

IUCrData

ISSN 2414-3146

Received 30 June 2017 Accepted 7 July 2017

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; 1,2,3,4-tetrahydroacridine ring system; cyclohexane ring; hydrogen bonding.

CCDC reference: 1556696

Structural data: full structural data are available from iucrdata.iucr.org

9-Amino-5,7-dibromo-1,2,3,4-tetrahydroacridine hemihydrate

Ísmail Çelik,^a Mehmet Akkurt,^b* Makbule Ekiz,^{c,d} Salih Ökten,^e Ahmet Tutar^f and Cem Cüneyt Ersanlı^g

^aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Chemistry, Faculty of Art and Science, Düzce University, 81620, Düzce, Turkey, ^dDepartment of Chemistry, Faculty of Art and Science, Sakarya University, Serdivan, 54187, Sakarya, Turkey, ^eDepartment of Maths and Science Education, Faculty of Education, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey, ^fDepartment of Chemistry, Faculty of Art and Science, Sakarya University, Serdivan, 54187, Sakarya, Turkey, and ^gDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey. *Correspondence e-mail: akkurt@erciyes.edu.tr

The asymmetric unit of the title compound, $C_{13}H_{12}Br_2N_2 \cdot 0.5H_2O$, includes two molecules of 5,7-dibromo-1,2,3,4-tetrahydroacridin-9-amine and one water molecule. In the crystal, $C-H \cdot \cdot \cdot O$, $N-H \cdot \cdot \cdot N$, $N-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot N$ hydrogen bonds connect the molecules, forming a two-dimensional network parallel to (010). The two-dimensional sheets are further assembled into a three-dimensional structure through $C-H \cdot \cdot \cdot \pi$ and $\pi-\pi$ stacking interactions [centroid–centroid distance = 3.719 (2) Å].

Structure description

Various synthetic methods such as the Skraup, Friedländer, Doebner-von Millet and Combes syntheses have developed due to the importance of the synthesis of bioactive heterocycles with N functions such as indole (Ökten *et al.*, 2015), quinoline (Ökten *et al.*, 2013), acridine (Zong *et al.*, 2006) and tacrine (Yang *et al.*, 2007). The Friedländer reaction is one of the most well known for the synthesis of polysubstituted hetero-aromatic compounds (Peçanha *et al.*, 2001; Zong *et al.*, 2006; Tang *et al.*, 2012). 9-Amino-1,2,3,4-tetrahydroacridine, known as tacrine, was the first AChE inhibitor to be investigated as an AD drug (Cheng, 1994). Although beneficial effects of tacrines on AD symptoms, it exhibited several adverse effects which in some cases causes some problems (Brinton & Yamazaki, 1998). As a result of that, many other AChE inhibitors have been

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level.

studied and researchers still continue to improve the pharmacological profile of novel drug candidates (Rampa *et al.*, 2000).

Halogenated aromatics including a quinoline skeleton are used as precursors for various multifunctional heterocyclic compounds, undergoing metal-halogen exchanges (Ökten *et al.*, 2013), couplings (Zemtsova *et al.*, 2015), and metal-assisted

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N3/C1/C18/C20-C22 pyridine ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N2-H2NA\cdotsO1^{i}$	0.84 (5)	2.39 (4)	3.215 (5)	168 (5)
$N4-H4NB\cdots N1$	0.81(4) 0.88(4)	2.12 (3) 2.36 (4)	2.895 (4) 3.207 (4)	161 (5) 161 (4)
$C6-H6\cdots O1^{i}$ $C25-H25B\cdots Cg1^{iii}$	0.93 0.97	2.42 2.95	3.315 (5) 3.820 (5)	162 151

Symmetry codes: (i) x, y, z - 1; (ii) x, y + 1, z; (iii) -x + 2, -y, -z + 1.

substitutions (Ökten *et al.*, 2013; Eisch, 1962). In addition, this class of aromatic compounds, used as starting materials for numerous compounds with pharmacological properties, has been of interest to chemists (Zong *et al.*, 2006; Das & Parida, 2006). In this study we present the structure of 9-amino-5,7-dibromo-1,2,3,4-tetrahydroacridine hemihydrate.

