

IUCrData

ISSN 2414-3146

Received 22 June 2017 Accepted 23 July 2017

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; iridium complex; bridging phosphine; triazole; cycloocta-1,5diene.

CCDC reference: 1563999

Structural data: full structural data are available from iucrdata.iucr.org

[μ -1,4-Bis(diphenylphosphanyl)butane- $\kappa^2 P:P'$]bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)-[(1,2,5,6- η)-cycloocta-1,5-diene]iridium(I)} bis(tetrafluoroborate) dichloromethane disolvate

Karam B. Idrees,^a Andrei V. Astashkin^b and Edward Rajaseelan^a*

^aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and ^bDepartment of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85716, USA. *Correspondence e-mail: edward.rajaseelan@millersville.edu

The title compound, $[Ir_2(C_{14}H_{19}N_3)_2(C_8H_{12})_2(C_{28}H_{28}P_2)](BF_4)_2\cdot 2CH_2Cl_2$, has triclinic ($P\overline{1}$) symmetry and the dication lies about an inversion center located at the mid-point of the butane chain of the phosphine ligand. The Ir^I ion has a distorted square-planar coordination geometry. The *N*-heterocyclic carbene ligand has an extended S-shaped conformation. The diphosphine ligand acts as a bridge between the two metal centers. This is the first structural report of a complex where the square-planar iridium centers are bridged by a phosphine ligand, and it is of interest with respect to catalysis in transfer hydrogenation reactions. Parts of the triazole and cyclooctadiene ligands and the tetrafluoroborate anion are disordered over two sets of sites.

Structure description

N-heterocyclic carbene complexes are of interest because of their catalytic properties in transfer hydrogenation reactions. The title compound is the first example of a dimer bridged by a chelating phosphine ligand. Transfer hydrogenation of ketones and imines is an encouraging example of an efficient and benign chemical transformation that exemplifies some of the key aspects of green chemistry. *N*-heterocyclic carbene (NHC) ligands can be tuned sterically and electronically by having different alkyl groups on the nitrogen atoms (Gusev, 2009). Many related NHC rhodium and iridium complexes have been synthesized and structurally characterized (Köcher & Herrmann 1997; Wang & Lin 1998; Chianese *et al.* 2004; Herrmann *et al.* 2006; Nichol *et al.* 2009, 2010, 2011, 2012; Lu *et al.* 2011; Huttenstine *et al.* 2011). Their catalytic activity in transfer hydrogenation reactions

Figure 1

The structure of the half molecule of the title complex, showing the atom labelling and 30% probability displacement ellipsoids.

have been studied and reported (Hillier *et al.* 2001; Albrecht *et al.* 2002; Gnanamgari *et al.* 2007).

The title dinuclear ionic complex (Fig. 1) comprises two Ir^{I} cations, two cyclooctadiene ligands, two *N*-heterocyclic carbene ligands, a diphosphine ligand, two tetrafluoroborate counter-anions, and two dichloromethane solvent molecules. As shown in Fig. 2, the two Ir^{I} cations are bridged by the diphosphine ligand and the coordination sphere of each Ir^{I} cation is completed through bonds to cyclooctadiene and the carbene, resulting in a distorted square-planar geometry. Charge balance is achieved by two non-coordinating tetra-fluoroborate anions. The carbene atom, C1, deviates from the

Figure 2 The full structure of the title complex with BF_4^- counter-ions and CH_2Cl_2 solvent molecules.

Figure 3 Scheme showing the various steps in the synthesis of the title compound.

expected sp^2 hybridization in that the N1-C1-N3 bond angle is 103.4 (5)°. Other selected bond lengths [Å] and angles [°] in the structure are: Ir1-P1 2.3257 (13) Å, Ir1-C1 2.041 (6) Å, and C1-Ir1-P1 89.58 (17)°.

Synthesis and crystallization

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich and used without further purification, in the dark, and under a nitrogen atmosphere. 1-Neopentyl-1,2,4triazole (2.2 g, 16 mmol) and benzyl bromide (4.0 g, 23 mmol) were refluxed in toluene (15 ml) for 3 d. After cooling, ether (50 ml) was added and the white solid [1] that formed was filtered, washed with ether and air dried (71%). Transmetallation in CH₂Cl₂ (10 ml) with [1] (0.0923 g, 0.298 mmol), Ag₂O (0.0345 g, 0.149 mmol), and [Ir(cod)Cl]₂ (0.100 g, 0.149 mmol), gave a bright-yellow solid [2] (82%). In a roundbottom flask, [2] (0.168 g, 0.298 mmol), 1,4-bis(diphenylphosphino)butane (0.0635 g, 0.149 mmol), and AgBF₄ (0.0580 g, 0.298 mmol) were dissolved in CH₂Cl₂ (15 ml) and stirred for 2 h to obtain a bright-red solid [3] (99%) (Fig. 3). X-ray quality crystals of [3] were grown from CH₂Cl₂/pentane by slow diffusion.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. C and H atoms of the benzyl fragment of the triazole ligand are disordered over two sets of sites with occupancy ratios fixed at 0.5766:0.4234 for the C9 atom and the adjacent atoms of the C8 methylene group and refined to 0.523 (7):0.477 (7) for the CH groups. The atoms of the CH₂ and CH groups of the cyclooctadiene ligand were similarly disordered with refined occupancies

 $\begin{array}{l} [Ir_2(C_{14}H_{19}N_3)_2(C_8H_{12})_2\text{-} \\ (C_{28}H_{28}P_2)](BF_4)_2\text{-}2CH_2Cl_2 \end{array}$

10.3518 (5), 11.5088 (5),

73.540 (1), 87.276 (1), 72.616 (1)

1829 31

100

Triclinic, $P\overline{1}$

1879.13 (15)

Μο Κα

2013)

2.57, -1.27

3 79

17.2483 (8)

 $0.3 \times 0.15 \times 0.08$

Bruker APEXII CCD

Multi-scan (SADABS; Bruker,

0.541 (16):0.459 (16) while the F atoms of the tetrafluoroborate anion were also disordered over two sets of sites with occupancies 0.731 (16) and 0.269 (16).

