Received 28 June 2017
Accepted 5 July 2017

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; pyrazine; hydrogen bonding.

CCDC reference: 1560429
Structural data: full structural data are available from iucrdata.iucr.org

Methyl 5-methylpyrazine-2-carboxylate

D. Paul Rillema,* Venugopal KomReddy, Nilmini K. Senaratne and David M. Eichhorn

Department of Chemistry, Wichita State University, Wichita, KS 67260, USA. *Correspondence e-mail: paul.rillema@wichita.edu

In the structure of methyl 5-methyl-2-pyrazinecarboxylate, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, the nonH atoms of the molecule are nearly planar, with a dihedral angle of $5.4(1)^{\circ}$ between the plane of the pyrazine ring and the plane defined by $\mathrm{C}-\mathrm{C}(\mathrm{O})-\mathrm{O}$. In the crystal, molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming layers parallel to (100).

Chemical scheme

Chemical scheme

Structure description

The title compound, Fig. 1, is an intermediate in the preparation of 5,5'-dimethyl-2,2'bipyrazine derivatives used to coordinate to transition metals for use in solar energy conversion studies (Toma et al., 2004; Rillema et al., 2007; Kirgan et al., 2007). The bond lengths of the methyl pyrazine component are similar to those found in 5,5-dimethyl-2,2'bipyrazine (Eller et al., 2004).

Two identical molecules are located in the unit cell related to each other by a twofold screw axis. In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), forming sheets parallel to the (100) plane, Fig. 2. The sheets are further linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a three-dimensional network, Fig. 3.

Synthesis and crystallization

The procedure followed one reported earlier (Madhusudhan et al. 2009) To a stirred solution of 5-methylpyrazine-2-carboxylic acid ($50 \mathrm{~g}, 0.362 \mathrm{~mol}$) in methanol $(150 \mathrm{ml})$ at $0-5^{\circ} \mathrm{C}$, concentrated sulfuric acid (4 ml) was added dropwise. After addition of sulfuric acid was complete, the reaction mixture was stirred at $65^{\circ} \mathrm{C}$ for 8 h . Then the solution was cooled to room temperature and excess methanol was removed from the solution by rotary evaporation at $30^{\circ} \mathrm{C}$. The crude compound was partitioned between water

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{H} 1 A^{\mathrm{i}} \cdots \mathrm{N} 2^{\mathrm{i}}$	0.98	2.72	3.592	148
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{H} 1 B^{\mathrm{i}} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.98	2.55	3.455	154
$\mathrm{C} 3^{\mathrm{i}}-\mathrm{H} 3^{\mathrm{i}} \cdots \mathrm{O} 1^{\mathrm{i}}$	0.95	2.41	3.299	155

Symmetry code: (i) $-x, y+\frac{1}{2},-z$.
$(200 \mathrm{ml})$ and toluene (300 ml). The water layer was separated from the toluene layer and extracted with toluene ($3 \times$ $200 \mathrm{ml})$. The combined organic layers were washed with 2% aqueous sodium hydroxide solution (50 ml), dried over

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Figure 2
A view normal to the (100) plane of the crystal packing of the title compound. $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ (blue) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (red) hydrogen bonds are shown as dashed lines.

Table 2
Experimental details.

M_{r}
Crystal system, space group
Temperature (K)
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
152.15

Monoclinic, $P 2_{1}$
$a, b, c(\AA)$
150
3.8872 (1), 6.8386 (3), 13.6279 (5)
$\beta\left({ }^{\circ}\right)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)$] reflections
$\left.R_{(\sin } \theta / \lambda\right)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter
93.303 (2)
361.67 (2)

2
Mo $K \alpha$
0.11
$0.66 \times 0.65 \times 0.56$

Bruker APEXII CCD

Numerical (SADABS; Bruker, 2012)
$0.925,0.976$
9931, 1556, 1495
0.015
0.641

Computer programs: SMART and SAINT (Bruker, 2012), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Figure 3
A view of the plane (101) of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
sodium sulfate, filtered and concentrated under vacuum at below $50^{\circ} \mathrm{C}$ to give the desired compound as a light-brown colored solid; 82% yield: The crystals were grown using the vapor diffusion technique. The inner vial contained methyl 5-methyl-2-pyrazinecarboxylate in dichloromethane (DCM) and the outer vial contained methanol. The crystals were harvested from the inner vial after 36 h .