As shown in Fig. 1, the asymmetric unit includes two molecules (*A* and *B*) of 9-amino-5,7-dibromo-1,2,3,4-tetrahydroacridine and a water molecule. The cyclohexane rings display a half-boat conformation, with atoms C12 and C24 as flap atoms and puckering parameters $Q_{\rm T} = 0.498$ (5) Å, $\theta = 127.5$ (4)°, $\varphi =$ 38.6 (6)° for ring C8–C13, and $Q_{\rm T} = 0.495$ (5) Å, $\theta = 128.2$ (5)°, $\varphi = 18.7$ (6)° for ring C21–C26. The observed bond lengths are comparable to those reported for similar compounds (Glöcklhofer *et al.*, 2014; Sparrow *et al.*, 2012; Akkurt *et al.*, 2010; Çelik *et al.*, 2017).

Figure 2

Crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Table 2Experimental details.

Crystal data Chemical formula C13H12Br2N2.0.5H2O 365.05 М., Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 296 9.404 (2), 11.163 (2), 13.263 (3) a, b, c (Å) α, β, γ (°) V (Å³) 80.607 (9), 75.713 (9), 76.407 (9) 1303.3 (5) Ζ 4 Radiation type Μο Κα μ (mm⁻¹) 6.20 Crystal size (mm) $0.16 \times 0.13 \times 0.12$ Data collection Bruker APEXII CCD Diffractometer Absorption correction Multi-scan (SADABS; Sheldrick, 2003) 0.409. 0.746 T_{\min}, T_{\max} No. of measured, independent and 66562, 6486, 4883 observed $[I > 2\sigma(I)]$ reflections 0.055 R_{int} $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.669 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.039, 0.080, 1.09 No. of reflections 6486 No. of parameters 335 No. of restraints 3 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})$ 0.63. -0.83

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

In the crystal, adjacent molecules are linked by $C-H\cdots O$, $N-H\cdots N$, $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (Table 1), forming a two-dimensional network parallel to (010) (Table 1; Figs. 2 and 3). The parallel layers are then assembled into a three-dimensional network through $C-H\cdots \pi$ (Table 1) and $\pi-\pi$ stacking interactions [$Cg\cdots Cg^i = 3.719$ (2) Å; Cg is the centroid of the C1–C6 benzene ring of molecule A; symmetry code: (i) 2 - x, 1 - y, -z] between the layers.

Synthesis and crystallization

According to the reported procedure (Ekiz *et al.*, 2016), 9-amino-5,7-dibromo-1,2,3,4-tetrahydroacridine was prepared by the Friedländer quinoline reaction of cyclohexanone and brominated 2-amino-3,5-dibromobenzonitrile in the presence of InCl₃ as Lewis acid. The recrystallization in CHCl₃/hexane

(1:1 v/v) gave yellow block-shaped crystals suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

The authors are indebted to the X-ray laboratory of Sinop University, Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

References

- Akkurt, M., Çelik, Í., Küçükbay, H., Sireci, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, 01770–01771.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Çelik, İ., İsmail, , Akkurt, M., Ekiz, M., Tutar, A., Ökten, S. & Ersanlı, C. C. (2017). *IUCrData*, 2, x170888.
- Cheng, X. M. (1994). Annu. Rep. Med. Chem. 29, 331-354.
- Das, D. P. & Parida, K. M. (2006). J. Mol. Catal. A Chem. 253, 70-78.
- Diaz Brinton, R. & Yamazaki, R. S. (1998). *Pharm. Res.* **15**, 386–398. Eisch, J. J. (1962). *J. Org. Chem.* **27**, 1318–1323.
- Elsch, J. J. (1962). J. Org. Chem. 21, 1518–1525. Ekiz, M., Tutar, A. & Ökten, S. (2016). *Tetrahedron*, **72**, 5323–5330.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Glöcklhofer, F., Fröhlich, J., Stöger, B. & Weil, M. (2014). Acta Cryst.
- Glockinoler, F., Froniich, J., Stoger, B. & Well, M. (2014). Acta Cryst. E70, 77–79.
- Ökten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). *Turk. J. Chem.* **37**, 896–908.
- Ökten, S., Erenler, R., Köprülü, T. K. & Tekin, Ş. (2015). *Turk. J. Biol.* **39**, 15–22.
- Peçanha, E. P., Fraga, C. A. M., Barreiro, E. J., Braga, M. F. M., Pereira, E. F. R. & Albuquerque, E. X. (2001). *J. Braz. Chem. Soc.* 12, 408–412.
- Rampa, A., Bisi, A., Belluti, F., Gobbi, S., Valenti, P., Andrisano, V., Cavrini, V., Cavalli, A. & Recanatini, M. (2000). *Bioorg. Med. Chem.* 8, 497–506.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sparrow, C. R., Fronczek, F. R. & Watkins, S. F. (2012). Acta Cryst. E68, 02809.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tang, J., Li, J., Zhang, L., Ma, S., Shi, D., Zhang, Q., Yang, L., Wang, X., Liu, X. & Liu, C. (2012). J. Heterocycl. Chem. 49, 533–542.
- Yang, D., Jiang, K., Li, J. & Xu, F. (2007). Tetrahedron, 63, 7654-7658.
- Zemtsova, M. N., Kulemina, S. V., Rybakov, V. B. & Klimochkin, Y. N. (2015). *Russ. J. Org. Chem.* **51**, 636–639.
- Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167–175.