Funding information

KI gratefully acknowledges support by a Neimeyer–Hodgson research grant and a Millersville University student research grant.

References

- Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). *Organometallics*, **21**, 3596–3604.
- Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). *Organometallics*, **23**, 2461–2468.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.
- Gusev, D. G. (2009). Organometallics, 28, 6458-6461.
- Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.
- Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252.
- Huttenstine, A. L., Rajaseelan, E., Oliver, A. G. & Rood, J. A. (2011). *Acta Cryst.* E67, m1274–m1275.
- Köcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261– 265.
- Lu, W. Y., Cavell, K. J., Wixey, J. S. & Kariuki, B. (2011). Organometallics, **30**, 5649–5655.
- Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). *Eur. J. Inorg. Chem.* pp. 4320–4328.
- Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.
- Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.

Table 1Experimental details.

Chemical formula

Crystal data

 $M_{\rm r}$ Crystal system, space group Temperature (K) a, b, c (Å)

 $\begin{array}{l} \alpha, \ \beta, \ \gamma \ (^{\circ}) \\ V \ (\overset{}{\mathrm{A}^3}) \\ Z \\ \mathrm{Radiation \ type} \\ \mu \ (\mathrm{mm^{-1}}) \\ \mathrm{Crystal \ size \ (mm)} \end{array}$

Data collection Diffractometer Absorption correction

 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})$

	2013)
T_{\min}, T_{\max}	0.565, 0.745
No. of measured, independent and	37976, 7733, 7082
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.627
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.110, 1.06
No. of reflections	7733
No. of parameters	520
No. of restraints	228
H-atom treatment	H-atom parameters constrained

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.

full crystallographic data

IUCrData (2017). 2, x171081 [https://doi.org/10.1107/S2414314617010811]

[μ -1,4-Bis(diphenylphosphanyl)butane- $\kappa^2 P:P'$]bis{(4-benzyl-2-neopentyl-1,2,4triazol-3-ylidene)[(1,2,5,6-n)-cycloocta-1,5-diene]iridium(I)} bis(tetrafluoroborate) dichloromethane disolvate

Karam B. Idrees, Andrei V. Astashkin and Edward Rajaseelan

 $[\mu-1,4-Bis(diphenylphosphanyl)butane-\kappa^2 P:P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-2-neopentyl-3-ylidene)[(1,2,5,6-\eta)-P']bis{(4-benzyl-3-yliden$ cycloocta-1,5-diene]iridium(I)} bis(tetrafluoroborate) dichloromethane disolvate

Crystal data

 $[Ir_2(C_{14}H_{19}N_3)_2(C_8H_{12})_2(C_{28}H_{28}P_2)]$ $(BF_4)_2 \cdot 2CH_2Cl_2$ $M_r = 1829.31$ Triclinic, $P\overline{1}$ a = 10.3518(5) Å b = 11.5088 (5) Å*c* = 17.2483 (8) Å $\alpha = 73.540 (1)^{\circ}$ $\beta = 87.276 (1)^{\circ}$ $\gamma = 72.616 (1)^{\circ}$ $V = 1879.13 (15) Å^3$

Data collection

7733 independent refl
7082 reflections with
$R_{\rm int} = 0.029$
$\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 2.0$
$h = -12 \rightarrow 12$
$k = -14 \rightarrow 14$
$l = -21 \rightarrow 21$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.110$ S = 1.067733 reflections 520 parameters 228 restraints Primary atom site location: dual Z = 1F(000) = 914 $D_{\rm x} = 1.617 {\rm Mg m^{-3}}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9923 reflections $\theta = 2.4 - 26.4^{\circ}$ $\mu = 3.79 \text{ mm}^{-1}$ T = 100 KBlock, clear pink $0.3 \times 0.15 \times 0.08 \text{ mm}$