Refinement

Crystal data, data collection and refinement details are summarized in Table 2. One low angle reflection with $F_{o} \lll$ Fc may have been affected by the beamstop and was omitted from the final cycles of refinement.

Acknowledgements

We ae grateful for support from the National Science Foundation (EPSCoR), the Wichita State University Office of Research and the Department of Energy.

References

Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Eller, C., Smucker, B. W., Kirgan, R., Eichhorn, D. M. \& Rillema, D. P. (2004). Acta Cryst. E60, o433-o434.

Kirgan, R. A., Simpson, M., Moore, C., Day, J., Bui, L., Tanner, C. \& Rillema, D. P. (2007). Inorg. Chem. 46, 6464-6472.
Madhusudhan, G., Vysabhattar, R., Reddy, R. \& Narayana, B. (2009). Org. Chem. Ind. J. 5, 274-277.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Rillema, D. P., Kirgan, R. A., Smucker, B. \& Moore, C. (2007). Acta Cryst. E63, m1404-m1405.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Toma, L. M, Eller, C., Rillema, P. D., Ruiz-Pérez, C. \& Julve, M. (2004). Inorg. Chim. Acta, 357, 2609-2614.

full crystallographic data

IUCrData (2017). 2, x170997 [https://doi.org/10.1107/S241431461700997X]

Methyl 5-methylpyrazine-2-carboxylate

D. Paul Rillema, Venugopal KomReddy, Nilmini K. Senaratne and David M. Eichhorn

Methyl 5-methylpyrazine-2-carboxylate

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=152.15$
Monoclinic, $P 2_{1}$
$a=3.8872$ (1) \AA
$b=6.8386$ (3) \AA
$c=13.6279(5) \AA$
$\beta=93.303(2)^{\circ}$
$V=361.67(2) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: sealed X-ray tube
Graphite monochromator
Detector resolution: 5.6 pixels mm^{-1}
φ and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2012)
$T_{\text {min }}=0.925, T_{\text {max }}=0.976$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.083$
$S=1.14$
1556 reflections
102 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
$F(000)=160$
$D_{\mathrm{x}}=1.397 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7189 reflections
$\theta=3.0-27.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, clear colourless
$0.66 \times 0.65 \times 0.56 \mathrm{~mm}$

9931 measured reflections
1556 independent reflections
1495 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.1^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-4 \rightarrow 4$
$k=-8 \rightarrow 8$
$l=-17 \rightarrow 17$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0504 P)^{2}+0.0328 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.17$ e \AA^{-3}
Absolute structure: Flack x determined using 659 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al, 2013)