full crystallographic data

IUCrData (2017). **2**, x171011 [https://doi.org/10.1107/S2414314617010112]

9-Amino-5,7-dibromo-1,2,3,4-tetrahydroacridine hemihydrate

Ísmail Çelik, Mehmet Akkurt, Makbule Ekiz, Salih Ökten, Ahmet Tutar and Cem Cüneyt Ersanlı

9-Amino-5,7-dibromo-1,2,3,4-tetrahydroacridine hemihydrate

Crystal data

C₁₃H₁₂Br₂N₂·0.5H₂O $M_r = 365.05$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.404 (2) Å b = 11.163 (2) Å c = 13.263 (3) Å a = 80.607 (9)° $\beta = 75.713$ (9)° $\gamma = 76.407$ (9)° V = 1303.3 (5) Å³

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
$T_{\rm min} = 0.409, \ T_{\rm max} = 0.746$
66562 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.080$ S = 1.096486 reflections 335 parameters 3 restraints Hydrogen site location: mixed Z = 4 F(000) = 716 $D_x = 1.860 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9584 reflections $\theta = 3.5-28.3^{\circ}$ $\mu = 6.20 \text{ mm}^{-1}$ T = 296 K Block, yellow $0.16 \times 0.13 \times 0.12 \text{ mm}$