lections $I > 2\sigma(I)$ ٥

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0717P)^2 + 4.7665P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 2.57 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -1.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ir1	0.18525 (2)	0.41927 (2)	0.29265 (2)	0.02912 (8)	
P1	0.37397 (14)	0.47225 (13)	0.32136 (8)	0.0334 (3)	
C11	0.9205 (3)	0.0758 (3)	0.0963 (2)	0.1082 (9)	
C12	0.7401 (3)	-0.0632 (3)	0.07378 (15)	0.0934 (7)	
F1	0.6795 (11)	-0.1208 (10)	0.3272 (6)	0.062 (2)	0.731 (16)
N3	0.3615 (5)	0.2971 (5)	0.1699 (4)	0.0471 (7)	
N1	0.3665 (5)	0.1627 (5)	0.2837 (4)	0.0495 (7)	
F3	0.7015 (12)	-0.3137 (9)	0.4023 (7)	0.075 (3)	0.731 (16)
C1	0.3074 (6)	0.2862 (6)	0.2429 (4)	0.0467 (7)	
N2	0.4563 (5)	0.1863 (5)	0.1644 (4)	0.0504 (7)	
C3	0.3355 (6)	0.4109 (6)	0.1036 (4)	0.0439 (13)	
H3A	0.4192	0.4369	0.0952	0.053*	
H3B	0.2651	0.4789	0.1195	0.053*	
C4	0.2893 (7)	0.4028 (8)	0.0223 (4)	0.0572 (17)	
C15	0.0631 (6)	0.4869 (6)	0.3879 (3)	0.0380 (12)	
H15	0.1186	0.4878	0.4335	0.046*	
C16	-0.0418 (6)	0.4187 (6)	0.4151 (3)	0.0413 (12)	
H16A	-0.0001	0.3396	0.4582	0.050*	0.541 (16)
H16B	-0.1162	0.4727	0.4391	0.050*	0.541 (16)
H16C	-0.1327	0.4786	0.3966	0.050*	0.459 (16)
H16D	-0.0390	0.3902	0.4750	0.050*	0.459 (16)
C18	0.0132 (7)	0.3455 (8)	0.2892 (5)	0.061 (2)	
H18	0.0324	0.2591	0.2816	0.073*	0.541 (16)
H18A	0.0482	0.2662	0.2719	0.073*	0.459 (16)
C19	0.0046 (6)	0.4432 (7)	0.2237 (4)	0.0515 (16)	
H19	0.0321	0.4100	0.1758	0.062*	0.541 (16)
H19A	0.0145	0.4275	0.1693	0.062*	0.459 (16)
C22	0.0510 (6)	0.5908 (5)	0.3191 (3)	0.0400 (12)	
H22	0.0988	0.6516	0.3253	0.048*	
C23	0.3886 (3)	0.6202 (3)	0.25080 (18)	0.0337 (10)	
C24	0.2894 (3)	0.6885 (3)	0.1897 (2)	0.0359 (11)	
H24	0.2159	0.6576	0.1842	0.043*	
C25	0.2978 (3)	0.8021 (3)	0.13685 (18)	0.0439 (13)	
H25	0.2301	0.8488	0.0951	0.053*	
C26	0.4054 (4)	0.8473 (3)	0.1450 (2)	0.0435 (13)	
H26	0.4111	0.9249	0.1089	0.052*	
C27	0.5045 (3)	0.7789 (3)	0.2061 (2)	0.0416 (12)	
H27	0.5780	0.8098	0.2116	0.050*	
C28	0.4961 (3)	0.6654 (3)	0.25896 (18)	0.0377 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H28	0 5639	0.6187	0 3007	0.045*	
C29	0.5353(3)	0.3556(3)	0.3152(3)	0.0454(14)	
C30	0.6111 (4)	0.3689(4)	0.2463(2)	0.0517(16)	
H30	0.5851	0.4451	0.2031	0.062*	
C31	0.7250 (4)	0.2708(5)	0.2001	0.002	
H31	0.7250 (1)	0.2799	0.1933	0.090*	
C32	0.7630 (4)	0.1593 (4)	0.3035 (4)	0.090	
H32	0.8409	0.0923	0.2005 (4)	0.121*	
C33	0.6872(5)	0.0925	0.2770	0.121 0.108 (5)	
Н33	0.7132	0.0698	0.4155	0.129*	
C34	0.7132 0.5734 (5)	0.0078	0.3782 (3)	0.12°	
U34 H34	0.5754 (5)	0.2441 (4)	0.3782 (3)	0.084*	
C35	0.3213 0.3783 (7)	0.2330	0.4233	0.004	
UJJ Н35 Л	0.3783 (7)	0.5504	0.4234 (3)	0.058*	
H35A H25B	0.2989	0.3394	0.4274	0.058*	
C36	0.5034	0.4100	0.4014 0.4540 (3)	0.058°	
	0.5029 (8)	0.5092 (8)	0.4340 (3)	0.0570(19)	
П30А 1126D	0.5001	0.3902	0.4201	0.009	
H30D	0.3800	0.4485 -0.1457 (0)	0.4419	0.009°	0.721 (16)
Г2 С21	0.0024(10)	-0.1437(9)	0.4312(3)	0.097(3)	0.751 (10)
	-0.0093(7)	0.0300 (0)	0.2001 (4)	0.0550 (10)	0.541(16)
	-0.0741	0.7400	0.2331	0.004	0.541(10)
	-0.1322	0.0494	0.2910	0.064*	0.341(10) 0.450(16)
	-0.1438	0.7001	0.2834	0.064*	0.439(10)
H21D	-0.0439	0.7098	0.2110	0.064°	0.439 (10)
12	0.4564 (6)	0.1088 (6)	0.2333 (5)	0.0513(7)	
H2	0.5124	0.0232	0.2485	0.062*	0.721 (1()
F4	0.8182(10)	-0.2001 (11)	0.4370(7)	0.112(3)	0.731 (16)
BI	0.69/6 (/)	-0.1936 (6)	0.4059 (4)	0.0453 (13)	
C6	0.2319 (9)	0.5392 (9)	-0.0307 (5)	0.075 (2)	
H6A	0.1531	0.5836	-0.0054	0.112*	
H6B	0.2045	0.5386	-0.0841	0.112*	
H6C	0.3014	0.5829	-0.0365	0.112*	
C8	0.3409 (8)	0.0996 (6)	0.3659 (5)	0.069 (2)	
H8BC	0.3172	0.1617	0.3978	0.082*	0.4234
H8BD	0.4244	0.0323	0.3910	0.082*	0.4234
H8AA	0.2870	0.1635	0.3923	0.082*	0.5766
H8AB	0.4280	0.0546	0.3970	0.082*	0.5766
C7	0.4088 (9)	0.3341 (10)	-0.0205 (5)	0.072 (2)	
H7A	0.4807	0.3748	-0.0255	0.108*	
H7B	0.3781	0.3386	-0.0744	0.108*	
H7C	0.4437	0.2450	0.0112	0.108*	
C5	0.1801 (8)	0.3342 (11)	0.0362 (5)	0.081 (3)	
H5A	0.2201	0.2454	0.0672	0.122*	
H5B	0.1437	0.3378	-0.0161	0.122*	
H5C	0.1069	0.3757	0.0664	0.122*	
C9A	0.2192 (12)	0.0373 (11)	0.3687 (8)	0.0662 (12)	0.4234
C10A	0.2247 (12)	-0.0325 (12)	0.3140 (7)	0.0661 (12)	0.477 (7)
H10A	0.2875	-0.0294	0.2721	0.079*	0.477 (7)

