

IUCrData

ISSN 2414-3146

Received 4 September 2017 Accepted 12 September 2017

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany

Keywords: crystal structure; spiro compound; quinoxaline; thiazole; molecular conformations.

CCDC reference: 1574041

Structural data: full structural data are available from iucrdata.iucr.org

7'-Nitro-6'-phenyl-1',6',7',7a'-tetrahydro-spiro-[indeno[1,2-b]quinoxaline-11,5'-pyrrolo[1,2-c]-[1,3]thiazole]

C. Muthuselvi,^a M. Muthu,^b S. Athimoolam,^c* B. Ravikumar,^a S. Pandiarajan^a and R. V. Krishnakumar^d

^aDepartment of Physics, Devanga Arts College, Aruppukottai 626 101, Tamilnadu, India, ^bSchool of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India, ^cDepartment of Physics, University College of Engineering, Anna University, Nagercoil 629 004, Tamilnadu, India, and ^dDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamilnadu, India. *Correspondence e-mail: athi81s@yahoo.co.in

In the title compound, $C_{26}H_{20}N_4O_2S$, the thiazole and pyrrolidine rings adopt envelope conformations with the respective flap atoms being the N atom and the nitro-bearing C atom. The phenyl and indenoquinoxaline planes are oriented at an angle of 66.72 (1)° to each other. The molecular structure features two intramolecular interactions, *viz*. C–H···N and C–H···O. In the crystal, the molecules are connected through C–H···N and C–H···O interactions, forming ring motifs [two $R_2^1(7)$, $R_2^2(14)$, $R_2^2(22)$ and $R_2^2(16)$]. These ring motifs are connected through a C(9) motif chain.

Structure description

Quinoxaline compounds and their derivatives possess many pharmaceutical applications, including as anticancer, antiviral and antibacterial agents (Seitz *et al.*, 2002; He *et al.*, 2003). Recently, new compounds have been investigated because of their biological and pharmaceutical applications (Zeb *et al.*, 2014; Arun *et al.*, 2014). Naturally occurring spiropyrrolidine derivatives are characterized by highly pronounced biological properties and are potential antileukemic, anticonvulsant, antiviral and anti-inflammatory agents (Anuradha *et al.*, 2014; Jiang *et al.*, 2006; Shao *et al.*, 2004). In addition, thiazole and its derivatives exhibit herbicidal, fungicidal, antitumour, anticancer, antiviral, antibacterial, antifungal and anti-inflammatory activities (He *et al.*, 2003; Campeau *et al.*, 2008; Muralikrishna *et al.*, 2013, Shruthy *et al.*, 2014). In view of the above, the title compound, containing spiropyrrolidine and thiazole groups, was synthesized and crystallized.

Figure 1

Perspective view of the title compound with the atom-numbering scheme and 50% probability displacement ellipsoids.

The title compound (Fig. 1) crystallizes with one molecule in the asymmetric unit. The thiazole ring exhibits an envelope conformation with the flap atom N3 deviating by 0.4598 (12) Å from the plane through the remaining ring atoms. The pyrroline ring also adopts an envelope conformation; the flap atom C17 deviates by 0.6678 (16) Å from the plane through the remaining ring atoms. The phenyl and indenoquinoxaline ring systems subtend an angle of 66.72 (1)°. The molecular conformation is stabilized by intramolecular $C-H\cdots N$ and $C-H\cdots O$ interactions (Table 1), each of which forms an S(6) motif.

Figure 2

Packing diagram of the title compound viewed down the *a* axis. Hydrogen bonds (Table 1) are shown as dashed lines. **<u>H</u> bonds not shown**

Table 1Hydrogen-bond geometry (Å, °).

	2	/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C17−H17···N1	0.98	2.56	3.208 (2)	123
C19−H19B···O1	0.97	2.54	3.182 (3)	124
$C16-H16\cdots O1^{i}$	0.98	2.66	3.629 (2)	169
$C10-H10\cdots O1^{i}$	0.93	2.62	3.355 (2)	136
$C19-H19B\cdotsO1^{i}$	0.97	2.98	3.832 (3)	148
$C20-H20A\cdots N2^{ii}$	0.97	2.64	3.592 (2)	166
$C4-H4\cdots O2^{iii}$	0.93	2.74	3.669 (3)	173
$C13-H13\cdots O2^{iv}$	0.93	2.69	3.214 (2)	116
$C18{-}H18{\cdot}{\cdot}{\cdot}N3^v$	0.98	2.76	3.7077 (19)	162

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 2, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x, y + 1, z; (v) -x + 1, -y + 1, -z + 1.

In the crystal (Fig. 2), the molecules are connected through C16—H16···O1ⁱ, C10—H10···O1ⁱ, C20—H20A···N2ⁱⁱ, C4—H4···O2ⁱⁱⁱ and C18—H18···N3^v interactions, leading to $R_2^1(7)$, $R_2^1(7)$, $R_2^2(14)$, $R_2^2(22)$ and $R_2^2(6)$ ring motifs, respectively (Fig. 3; see Table 1 for symmetry codes). C13—H13···O2^{iv} interactions connect these hydrogen-bonded rings, leading to a C(9) chain motif along the *b*-axis direction (Fig. 4).