6486 independent reflections 4883 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -17 \rightarrow 17$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 2.4473P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.63$ e Å⁻³ $\Delta\rho_{min} = -0.83$ e Å⁻³ Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc²\lambda³/sin(2 θ)]^{-1/4} Extinction coefficient: 0.0038 (3)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The amino and water H atoms were located in a difference Fourier map and refined with $U_{iso}(H) = 1.2U_{eq}(N)$ or $1.5U_{eq}(O)$. *DFIX* instructions were used to keep the H atoms of the water molecule in place. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.91349 (5)	0.88067 (3)	0.02649 (4)	0.0546 (2)	
Br2	0.87277 (6)	0.44474 (4)	0.29818 (3)	0.0539(1)	
Br3	0.37866 (5)	0.47644 (3)	0.40689 (3)	0.0495 (1)	
Br4	0.41617 (4)	0.08140 (4)	0.72633 (3)	0.0426 (1)	
N1	0.7550 (3)	0.3730 (2)	0.1241 (2)	0.0273 (8)	
N2	0.7120 (5)	0.5786 (3)	-0.1647 (3)	0.0515 (13)	
C1	0.8727 (4)	0.7188 (3)	0.0515 (3)	0.0330 (10)	
C2	0.8871 (4)	0.6491 (3)	0.1476 (3)	0.0339 (10)	
C3	0.8504 (4)	0.5353 (3)	0.1682 (2)	0.0310 (10)	
C4	0.7960 (3)	0.4850 (3)	0.0972 (2)	0.0251 (8)	
C5	0.7853 (3)	0.5580 (3)	0.0001 (2)	0.0262 (9)	
C6	0.8266 (4)	0.6763 (3)	-0.0213 (3)	0.0332 (10)	
C7	0.7288 (4)	0.5106 (3)	-0.0721 (2)	0.0321 (10)	
C8	0.6920 (4)	0.3941 (3)	-0.0450 (2)	0.0307 (9)	
C9	0.7041 (3)	0.3311 (3)	0.0539 (2)	0.0280 (9)	
C10	0.6592 (4)	0.2070 (3)	0.0881 (3)	0.0362 (11)	
C11	0.5783 (5)	0.1696 (4)	0.0163 (3)	0.0508 (14)	
C12	0.6505 (5)	0.1991 (4)	-0.0964 (3)	0.0559 (16)	
C13	0.6399 (5)	0.3390 (4)	-0.1225 (3)	0.0462 (11)	
N3	0.6966 (3)	-0.0310 (2)	0.56636 (19)	0.0277 (8)	
N4	0.8774 (4)	0.1289 (3)	0.2676 (2)	0.0424 (10)	
O1	0.7290 (4)	0.8667 (3)	0.7765 (2)	0.0711 (11)	
C14	0.4807 (4)	0.3162 (3)	0.4538 (3)	0.0324 (10)	
C15	0.4262 (4)	0.2654 (3)	0.5559 (3)	0.0339 (10)	
C16	0.4985 (3)	0.1505 (3)	0.5898 (2)	0.0287 (9)	
C17	0.6288 (3)	0.0828 (3)	0.5277 (2)	0.0258 (9)	
C18	0.6816 (3)	0.1404 (3)	0.4257 (2)	0.0261 (9)	
C19	0.6036 (4)	0.2572 (3)	0.3890 (2)	0.0308 (9)	
C20	0.8175 (4)	0.0774 (3)	0.3640 (2)	0.0283 (9)	
C21	0.8858 (4)	-0.0400 (3)	0.4041 (2)	0.0292 (9)	
C22	0.8187 (4)	-0.0896 (3)	0.5043 (2)	0.0277 (9)	
C23	0.8851 (4)	-0.2184 (3)	0.5482 (3)	0.0394 (11)	
C24	0.9843 (5)	-0.2968 (4)	0.4651 (3)	0.0537 (14)	
C25	1.0988 (5)	-0.2286 (4)	0.3966 (4)	0.0584 (14)	
C26	1.0254 (4)	-0.1100 (3)	0.3383 (3)	0.0424 (11)	
H2NA	0.727 (5)	0.651 (4)	-0.175 (4)	0.0620*	
H2	0.92100	0.68000	0.19630	0.0410*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H2NB	0.678 (5)	0.552 (4)	-0.205 (4)	0.0620*
H6	0.82160	0.72350	-0.08540	0.0400*
H10A	0.59490	0.20900	0.15750	0.0440*
H10B	0.74860	0.14390	0.09290	0.0440*
H11A	0.57990	0.08130	0.03100	0.0600*
H11B	0.47450	0.21320	0.02960	0.0600*
H12A	0.60080	0.16990	-0.14080	0.0670*
H12B	0.75490	0.15690	-0.10960	0.0670*
H13A	0.70040	0.35560	-0.19190	0.0560*
H13B	0.53680	0.37890	-0.12350	0.0560*
H4NA	0.959 (5)	0.099 (4)	0.242 (3)	0.0510*
H4NB	0.842 (5)	0.205 (4)	0.242 (3)	0.0510*
H15	0.34330	0.30870	0.59940	0.0410*
H19	0.63590	0.29330	0.32140	0.0370*
H23A	0.94320	-0.21190	0.59750	0.0470*
H23B	0.80430	-0.25950	0.58630	0.0470*
H24A	1.03420	-0.37400	0.49790	0.0640*
H24B	0.92370	-0.31650	0.42290	0.0640*
H25A	1.16580	-0.28180	0.34630	0.0700*
H25B	1.15790	-0.20790	0.43920	0.0700*
H26A	1.09710	-0.05630	0.31330	0.0510*
H26B	1.00010	-0.13110	0.27770	0.0510*
H1O	0.701 (6)	0.889 (5)	0.722 (2)	0.1070*
H2O	0.667 (5)	0.909 (5)	0.818 (3)	0.1070*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0611 (3)	0.0270 (2)	0.0741 (3)	-0.0200 (2)	-0.0034 (2)	-0.0024 (2)
Br2	0.0882 (3)	0.0448 (2)	0.0405 (2)	-0.0242 (2)	-0.0337 (2)	0.0079 (2)
Br3	0.0652 (3)	0.0303 (2)	0.0496 (2)	0.0111 (2)	-0.0265 (2)	-0.0035 (2)
Br4	0.0434 (2)	0.0474 (2)	0.0309 (2)	-0.0080 (2)	-0.0006 (2)	-0.0004 (2)
N1	0.0327 (14)	0.0211 (12)	0.0274 (13)	-0.0059 (11)	-0.0067 (11)	-0.0002 (10)
N2	0.081 (3)	0.0457 (19)	0.0334 (17)	-0.0193 (19)	-0.0248 (17)	0.0077 (15)
C1	0.0310 (17)	0.0193 (14)	0.045 (2)	-0.0060 (13)	-0.0005 (14)	-0.0038 (13)
C2	0.0378 (19)	0.0269 (16)	0.0405 (19)	-0.0100 (14)	-0.0090 (15)	-0.0080 (14)
C3	0.0349 (18)	0.0290 (16)	0.0280 (16)	-0.0039 (13)	-0.0076 (13)	-0.0027 (13)
C4	0.0244 (15)	0.0219 (14)	0.0261 (15)	-0.0025 (12)	-0.0025 (12)	-0.0026 (12)
C5	0.0258 (15)	0.0220 (14)	0.0282 (16)	-0.0050 (12)	-0.0026 (12)	-0.0004 (12)
C6	0.0347 (18)	0.0255 (15)	0.0348 (18)	-0.0048 (13)	-0.0049 (14)	0.0033 (13)
C7	0.0354 (18)	0.0337 (17)	0.0247 (16)	-0.0049 (14)	-0.0052 (13)	-0.0017 (13)
C8	0.0331 (17)	0.0322 (16)	0.0269 (16)	-0.0057 (13)	-0.0051 (13)	-0.0069 (13)
C9	0.0275 (16)	0.0221 (14)	0.0320 (16)	-0.0033 (12)	-0.0034 (13)	-0.0031 (12)
C10	0.043 (2)	0.0265 (16)	0.0412 (19)	-0.0116 (14)	-0.0091 (16)	-0.0034 (14)
C11	0.057 (2)	0.042 (2)	0.061 (3)	-0.0202 (19)	-0.016 (2)	-0.0080 (19)
C12	0.074 (3)	0.051 (2)	0.055 (3)	-0.022 (2)	-0.018 (2)	-0.021 (2)
C13	0.057 (2)	0.052 (2)	0.0362 (19)	-0.0154 (19)	-0.0149 (18)	-0.0098 (17)
N3	0.0324 (14)	0.0243 (12)	0.0256 (13)	-0.0038 (11)	-0.0084 (11)	0.0002 (10)