C11A	0.1383 (13)	-0.1066 (10)	0.3208 (6)	0.0661 (12)	0.477 (7)
H11A	0.1421	-0.1543	0.2835	0.079*	0.477 (7)
C12A	0.0464 (12)	-0.1111 (10)	0.3822 (7)	0.0662 (12)	0.477 (7)
H12A	-0.0126	-0.1618	0.3869	0.079*	0.477 (7)
C13A	0.0409 (11)	-0.0413 (10)	0.4368 (6)	0.0662 (12)	0.477 (7)
H13A	-0.0219	-0.0443	0.4788	0.079*	0.477 (7)
C14A	0.1273 (12)	0.0329 (10)	0.4301 (7)	0.0661 (13)	0.477 (7)
H14A	0.1235	0.0806	0.4674	0.079*	0.477 (7)
C1S	0.7754 (10)	0.0288 (10)	0.1289 (7)	0.083 (3)	
H1SA	0.7892	-0.0201	0.1868	0.099*	
H1SB	0.6968	0.1053	0.1238	0.099*	
C11	0.1129 (18)	-0.0748 (14)	0.3012 (11)	0.0661 (12)	0.523 (7)
H11	0.0619	-0.0790	0.2582	0.079*	0.523 (7)
C10	0.1955 (17)	0.0033 (15)	0.2921 (11)	0.0661 (12)	0.523 (7)
H10	0.2075	0.0537	0.2398	0.079*	0.523 (7)
C12	0.1145 (17)	-0.1523 (14)	0.3881 (10)	0.0660 (12)	0.523 (7)
H12	0.0587	-0.2070	0.4000	0.079*	0.523 (7)
C14	0.2577 (16)	-0.0702 (13)	0.4341 (10)	0.0663 (13)	0.523 (7)
H14	0.3070	-0.0722	0.4798	0.080*	0.523 (7)
C13	0.1813 (16)	-0.1512 (14)	0.4447 (11)	0.0663 (12)	0.523 (7)
H13	0.1796	-0.2077	0.4968	0.080*	0.523 (7)
C17	-0.1010 (11)	0.3856 (12)	0.3496 (7)	0.045 (3)	0.541 (16)
H17A	-0.1752	0.4596	0.3196	0.054*	0.541 (16)
H17B	-0.1392	0.3147	0.3738	0.054*	0.541 (16)
C20	-0.0713 (15)	0.5901 (13)	0.1928 (9)	0.055 (4)	0.541 (16)
H20A	-0.0261	0.6299	0.1452	0.066*	0.541 (16)
H20B	-0.1661	0.6036	0.1761	0.066*	0.541 (16)
C20A	-0.1114 (12)	0.5542 (14)	0.2355 (10)	0.042 (4)	0.459 (16)
H20C	-0.1662	0.5960	0.1841	0.050*	0.459 (16)
H20D	-0.1704	0.5204	0.2770	0.050*	0.459 (16)
C17A	-0.0199 (13)	0.3041 (13)	0.3827 (9)	0.042 (4)	0.459 (16)
H17C	-0.1023	0.2761	0.3889	0.051*	0.459 (16)
H17D	0.0564	0.2328	0.4131	0.051*	0.459 (16)
F1A	0.733 (3)	-0.123 (3)	0.3307 (15)	0.054 (5)	0.269 (16)
F4A	0.740 (3)	-0.1544 (18)	0.4651 (11)	0.079 (6)	0.269 (16)
F3A	0.749 (2)	-0.3176 (18)	0.4242 (15)	0.056 (5)	0.269 (16)
F2A	0.5535 (19)	-0.1685 (19)	0.4151 (16)	0.076 (6)	0.269 (16)
C9	0.2672 (11)	0.0085 (9)	0.3663 (8)	0.052 (3)	0.5766

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	0.03192 (12)	0.03271 (12)	0.02558 (12)	-0.01251 (8)	-0.00290 (7)	-0.00892 (8)
P1	0.0385 (7)	0.0366 (7)	0.0277 (6)	-0.0193 (5)	-0.0084 (5)	-0.0029 (5)
Cl1	0.0738 (15)	0.137 (2)	0.116 (2)	-0.0331 (16)	0.0187 (14)	-0.0393 (19)
C12	0.127 (2)	0.0869 (15)	0.0653 (13)	-0.0450 (15)	0.0017 (13)	-0.0063 (11)
F1	0.081 (6)	0.042 (3)	0.053 (3)	-0.012 (5)	-0.013 (4)	-0.004 (2)
N3	0.0329 (13)	0.0434 (14)	0.0710 (18)	-0.0071 (11)	-0.0022 (12)	-0.0292 (13)

