediates to engineer soluble electroluminescent oligomers and polymers for LED applications (Huang *et al.*, 2007). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

The asymmetric unit, contains one-half of the molecule, while the other half is generated through crystallographic inversion symmetry [symmetry code: (i) -x, 1 - y, -z] (Fig. 1). The bromoalkoxyl tail is roughly co-planar with the attached benzene ring with a C6-C5-O1-C4 torsion angle of -2.2 (3)°. The bromoalkoxyl tail adopts an extended conformation as shown by the C5-O1-C4-C3, O1-C4-C3-C2, C4-C3-C2-C1 and C3-C2-C1-Br1 torsion angles of -179.55 (19), -176.29 (18), 177.5 (2) and 179.19 (17)°, respectively. The packing of the molecules features weak C-H··· π interactions (Table 1), which lead to a herringbone arrangement when viewed along [100] (Fig. 2).

Synthesis and crystallization

A mixture of (1.0 equiv.) of resorcinol and potassium carbonate (2.0 equiv.) in acetone (50 ml) was stirred for 15 minutes at 60° C. 1,4-Dibromobutane (2.1 equiv.) was added to the reaction mixture and stirred at 60° C for 7 h. After completion of the reaction, the

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level [symmetry code: (a) -x, 1 - y, -z].

The packing of the molecules viewed along the *a*-axis direction.

solvent was removed under reduced pressure and the residue was extracted with $CHCl_3$ (3 × 100 ml), washed with water (2 × 100 ml), brine (150 ml) and dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue obtained was purified by column chromatography using CHCl₃:hexane (1:9) as eluent to afford the title compound as a white solid, which was recrystallized from methanol solution to yield colourless blocks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 is the centroid of the benzene ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C2-H2B\cdots Cg1^{i}$	0.97	2.84	3.664 (3)	144

Symmetry code: (i) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{3}{2}$.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{14}H_{20}Br_2O_2$
$M_{ m r}$	380.12
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.0845 (10), 5.3436 (5), 15.3509 (15)
β (°)	95.567 (4)
$V(Å^3)$	741.68 (13)
Z	2
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	5.46
Crystal size (mm)	$0.35 \times 0.25 \times 0.20$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.525, 0.745
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	7040, 1310, 1126
R _{int}	0.027
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.024, 0.052, 1.06
No. of reflections	1310
No. of parameters	82
H-atom treatment	H-atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	0.32, -0.33
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.32, -0.33

Computer programs: APEX2 and SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Bruno et al., 2002) and publCIF (Westrip, 2010).

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389– 397.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Huang, S.-P., Huang, G.-S. & Chen, S.-A. (2007). Synth. Met. 157, 863–871.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

full crystallographic data

IUCrData (2017). 2, x171004 [https://doi.org/10.1107/S2414314617010045]

1,4-Bis(4-bromobutoxy)benzene

Gunasekaran Maragatham, Sivasamy Selvarani, Perumal Rajakumar and Srinivasakannan Lakshmi

F(000) = 380

 $\theta = 2.7 - 24.9^{\circ}$

 $\mu = 5.46 \text{ mm}^{-1}$

Block, colourless

 $0.35 \times 0.25 \times 0.20$ mm

T = 296 K

 $D_{\rm x} = 1.702 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3047 reflections

1,4-Bis(4-bromobutoxy)benzene

Crystal data

 $C_{14}H_{20}Br_2O_2$ $M_r = 380.12$ Monoclinic, $P2_1/n$ a = 9.0845 (10) Å b = 5.3436 (5) Å c = 15.3509 (15) Å $\beta = 95.567 (4)^{\circ}$ $V = 741.68 (13) \text{ Å}^3$ Z = 2

Data collection

Bruker Kappa APEXII CCD	7040 measured reflections
diffractometer	1310 independent reflections
Radiation source: fine-focus sealed tube	1126 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
ω and φ scan	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Bruker, 2004)	$k = -6 \rightarrow 6$
$T_{\min} = 0.525, \ T_{\max} = 0.745$	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.024$	H-atom parameters constrained
$wR(F^2) = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.0214P)^2 + 0.4039P]$
S = 1.06	where $P = (F_0^2 + 2F_c^2)/3$
1310 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
82 parameters	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were included in the refinement at calculated positions (C—H = 0.93–0.98 Å), with $U_{iso}(H) = 1.2Ueq(C)$ using a riding-model approximation.