N4	0.0477 (19)	0.0361 (17)	0.0309 (16)	-0.0018 (15)	0.0032 (14)	0.0040 (13)
01	0.082 (2)	0.070 (2)	0.0372 (16)	0.0135 (18)	-0.0083 (16)	0.0128 (15)
C14	0.0416 (19)	0.0229 (15)	0.0349 (17)	-0.0018 (13)	-0.0174 (15)	-0.0027 (13)
C15	0.0334 (18)	0.0319 (17)	0.0353 (18)	0.0010 (14)	-0.0099 (14)	-0.0083 (14)
C16	0.0297 (16)	0.0312 (16)	0.0259 (15)	-0.0074 (13)	-0.0063 (13)	-0.0034 (13)
C17	0.0282 (16)	0.0248 (14)	0.0278 (15)	-0.0057 (12)	-0.0114 (13)	-0.0037 (12)
C18	0.0313 (16)	0.0226 (14)	0.0266 (15)	-0.0060 (12)	-0.0105 (13)	-0.0016 (12)
C19	0.0393 (18)	0.0253 (15)	0.0286 (16)	-0.0055 (13)	-0.0123 (14)	0.0005 (13)
C20	0.0341 (17)	0.0261 (15)	0.0265 (15)	-0.0076 (13)	-0.0077 (13)	-0.0040 (12)
C21	0.0305 (16)	0.0273 (15)	0.0299 (16)	-0.0022 (13)	-0.0083 (13)	-0.0061 (13)
C22	0.0323 (17)	0.0230 (14)	0.0307 (16)	-0.0033 (12)	-0.0141 (13)	-0.0033 (12)
C23	0.046 (2)	0.0288 (17)	0.0392 (19)	0.0028 (15)	-0.0147 (16)	0.0017 (15)
C24	0.064 (3)	0.035 (2)	0.056 (2)	0.0098 (19)	-0.020 (2)	-0.0065 (18)
C25	0.050 (2)	0.051 (2)	0.063 (3)	0.012 (2)	-0.010 (2)	-0.011 (2)
C26	0.040 (2)	0.0388 (19)	0.042 (2)	0.0014 (16)	-0.0038 (16)	-0.0082 (16)