N1	0.0349 (13)	0.0440 (14)	0.0730 (18)	-0.0065 (11)	-0.0044 (13)	-0.0263 (13)
F3	0.100 (7)	0.059 (4)	0.084 (7)	-0.046 (4)	0.030 (5)	-0.029 (4)
C1	0.0324 (13)	0.0432 (14)	0.0705 (18)	-0.0078 (11)	-0.0037 (13)	-0.0282 (13)
N2	0.0350 (13)	0.0453 (14)	0.0741 (18)	-0.0056 (11)	-0.0019 (13)	-0.0278 (13)
C3	0.039 (3)	0.054 (3)	0.047 (3)	-0.016 (3)	0.004 (2)	-0.025 (3)
C4	0.048 (3)	0.092 (5)	0.051 (4)	-0.030(3)	0.007 (3)	-0.041 (4)
C15	0.050 (3)	0.047 (3)	0.030 (3)	-0.024 (3)	0.015 (2)	-0.024 (2)
C16	0.044 (3)	0.053 (3)	0.037 (3)	-0.025 (3)	0.014 (2)	-0.019 (2)
C18	0.055 (4)	0.102 (6)	0.074 (5)	-0.061 (4)	0.031 (3)	-0.063 (5)
C19	0.031 (3)	0.069 (4)	0.062 (4)	-0.005 (3)	-0.016 (3)	-0.038 (4)
C22	0.051 (3)	0.033 (3)	0.041 (3)	-0.012 (2)	0.008 (2)	-0.021 (2)
C23	0.044 (3)	0.032 (2)	0.029 (2)	-0.015 (2)	0.003 (2)	-0.010 (2)
C24	0.041 (3)	0.035 (3)	0.031 (3)	-0.011 (2)	0.004 (2)	-0.009(2)
C25	0.058 (3)	0.037 (3)	0.031 (3)	-0.008(3)	0.001 (2)	-0.007(2)
C26	0.062 (4)	0.032 (3)	0.037 (3)	-0.018 (3)	0.016 (3)	-0.008 (2)
C27	0.053 (3)	0.044 (3)	0.038 (3)	-0.026 (3)	0.011 (2)	-0.017 (2)
C28	0.043 (3)	0.041 (3)	0.035 (3)	-0.019 (2)	0.005 (2)	-0.014 (2)
C29	0.038 (3)	0.039 (3)	0.061 (4)	-0.019 (2)	-0.020(3)	-0.006(3)
C30	0.039 (3)	0.045 (3)	0.076 (5)	-0.011(2)	-0.016 (3)	-0.022 (3)
C31	0.039 (3)	0.072 (5)	0.126 (8)	-0.005 (3)	-0.021 (4)	-0.052 (5)
C32	0.045 (4)	0.052 (5)	0.209 (13)	0.008 (4)	-0.062 (6)	-0.052 (6)
C33	0.056 (5)	0.041 (4)	0.205 (13)	-0.017 (4)	-0.066 (7)	0.014 (6)
C34	0.052 (4)	0.042 (3)	0.103 (6)	-0.021(3)	-0.036 (4)	0.014 (4)
C35	0.068 (4)	0.068 (4)	0.024 (3)	-0.049(3)	-0.008(2)	-0.002(2)
C36	0.078 (5)	0.088 (5)	0.026 (3)	-0.065 (4)	-0.010(3)	-0.002(3)
F2	0.089 (6)	0.097 (6)	0.081 (5)	0.020 (4)	0.011 (4)	-0.038 (4)
C21	0.053 (4)	0.044 (3)	0.052 (4)	0.002 (3)	-0.004 (3)	-0.011 (3)
C2	0.0359 (13)	0.0451 (14)	0.0750 (18)	-0.0055 (12)	-0.0033 (13)	-0.0265 (13)
F4	0.072 (5)	0.148 (8)	0.118 (7)	-0.031 (5)	-0.033 (4)	-0.038 (6)
B1	0.049 (3)	0.032 (3)	0.050 (3)	-0.006(2)	-0.005 (2)	-0.008(2)
C6	0.066 (5)	0.112 (7)	0.043 (4)	-0.020 (5)	-0.003 (3)	-0.025 (4)
C8	0.079 (5)	0.035 (3)	0.080 (5)	-0.015 (3)	-0.032 (4)	0.006 (3)
C7	0.069 (5)	0.106 (7)	0.064 (5)	-0.038 (5)	0.022 (4)	-0.050 (5)
C5	0.065 (5)	0.156 (9)	0.066 (5)	-0.064 (5)	0.019 (4)	-0.068 (6)
C9A	0.070 (3)	0.049 (3)	0.077 (3)	-0.017 (2)	0.002 (2)	-0.014 (2)
C10A	0.070 (3)	0.049 (3)	0.077 (3)	-0.017 (2)	0.002 (2)	-0.014 (2)
C11A	0.070 (3)	0.049 (3)	0.077 (3)	-0.017 (2)	0.002 (2)	-0.014 (2)
C12A	0.070 (3)	0.049 (3)	0.077 (3)	-0.018 (2)	0.002 (2)	-0.014 (2)
C13A	0.070 (3)	0.049 (3)	0.077 (3)	-0.017 (2)	0.002 (2)	-0.014 (2)
C14A	0.070 (3)	0.049 (3)	0.077 (3)	-0.017 (2)	0.002 (2)	-0.014 (2)
C1S	0.075 (6)	0.079 (6)	0.087 (7)	-0.015 (5)	0.011 (5)	-0.022 (5)
C11	0.070 (3)	0.049 (3)	0.077 (3)	-0.017 (2)	0.002 (2)	-0.014 (2)
C10	0.070 (3)	0.049 (3)	0.077 (3)	-0.017 (2)	0.002 (2)	-0.014 (2)
C12	0.070 (3)	0.049 (3)	0.077 (3)	-0.018 (2)	0.002 (2)	-0.014 (2)
C14	0.070 (3)	0.049 (3)	0.077 (3)	-0.018 (2)	0.002 (2)	-0.014 (2)
C13	0.070 (3)	0.049 (3)	0.077 (3)	-0.018 (2)	0.002 (2)	-0.013 (2)
C17	0.034 (6)	0.059 (8)	0.050 (7)	-0.021 (6)	0.011 (5)	-0.021 (6)
C20	0.050 (7)	0.058 (8)	0.042 (8)	0.000 (6)	-0.008 (6)	-0.007 (6)