	X	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.0397 (3)	1.4815 (5)	-0.34901 (18)	0.0487 (7)
H1A	-0.1220	1.5707	-0.3277	0.058*
H1B	-0.0796	1.3642	-0.3934	0.058*
C2	0.0404 (3)	1.3397 (4)	-0.27508 (15)	0.0354 (6)
H2A	0.0812	1.4561	-0.2306	0.043*
H2B	0.1216	1.2472	-0.2962	0.043*
C3	-0.0642 (3)	1.1585 (4)	-0.23511 (15)	0.0343 (6)
H3A	-0.1431	1.2523	-0.2119	0.041*
H3B	-0.1085	1.0478	-0.2804	0.041*
C4	0.0151 (3)	1.0047 (4)	-0.16294 (15)	0.0323 (5)
H4A	0.0974	0.9162	-0.1845	0.039*
H4B	0.0532	1.1121	-0.1150	0.039*
C5	-0.0386 (3)	0.6709 (4)	-0.06653 (14)	0.0288 (5)
C6	0.1050 (3)	0.6624 (4)	-0.02794 (15)	0.0305 (5)
H6	0.1759	0.7708	-0.0464	0.037*
C7	0.1431 (3)	0.4919 (4)	0.03832 (14)	0.0307 (5)
H7	0.2399	0.4864	0.0642	0.037*
O1	-0.08882 (18)	0.8306 (3)	-0.13368 (11)	0.0376 (4)
Br1	0.08821 (3)	1.72008 (5)	-0.40166 (2)	0.04831 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0408 (17)	0.0559 (16)	0.0491 (16)	-0.0108 (13)	0.0028 (13)	0.0206 (13)
C2	0.0386 (15)	0.0339 (12)	0.0338 (13)	-0.0018 (11)	0.0035 (11)	0.0026 (10)
C3	0.0347 (15)	0.0358 (13)	0.0324 (13)	-0.0015 (11)	0.0027 (11)	0.0056 (10)
C4	0.0335 (14)	0.0322 (12)	0.0314 (12)	-0.0024 (10)	0.0038 (11)	0.0037 (10)
C5	0.0323 (13)	0.0283 (11)	0.0256 (12)	0.0017 (10)	0.0021 (10)	0.0006 (9)
C6	0.0274 (13)	0.0322 (12)	0.0321 (12)	-0.0037 (10)	0.0035 (10)	0.0028 (10)
C7	0.0248 (13)	0.0353 (12)	0.0313 (12)	-0.0012 (10)	-0.0001 (10)	0.0015 (10)
01	0.0323 (10)	0.0402 (9)	0.0390 (9)	-0.0043 (8)	-0.0022 (8)	0.0147 (8)
Br1	0.0566 (2)	0.04394 (17)	0.04603 (18)	-0.00749 (13)	0.01338 (13)	0.01054 (12)

Geometric parameters (Å, °)

C1—C2	1.494 (3)	C4—O1	1.428 (3)	
C1—Br1	1.952 (2)	C4—H4A	0.9700	
C1—H1A	0.9700	C4—H4B	0.9700	
C1—H1B	0.9700	C5—C6	1.381 (3)	
C2—C3	1.526 (3)	C5—O1	1.381 (3)	
C2—H2A	0.9700	C5C7 ⁱ	1.387 (3)	
C2—H2B	0.9700	C6—C7	1.384 (3)	
C3—C4	1.506 (3)	С6—Н6	0.9300	
С3—НЗА	0.9700	C7—C5 ⁱ	1.387 (3)	
С3—Н3В	0.9700	С7—Н7	0.9300	

C2C1Br1	112.34 (19)	НЗА—СЗ—НЗВ	107.9
C2—C1—H1A	109.1	O1—C4—C3	107.66 (19)
Br1—C1—H1A	109.1	O1—C4—H4A	110.2
C2—C1—H1B	109.1	C3—C4—H4A	110.2
Br1—C1—H1B	109.1	O1—C4—H4B	110.2
H1A—C1—H1B	107.9	C3—C4—H4B	110.2
C1—C2—C3	110.6 (2)	H4A—C4—H4B	108.5
C1—C2—H2A	109.5	C6—C5—O1	124.8 (2)
C3—C2—H2A	109.5	C6C5C7 ⁱ	119.5 (2)
C1—C2—H2B	109.5	O1C5C7 ⁱ	115.7 (2)
C3—C2—H2B	109.5	C5—C6—C7	119.7 (2)
H2A—C2—H2B	108.1	С5—С6—Н6	120.2
C4—C3—C2	111.7 (2)	С7—С6—Н6	120.2
С4—С3—Н3А	109.3	C6C7C5 ⁱ	120.8 (2)
С2—С3—НЗА	109.3	С6—С7—Н7	119.6
C4—C3—H3B	109.3	C5 ⁱ —C7—H7	119.6
С2—С3—Н3В	109.3	C5—O1—C4	117.18 (18)
Br1—C1—C2—C3	179.19 (17)	C5—C6—C7—C5 ⁱ	0.0 (4)
C1-C2-C3-C4	177.5 (2)	C6-C5-O1-C4	-2.2(3)
C2-C3-C4-O1	-176.29(18)	$C7^{i}$ —C5—O1—C4	178.59 (18)
01	-179.2 (2)	C3-C4-O1-C5	-179.55 (19)
C7 ⁱ —C5—C6—C7	0.0 (4)		

Symmetry code: (i) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C2—H2 B ···C g 1 ⁱⁱ	0.97	2.84	3.664 (3)	144

Symmetry code: (ii) x-1/2, -y-1/2, z-3/2.