Geometric parameters (Å, °)

Br1—C1	1.895 (3)	C12—H12B	0.9700
Br2—C3	1.884 (3)	C12—H12A	0.9700
Br3—C14	1.906 (3)	C13—H13B	0.9700
Br4—C16	1.899 (3)	C13—H13A	0.9700
N1C4	1.361 (4)	N4—H4NB	0.88 (4)
N1—C9	1.335 (4)	N4—H4NA	0.78 (5)
N2—C7	1.358 (5)	C14—C15	1.401 (5)
C1—C2	1.400 (5)	C14—C19	1.358 (5)
C1—C6	1.341 (5)	C15—C16	1.365 (5)
С2—С3	1.362 (5)	C16—C17	1.422 (4)
N2—H2NA	0.84 (5)	C17—C18	1.423 (4)
N2—H2NB	0.81 (5)	C18—C20	1.431 (4)
C3—C4	1.417 (4)	C18—C19	1.412 (5)
C4—C5	1.420 (4)	C20—C21	1.399 (5)
С5—С7	1.424 (4)	C21—C26	1.507 (5)
С5—С6	1.428 (5)	C21—C22	1.408 (4)
С7—С8	1.392 (5)	C22—C23	1.510 (5)
C8—C13	1.507 (5)	C23—C24	1.508 (6)
С8—С9	1.401 (4)	C24—C25	1.497 (7)
C9—C10	1.510 (5)	C25—C26	1.525 (6)
C10-C11	1.515 (6)	O1—H1O	0.81 (4)
C11—C12	1.499 (6)	O1—H2O	0.81 (5)
C12—C13	1.528 (6)	C15—H15	0.9300
С2—Н2	0.9300	C19—H19	0.9300
N3—C17	1.361 (4)	C23—H23A	0.9700
N3—C22	1.334 (4)	C23—H23B	0.9700
N4—C20	1.356 (4)	C24—H24B	0.9700
С6—Н6	0.9300	C24—H24A	0.9700
C10—H10A	0.9700	C25—H25A	0.9700
C10—H10B	0.9700	C25—H25B	0.9700