data reports

C20A C17A	0.021 (5) 0.033 (7)	0.055 (8) 0.049 (8)	0.040 (8) 0.058 (8)	0.003 (5) -0.025 (6)	-0.008 (5) 0.012 (6)	-0.012 (7) -0.022 (6)
F1A	0.062 (12)	0.035 (7)	0.051 (6)	-0.005 (9)	0.001 (7)	-0.001 (5)
F4A	0.125 (14)	0.057 (9)	0.055 (7)	-0.040 (9)	-0.010 (7)	-0.001 (6)
F3A	0.066 (11)	0.030 (5)	0.051 (10)	0.001 (5)	0.016 (7)	0.001 (4)
F2A	0.059 (6)	0.064 (9)	0.089 (13)	-0.010 (5)	0.004 (6)	-0.008 (8)
C9	0.043 (5)	0.028 (5)	0.065 (7)	-0.005 (4)	-0.024 (5)	0.016 (5)

Geometric parameters (Å, °)

	(/ -)		
lr1—P1	2.3257 (13)	C34—H34	0.9500
Ir1—C1	2.041 (6)	С35—Н35А	0.9900
Ir1—C15	2.200 (5)	С35—Н35В	0.9900
Ir1—C18	2.200 (5)	C35—C36	1.526 (8)
Ir1—C19	2.169 (5)	C36—C36 ⁱ	1.541 (11)
Ir1—C22	2.202 (5)	С36—Н36А	0.9900
P1—C23	1.834 (3)	C36—H36B	0.9900
P1—C29	1.824 (3)	F2—B1	1.317 (10)
P1—C35	1.824 (6)	C21—H21A	0.9900
Cl1—C1S	1.760 (10)	C21—H21B	0.9900
Cl2—C1S	1.731 (11)	C21—H21C	0.9900
F1—B1	1.366 (11)	C21—H21D	0.9900
N3—C1	1.342 (9)	C21—C20	1.518 (15)
N3—N2	1.383 (7)	C21—C20A	1.475 (16)
N3—C3	1.437 (8)	C2—H2	0.9500
N1	1.357 (8)	F4—B1	1.355 (10)
N1—C2	1.375 (8)	B1—F1A	1.42 (2)
N1—C8	1.451 (10)	B1—F4A	1.36 (2)
F3—B1	1.390 (10)	B1—F3A	1.31 (2)
N2—C2	1.268 (9)	B1—F2A	1.44 (2)
С3—НЗА	0.9900	С6—Н6А	0.9800
С3—Н3В	0.9900	C6—H6B	0.9800
C3—C4	1.538 (8)	С6—Н6С	0.9800
C4—C6	1.528 (12)	C8—H8BC	0.9900
C4—C7	1.536 (10)	C8—H8BD	0.9900
C4—C5	1.536 (10)	C8—H8AA	0.9900
C15—H15	1.0000	C8—H8AB	0.9900
C15—C16	1.505 (7)	C8—C9A	1.618 (11)
C15—C22	1.404 (8)	C8—C9	1.467 (13)
C16—H16A	0.9900	С7—Н7А	0.9800
C16—H16B	0.9900	С7—Н7В	0.9800
C16—H16C	0.9900	C7—H7C	0.9800
C16—H16D	0.9900	С5—Н5А	0.9800
C16—C17	1.499 (13)	C5—H5B	0.9800
C16—C17A	1.527 (14)	C5—H5C	0.9800
C18—H18	1.0000	C9A—C10A	1.3900
C18—H18A	1.0000	C9A—C14A	1.3900
C18—C19	1.334 (11)	C10A—H10A	0.9500

C18—C17	1.589 (12)	C10A—C11A	1.3900
C18—C17A	1.597 (15)	C11A—H11A	0.9500
С19—Н19	1.0000	C11A—C12A	1.3900
С19—Н19А	1.0000	C12A—H12A	0.9500
C19—C20	1.579 (14)	C12A—C13A	1.3900
C19—C20A	1.523 (13)	C13A—H13A	0.9500
C22—H22	1.0000	C13A—C14A	1.3900
C22—C21	1.507 (9)	C14A—H14A	0.9500
C23—C24	1.3900	C1S—H1SA	0.9900
C23—C28	1.3900	C1S—H1SB	0.9900
C24—H24	0.9500	C11—H11	0.9500
C_{24} C_{25}	1 3900	C_{11} $-C_{10}$	1.39(2)
C25—H25	0.9500	C_{11} $-C_{12}$	1.59(2) 1.51(2)
$C_{25} = C_{25}$	1 3900	C10—H10	0.9500
C26—H26	0.9500	C10-C9	1.53(2)
$C_{26} = C_{27}$	1 3900	C12—H12	0.9500
C27—H27	0.9500	C_{12} C_{13}	1.23(2)
$C_{27} = C_{28}$	1 3900	C14 $H14$	0.0500
$C_{27} = C_{28}$	0.9500	C_{14} C_{13}	1.36(2)
$C_{20} = C_{30}$	1 3900	C_{14} C_{9}	1.30(2) 1.281(10)
$C_{29} = C_{30}$	1.3900	C13 H13	0.0500
$C_{29} = C_{34}$	0.0500	C17 H17A	0.9500
C_{30} C_{31}	1 3900	C17 H17B	0.9900
C31 H31	0.0500	C_{1} H_{1} H_{2} H_{2	0.9900
C_{21} C_{22}	1 3000	C_{20} H20R	0.9900
$C_{31} = C_{32}$	0.0500	C_{20} H_{20C}	0.9900
$C_{32} = C_{32}$	1 2000	$C_{20}A = H_{20}D$	0.9900
$C_{32} = C_{33}$	1.5900	$C_{20}A - H_{20}D$	0.9900
C33—H35	1,2000		0.9900
035-034	1.3900	CI/A—HI/D	0.9900
C1—Ir1—P1	89.58 (17)	C36—C35—H35B	107.5
C1—Ir1—C15	155.3 (3)	C35—C36—C36 ⁱ	109.7 (6)
C1—Ir1—C18	91.4 (2)	С35—С36—Н36А	109.7
C1—Ir1—C19	94.6 (2)	С35—С36—Н36В	109.7
C1—Ir1—C22	167.4 (3)	C36 ⁱ —C36—H36A	109.7
C15—Ir1—P1	94.96 (16)	C36 ⁱ —C36—H36B	109.7
C15—Ir1—C22	37.2 (2)	H36A—C36—H36B	108.2
C18—Ir1—P1	169.1 (2)	C22—C21—H21A	108.1
C18—Ir1—C15	79.8 (2)	C22—C21—H21B	108.1
C18—Ir1—C22	91.2 (3)	C22—C21—H21C	109.3
C19—Ir1—P1	155.1 (2)	C22—C21—H21D	109.3
C19—Ir1—C15	91.5 (2)	C22—C21—C20	116.7 (6)
C19—Ir1—C18	35.6 (3)	H21A—C21—H21B	107.3
C19—Ir1—C22	80.5 (2)	H21C—C21—H21D	108.0
C22—Ir1—P1	90.23 (16)	C20—C21—H21A	108.1
C23—P1—Ir1	113.07 (11)	C20—C21—H21B	108.1
C29—P1—Ir1	114.12 (14)	C20A—C21—C22	111.6 (7)
C29—P1—C23	103.84 (18)	C20A—C21—H21C	109.3