Absolute structure parameter: 0.0 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
O2	$0.2766(3)$	$0.74768(19)$	$0.59049(8)$	$0.0235(3)$
O1	$0.5934(4)$	$0.8742(2)$	$0.71764(10)$	$0.0338(4)$
N2	$0.3528(4)$	$0.4025(2)$	$0.89293(10)$	$0.0223(3)$
N1	$0.1414(4)$	$0.4246(2)$	$0.69310(10)$	$0.0211(3)$
C6	$0.4125(4)$	$0.7469(3)$	$0.68198(12)$	$0.0204(4)$
C4	$0.3192(4)$	$0.5692(2)$	$0.73882(12)$	$0.0182(4)$
C3	$0.0722(4)$	$0.2702(3)$	$0.74819(12)$	$0.0216(4)$
H3	-0.0525	0.1642	0.7184	0.026^{*}
C2	$0.1754(4)$	$0.2572(2)$	$0.84819(12)$	$0.0194(4)$
C1	$0.0880(5)$	$0.0836(3)$	$0.90848(13)$	$0.0267(4)$
H1A	0.2996	0.0283	0.9397	0.040^{*}
H1B	-0.0271	-0.0151	0.8660	0.040^{*}
H1C	-0.0660	0.1238	0.9593	0.040^{*}
C5	$0.4222(5)$	$0.5576(3)$	$0.83769(12)$	$0.0222(4)$
H5	0.5466	0.6639	0.8673	0.027^{*}
C7	$0.3671(5)$	$0.9159(3)$	$0.53238(13)$	$0.0288(4)$
H7A	0.2383	0.9115	0.4685	0.043^{*}
H7B	0.6148	0.9136	0.5225	0.043^{*}
H7C	0.3093	1.0361	0.5669	0.043^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	$0.0286(6)$	$0.0210(6)$	$0.0206(6)$	$-0.0053(5)$	$-0.0005(5)$	$0.0025(5)$
O1	$0.0461(9)$	$0.0243(7)$	$0.0299(7)$	$-0.0160(7)$	$-0.0087(6)$	$0.0030(6)$
N 2	$0.0241(7)$	$0.0227(7)$	$0.0197(6)$	$-0.0011(7)$	$-0.0008(5)$	$-0.0011(6)$
N 1	$0.0240(7)$	$0.0191(7)$	$0.0200(7)$	$-0.0038(6)$	$-0.0006(6)$	$-0.0012(6)$
C6	$0.0219(8)$	$0.0176(8)$	$0.0215(8)$	$0.0000(7)$	$0.0004(6)$	$0.0005(7)$
C4	$0.0178(8)$	$0.0162(8)$	$0.0207(8)$	$-0.0001(6)$	$0.0012(6)$	$-0.0011(6)$
C3	$0.0242(9)$	$0.0184(8)$	$0.0220(8)$	$-0.0050(7)$	$-0.0003(6)$	$-0.0018(7)$
C2	$0.0165(8)$	$0.0194(8)$	$0.0225(8)$	$0.0002(7)$	$0.0018(6)$	$0.0009(7)$
C1	$0.0286(10)$	$0.0258(10)$	$0.0253(9)$	$-0.0047(8)$	$-0.0017(7)$	$0.0079(7)$
C5	$0.0249(9)$	$0.0187(8)$	$0.0225(8)$	$-0.0023(7)$	$-0.0018(7)$	$-0.0029(7)$
C7	$0.0343(10)$	$0.0257(9)$	$0.0264(9)$	$-0.0040(9)$	$0.0016(7)$	$0.0085(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 2-\mathrm{C} 6$	$1.3259(19)$	$\mathrm{C} 3-\mathrm{C} 2$	$1.401(2)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.451(2)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.494(2)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.203(2)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800
$\mathrm{~N} 2-\mathrm{C} 2$	$1.337(2)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9800
$\mathrm{~N} 2-\mathrm{C} 5$	$1.337(2)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800
$\mathrm{~N} 1-\mathrm{C} 4$	$1.339(2)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{~N} 1-\mathrm{C} 3$	$1.332(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9800
$\mathrm{C} 6-\mathrm{C} 4$	$1.497(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9800

$\mathrm{C} 4-\mathrm{C} 5$	$1.386(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3$	0.9500		
C6-O2-C7	$114.85(14)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 5$	$116.65(14)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4$	$116.01(13)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 4$	$113.23(14)$	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{O} 2$	$124.67(16)$	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 4$	$122.10(15)$	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 6$	$119.51(14)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$122.43(16)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$121.52(15)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{H} 5$	118.8
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 6$	$118.97(14)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	118.8
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{H} 3$	118.6	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
$\mathrm{~N} 1-\mathrm{C} 3-\mathrm{C} 2$	$122.86(15)$	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	118.6	$\mathrm{O} 2-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{C} 3$	$120.52(15)$	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{C} 1$	$117.89(14)$	$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.59(15)$	$\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{H} 1 A^{\mathrm{i} \cdots \mathrm{N}} 2^{\mathrm{i}}$	0.98	2.72	3.592	148
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{H} 1 B^{\mathrm{i} \cdots \mathrm{O} 1^{\mathrm{i}}}$	0.98	2.55	3.455	154
$\mathrm{C} 3^{\mathrm{i}}-\mathrm{H} 3^{\mathrm{i} \cdots} \mathrm{Ol}^{\mathrm{i}}$	0.95	2.41	3.299	155

Symmetry code: (i) $-x, y+1 / 2,-z$.