C11—H11A	0.9700	C26—H26B	0.9700
C11—H11B	0.9700	C26—H26A	0.9700
C4—N1—C9	117.2 (2)	H4NA—N4—H4NB	117 (4)
Br1-C1-C2	118.4 (3)	C20—N4—H4NA	117 (3)
Br1-C1-C6	119.4 (3)	C20—N4—H4NB	123 (3)
C2—C1—C6	122.2 (3)	Br3—C14—C19	119.5 (3)
C1—C2—C3	118.7 (3)	Br3—C14—C15	117.7 (3)
H2NA—N2—H2NB	122 (5)	C15—C14—C19	122.7 (3)
C7—N2—H2NA	118 (4)	C14—C15—C16	118.0 (3)
C7—N2—H2NB	120 (3)	Br4C16C15	116.8 (2)
Br2—C3—C2	117.1 (3)	Br4—C16—C17	120.2 (2)
Br2—C3—C4	120.1 (2)	C15—C16—C17	123.0 (3)
C2—C3—C4	122.9 (3)	N3—C17—C18	123.3 (3)
N1-C4-C5	123.3 (3)	N3—C17—C16	120.2 (2)
N1—C4—C3	120.1 (3)	C16—C17—C18	116.6 (3)
C3—C4—C5	116.6 (3)	C17—C18—C19	120.5 (3)
C4—C5—C6	120.0 (3)	C17—C18—C20	117.6 (3)
C4—C5—C7	117.8 (3)	C19—C18—C20	121.9 (3)
C6—C5—C7	122.2 (3)	C14—C19—C18	119.2 (3)
C1—C6—C5	119.6 (3)	C18—C20—C21	118.6 (3)
C5—C7—C8	118.3 (3)	N4—C20—C21	120.5 (3)
N2—C7—C8	121.6 (3)	N4—C20—C18	120.8 (3)
N2—C7—C5	120.1 (3)	C20—C21—C22	118.3 (3)
C7—C8—C9	119.1 (3)	C20—C21—C26	119.4 (3)
C7—C8—C13	119.3 (3)	C22—C21—C26	122.3 (3)
C9—C8—C13	121.7 (3)	C21—C22—C23	119.8 (3)
C8—C9—C10	120.8 (3)	N3—C22—C21	124.8 (3)
N1—C9—C8	124.3 (3)	N3—C22—C23	115.4 (3)
N1-C9-C10	114.9 (3)	C22—C23—C24	113.1 (3)
C9-C10-C11	114.7 (3)	C_{23} C_{24} C_{25}	110.1 (4)
C10-C11-C12	111.0 (4)	C_{24} C_{25} C_{26}	111.5 (4)
C_{11} $-C_{12}$ $-C_{13}$	110.0(3)	$C_{21} - C_{26} - C_{25}$	113.7 (3)
C8-C13-C12	112.5(3)	H10-01-H20	104 (5)
C1 - C2 - H2	121.00	C14—C15—H15	121.00
C_{3} C_{2} H_{2}	121.00	C16—C15—H15	121.00
$C_{17} N_{3} C_{22}$	117.3 (2)	C18—C19—H19	120.00
C5-C6-H6	120.00	C14—C19—H19	120.00
C1 - C6 - H6	120.00	C22—C23—H23A	109.00
C9-C10-H10A	109.00	C22—C23—H23B	109.00
C9-C10-H10B	109.00	C24—C23—H23B	109.00
C11—C10—H10B	109.00	H_{23A} C_{23} H_{23B}	108.00
H10A - C10 - H10B	108.00	C24—C23—H23A	109.00
C11—C10—H10A	109.00	C23—C24—H24B	110.00
C10-C11-H11R	109.00	C25-C24-H24A	110.00
C12—C11—H11A	109.00	C_{25} C_{24} H_{24R}	110.00
C12_C11_H11R	109.00	H24A = C24 = H24B	108.00
H11A_C11_H11R	108.00	C_{23} C_{24} H_{24}	110.00
	100.00	$023 - 024 - 1124 \Lambda$	110.00