C25 D1 L1	112.2 (2)	C20A C21 U21D	100.2
C35—PI—Iri	113.3 (2)	C20A—C21—H21D	109.3
C35—P1—C23	107.4 (2)	N1—C2—H2	123.8
C35—P1—C29	104.2 (3)	N2—C2—N1	112.4 (6)
C1—N3—N2	112.9 (5)	N2—C2—H2	123.8
C1—N3—C3	126.3 (5)	F1—B1—F3	104.7 (9)
N2—N3—C3	120.6 (5)	F2—B1—F1	111.6 (8)
C1—N1—C2	107.6 (6)	F2—B1—F3	114.1 (9)
C1—N1—C8	126.2 (6)	F2—B1—F4	107.4 (8)
C2—N1—C8	126.2 (6)	F4—B1—F1	110.2 (8)
N3—C1—Ir1	131.2 (5)	F4—B1—F3	108.8 (8)
N3—C1—N1	103.4 (5)	F1A—B1—F2A	113.7 (13)
N1—C1—Ir1	124.9 (5)	F4A—B1—F1A	107.3 (15)
C2—N2—N3	103.6 (5)	F4A—B1—F2A	104.4 (16)
N3—C3—H3A	108.2	F3A—B1—F1A	116.6 (17)
N3—C3—H3B	108.2	F3A—B1—F4A	107.5(14)
$N_3 - C_3 - C_4$	116.5 (5)	F3A = B1 = F2A	107.0(11)
$H_3A = C_3 = H_3B$	107.3	C4—C6—H6A	109.5
C_{4} C_{3} H_{3} Λ	107.3	$C_4 = C_6 = H6R$	109.5
C4 - C3 - H3P	108.2	C_{4}	109.5
C4 - C3 - H3B	106.2		109.5
C_{0}	100.7(0)		109.5
	108.3 (7)		109.5
C6-C4-C5	110.5 (7)	H6B—C6—H6C	109.5
C7—C4—C3	111.5 (6)	N1—C8—H8BC	109.3
C5—C4—C3	109.8 (6)	N1—C8—H8BD	109.3
C5—C4—C7	110.0 (7)	N1—C8—H8AA	109.5
Ir1—C15—H15	113.5	N1—C8—H8AB	109.5
C16—C15—Ir1	111.3 (3)	N1C9A	111.7 (7)
C16—C15—H15	113.5	N1—C8—C9	110.6 (8)
C22—C15—Ir1	71.5 (3)	H8BC—C8—H8BD	107.9
С22—С15—Н15	113.5	H8AA—C8—H8AB	108.1
C22—C15—C16	125.8 (6)	C9A—C8—H8BC	109.3
C15—C16—H16A	108.6	C9A—C8—H8BD	109.3
C15—C16—H16B	108.6	С9—С8—Н8АА	109.5
C15—C16—H16C	109.1	С9—С8—Н8АВ	109.5
C15—C16—H16D	109.1	C4—C7—H7A	109.5
C_{15} C_{16} C_{17A}	112.6 (6)	C4—C7—H7B	109.5
H_{16A} $-C_{16}$ $-H_{16B}$	107.5	C4-C7-H7C	109.5
H_{16C} $-C_{16}$ $-H_{16D}$	107.8	H7A - C7 - H7B	109.5
$C_{17} C_{16} C_{15}$	11/ 8 (6)	H7A C7 H7C	109.5
C17 - C16 - H16A	109.6	H7P C7 H7C	109.5
C17 = C10 = H10A	108.0	H/B - C/ - H/C	109.5
C17 - C10 - H10B	108.0	C4—C5—H5A	109.5
$CI/A - CI_0 - HI_0 C$	109.1	C4—C5—H5B	109.5
C17A—C16—H16D	109.1	C4—C5—H5C	109.5
Ir1—C18—H18	118.1	нод—Со—Нов	109.5
Ir1—C18—H18A	107.2	H5A—C5—H5C	109.5
C19—C18—Irl	71.0 (3)	H5B—C5—H5C	109.5
C19—C18—H18	118.1	C10A—C9A—C8	116.0 (8)
C19—C18—H18A	107.2	C10A—C9A—C14A	120.0

C19—C18—C17	109.8 (8)	C14A—C9A—C8	123.1 (8)
C19—C18—C17A	145.3 (8)	C9A—C10A—H10A	120.0
C17—C18—Ir1	112.9 (5)	C9A—C10A—C11A	120.0
C17—C18—H18	118.1	C11A—C10A—H10A	120.0
C17A—C18—Ir1	102.2 (5)	C10A—C11A—H11A	120.0
C17A - C18 - H18A	107.2	C12A - C11A - C10A	120.0
Ir1-C19-H19	107.2	C12A $C11A$ $H11A$	120.0
Ir1C19H19A	118.9	C11A - C12A - H12A	120.0
C18 - C19 - Ir1	73 5 (4)	C11A - C12A - C13A	120.0
C18 - C19 - H19	108.9	C13A - C12A - H12A	120.0
	118.0	C12A = C12A = H12A	120.0
$C_{18} = C_{19} = C_{19}$	130 3 (0)	C12A = C13A = C14A	120.0
$C_{18} = C_{19} = C_{20}$	139.3(9) 107.0(0)	C12A - C13A - C14A	120.0
$C_{10} = C_{10} = C_{20} A$	107.0(9) 107.7(6)	C14A - C15A - H15A	120.0
$C_{20} = C_{19} = H_{10}$	107.7 (0)	C_{9A} C_{14A} H_{14A}	120.0
C_{20} C_{19} H_{19} C_{20} C_{10} H_{1}	108.9	C13A - C14A - C9A	120.0
C_{20A} C_{19} H_{10A}	110.9 (6)	CI3A—CI4A—HI4A	120.0
C20A—C19—H19A	118.9	CII—CIS—HISA	109.1
Ir1—C22—H22	114.0	CII—CIS—HISB	109.1
C15—C22—Ir1	71.3 (3)	Cl2—CIS—CII	112.4 (6)
C15—C22—H22	114.0	Cl2—C1S—H1SA	109.1
C15—C22—C21	125.0 (6)	Cl2—C1S—H1SB	109.1
C21—C22—Ir1	110.5 (4)	H1SA—C1S—H1SB	107.9
C21—C22—H22	114.0	C10—C11—H11	124.3
C24—C23—P1	119.40 (18)	C10-C11-C12	111.3 (15)
C24—C23—C28	120.0	C12—C11—H11	124.3
C28—C23—P1	120.59 (18)	C11—C10—H10	119.9
C23—C24—H24	120.0	C11—C10—C9	120.3 (14)
C25—C24—C23	120.0	C9—C10—H10	119.9
C25—C24—H24	120.0	C11—C12—H12	117.0
C24—C25—H25	120.0	C13—C12—C11	125.9 (16)
C26—C25—C24	120.0	C13—C12—H12	117.0
С26—С25—Н25	120.0	C13—C14—H14	118.0
С25—С26—Н26	120.0	C9—C14—H14	118.0
C25—C26—C27	120.0	C9—C14—C13	124.0 (16)
С27—С26—Н26	120.0	C12—C13—C14	121.1 (17)
С26—С27—Н27	120.0	C12—C13—H13	119.5
C28—C27—C26	120.0	C14—C13—H13	119.5
С28—С27—Н27	120.0	C16—C17—C18	109.8 (7)
С23—С28—Н28	120.0	C16—C17—H17A	109.7
C27—C28—C23	120.0	C16—C17—H17B	109.7
C27—C28—H28	120.0	C18—C17—H17A	109.7
C_{30} C_{29} P_{1}	122.0 (2)	C18—C17—H17B	109.7
C_{30} C_{29} C_{34}	120.0	H17A—C17—H17B	108.2
C_{34} C_{29} P_{1}	117.6(2)	C19-C20-H20A	109.8
C29—C30—H30	120.0	C19 - C20 - H20R	109.8
$C_{31} - C_{30} - C_{29}$	120.0	$C_{21} - C_{20} - C_{19}$	109.4 (9)
C_{31} C_{30} H_{30}	120.0	$C_{21} = C_{20} = C_{10}$	109.9 (2)
C_{30} C_{31} H_{31}	120.0	$C_{21} = C_{20} = H_{20R}$	109.0
0.00 - 0.01 - 11.01	120.0	021 020 1120D	107.0

C30—C31—C32	120.0	H20A—C20—H20B	108.2
С32—С31—Н31	120.0	C19—C20A—H20C	108.5
С31—С32—Н32	120.0	C19—C20A—H20D	108.5
C33—C32—C31	120.0	C21—C20A—C19	114.9 (9)
С33—С32—Н32	120.0	C21—C20A—H20C	108.5
С32—С33—Н33	120.0	C21—C20A—H20D	108.5
C32—C33—C34	120.0	H20C-C20A-H20D	107.5
С34—С33—Н33	120.0	C16—C17A—C18	107.9 (9)
С29—С34—Н34	120.0	C16—C17A—H17C	110.1
C33—C34—C29	120.0	C16—C17A—H17D	110.1
С33—С34—Н34	120.0	C18—C17A—H17C	110.1
Р1—С35—Н35А	107.5	C18—C17A—H17D	110.1
Р1—С35—Н35В	107.5	H17C—C17A—H17D	108.4
Н35А—С35—Н35В	107.0	C8—C9—C10	125.0 (10)
C36—C35—P1	119.3 (5)	C14—C9—C8	117.9 (12)
С36—С35—Н35А	107.5	C14—C9—C10	117.1 (13)

Symmetry code: (i) -x+1, -y+1, -z+1.