C10 C11 U114	100.00		100.00
CIO-CII-HIIA	109.00	C24—C25—H25B	109.00
СП—С12—Н12В	110.00	C26—C25—H25A	109.00
C13—C12—H12A	110.00	C24—C25—H25A	109.00
C11—C12—H12A	110.00	H25A—C25—H25B	108.00
H12A—C12—H12B	108.00	C26—C25—H25B	109.00
C13—C12—H12B	110.00	C21—C26—H26A	109.00
C8—C13—H13A	109.00	C21—C26—H26B	109.00
C8—C13—H13B	109.00	C25—C26—H26B	109.00
C12—C13—H13B	109.00	H26A—C26—H26B	108.00
H13A—C13—H13B	108.00	C25—C26—H26A	109.00
С12—С13—Н13А	109.00		
012 010 111011	10,100		
CO N1 CA $C3$	170.7(3)	C22 N3 C17 C16	-170.8(3)
C_{4} N1 C0 C8	1/9.7(3)	C_{22} N3 C_{17} C_{10}	1/9.0(3)
C4 NI C9 C8	0.7(3)	C17 = N3 = C22 = C21	3.0(3)
C4—N1—C9—C10	-1/9.6(3)	C1/-N3-C22-C23	-1/6.8(3)
C9—N1—C4—C5	0.8 (4)	C22—N3—C17—C18	0.2 (5)
Br1—C1—C2—C3	176.6 (3)	Br3—C14—C15—C16	179.8 (3)
Br1—C1—C6—C5	-175.5 (3)	Br3—C14—C19—C18	177.8 (3)
C2—C1—C6—C5	2.3 (6)	C15—C14—C19—C18	-0.8 (6)
C6—C1—C2—C3	-1.2 (6)	C19—C14—C15—C16	-1.6 (6)
C1—C2—C3—Br2	179.7 (3)	C14—C15—C16—Br4	-177.3 (3)
C1—C2—C3—C4	-1.0 (6)	C14—C15—C16—C17	2.3 (5)
Br2—C3—C4—N1	2.2 (4)	Br4-C16-C17-N3	-1.1 (4)
Br2—C3—C4—C5	-178.8(2)	Br4—C16—C17—C18	178.9 (2)
C2-C3-C4-C5	1.9 (5)	C15—C16—C17—C18	-0.6(5)
C_{2} C_{3} C_{4} N_{1}	-1771(3)	C_{15} C_{16} C_{17} N_3	1794(3)
N1 - C4 - C5 - C7	-0.1(5)	N_{3} C_{17} C_{18} C_{20}	-36(5)
N1 - C4 - C5 - C6	178.2(3)	N_{3} C_{17} C_{18} C_{19}	1781(3)
$C_{1}^{2} = C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	-0.8(4)	$C_{16} = C_{17} = C_{18} = C_{19}$	-10(4)
$C_{3} - C_{4} - C_{5} - C_{0}$	-0.8(4)	C16 C17 C18 C20	-1.9(4)
$C_3 = C_4 = C_3 = C_7$	-1/9.1(3)	C10 - C17 - C18 - C20	1/0.4(3)
C4—C5—C6—C1	-1.3(5)		2.6 (5)
C4—C5—C7—C8	-2.1 (5)	C17—C18—C20—C21	3.9 (5)
C6—C5—C7—N2	-0.3(5)	C19—C18—C20—N4	0.7 (5)
C6—C5—C7—C8	179.7 (3)	C19—C18—C20—C21	-177.8 (3)
C7—C5—C6—C1	177.0 (3)	C20-C18-C19-C14	-175.7 (3)
C4—C5—C7—N2	178.0 (3)	C17—C18—C20—N4	-177.6 (3)
C5—C7—C8—C9	3.4 (5)	C18—C20—C21—C22	-1.1 (5)
N2-C7-C8-C9	-176.6 (4)	N4-C20-C21-C22	-179.7 (3)
N2-C7-C8-C13	3.3 (6)	N4-C20-C21-C26	-1.1 (5)
C5-C7-C8-C13	-176.7 (3)	C18—C20—C21—C26	177.4 (3)
C7—C8—C9—C10	177.4 (3)	C20—C21—C22—C23	177.2 (3)
C13—C8—C9—N1	177.3 (3)	C26—C21—C22—N3	179.0 (3)
C7—C8—C13—C12	162.3 (4)	C20-C21-C26-C25	172.6 (3)
C9-C8-C13-C12	-17.8(5)	C^{22} C^{21} C^{26} C^{25}	-89(5)
C_{13} C_{8} C_{9} C_{10}	-24(5)	$C_{26} = C_{21} = C_{22} = C_{23}$	-1.3(5)
C7 - C8 - C9 - N1	-2.9(5)	C_{20} C_{21} C_{22} C_{23}	-25(5)
$V_{1} = C_{0} = C_{2} = 101$	2.7(3) 170 5 (3)	$N_{20} = C_{21} = C_{22} = N_{3}$	2.5(3)
1 1 - 0 - 0 10 - 0 11	1/0.3(3)	$1N_3 - C_{22} - C_{23} - C_{24}$	137.3(3)
C8-C9-C10-C11	-9.8 (3)	$U_{21} - U_{22} - U_{23} - U_{24}$	-20.3 (5)

data reports

C9—C10—C11—C12	42.3 (5)	C22—C23—C24—C25	51.8 (5)
C10-C11-C12-C13	-62.7 (5)	C23—C24—C25—C26	-62.6 (5)
C11—C12—C13—C8	49.9 (5)	C24—C25—C26—C21	40.6 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N3/C1/C18/C20–C22 pyridine ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2 <i>NA</i> ···O1 ⁱ	0.84 (5)	2.39 (4)	3.215 (5)	168 (5)
O1—H1 <i>O</i> ···N3 ⁱⁱ	0.81 (4)	2.12 (3)	2.895 (4)	161 (5)
N4—H4 <i>NB</i> …N1	0.88 (4)	2.36 (4)	3.207 (4)	161 (4)
C6—H6···O1 ⁱ	0.93	2.42	3.315 (5)	162
C25—H25 B ···Cg1 ⁱⁱⁱ	0.97	2.95	3.820 (5)	151

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) *x*, *y*+1, *z*; (iii) -*x*+2, -*y*, -*z*+1.