Synthesis and crystallization

20 ml of methanol was added to equimolar amounts of benzene-1,2-diamine, 1*H*-indene-1,2,3-trione and thiazolidine-4-carboxylic acid and refluxed in a water bath for 15 min. Then, an equimolar amount of substituted $trans-\beta$ -nitrostyrenes was added to the reaction mixture and continued to

Centrosymmetric $R_2^2(22)$ ring motif formed through C-H···O interactions. Hydrogen bonds are shown as dashed lines.

Figure 4

Chain C(9) motif, formed through a C-H···O interaction, extending along the *b*-axis direction. Hydrogen bonds are shown as dashed lines.

Table 2Experimental details.

Crystal data Chemical formula C26H20N4O2S 452.52 М., Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 293 9.6591 (9), 10.5962 (11), *a*, *b*, *c* (Å) 10.8001 (9) 80.389 (13), 85.626 (15), α, β, γ (°) 85.030 (14) $V(Å^3)$ 1083.62 (18) Z 2 Radiation type Μο Κα $\mu \ (\mathrm{mm}^{-1})$ 0.18 Crystal size (mm) $0.22 \times 0.18 \times 0.16$ Data collection Diffractometer Bruker SMART APEX CCD areadetector Absorption correction Multi-scan (SADABS; Sheldrick, 2014 0.692 0.746 T_{\min}, T_{\max} No. of measured, independent and 36403, 3811, 3556 observed $[I > 2\sigma(I)]$ reflections R_{int} 0.020 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.594 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.038, 0.105, 1.05 No. of reflections 3811 No. of parameters 299 H-atom treatment H-atom parameters constrained $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ 0.26, -0.45

Computer programs: SMART and SAINT (Bruker, 2001), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

reflux until completion of the reaction after 5 h, as monitored by TLC. The precipitated solid was filtered and washed with methanol to obtain the title compound in good yields (92– 96%). Colourless block-shaped crystals were obtained by recrystallization from chloroform solution by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

CM, BR and SP thank the management of Devanga Arts College, Aruppukkottai, for their support and encouragement.

References

- Anuradha, T., Naga Siva Rao, J., Seshadri, P. R. & Raghunathan, R. (2014). Acta Cryst. E70, 038–039.
- Arun, Y., Saranraj, K., Balachandran, C. & Perumal, P. T. (2014). *Eur. J. Med. Chem.* **74**, 50–64.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Campeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc. 130, 3276– 3277.
- He, W., Myers, M. R., Hanney, B., Spada, A. P., Bilder, G., Galzcinski, H., Amin, D., Needle, S., Page, K., Jayyosi, Z. & Perrone, M. H. (2003). Bioorg. Med. Chem. Lett. 13, 3097–3100.
- Jiang, H., Zhao, J., Han, X. & Zhu, S. (2006). Tetrahedron, 62, 11008– 11011.
- Muralikrishna, S., Raveendrareddy, P., Ravindranath, L. K., Harikrishna, S. & Jagadeeswara, R. P. (2013). *Pharma Chem.* 5, 87–93.
- Seitz, L. E., Suling, W. J. & Reynolds, R. C. (2002). J. Med. Chem. 45, 5604–5606.
- Shao, L., Jin, Z., Liu, J.-B., Zhou, X., Zhang, Q., Hu, Y. & Fang, J.-X. (2004). Acta Cryst. E60, o2517–o2519.
- Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shruthy, V. S. & Shakkeela, Y. (2014). Int. J. Pharm. Pharm. Sci. 6, 271–275.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zeb, A., Hameed, A., Khan, L., Khan, I., Dalvandi, K., Choudhary, M. I. & Basha, F. (2014). *Med. Chem.* 10, 724–729.

full crystallographic data

IUCrData (2017). **2**, x171305 [https://doi.org/10.1107/S2414314617013050]

7'-Nitro-6'-phenyl-1',6',7',7a'-tetrahydro-spiro[indeno[1,2-*b*]quinoxaline-11,5'-pyrrolo[1,2-*c*][1,3]thiazole]

C. Muthuselvi, M. Muthu, S. Athimoolam, B. Ravikumar, S. Pandiarajan and R. V. Krishnakumar

7'-Nitro-6'-phenyl-1',6',7',7a'-tetrahydro-spiro[indeno[1,2-b]quinoxaline-11,5'-pyrrolo[1,2-c][1,3]thiazole]

Crystal data

 $C_{26}H_{20}N_4O_2S$ $M_r = 452.52$ Triclinic, *P*1 *a* = 9.6591 (9) Å *b* = 10.5962 (11) Å *c* = 10.8001 (9) Å *a* = 80.389 (13)° *β* = 85.626 (15)° *y* = 85.030 (14)° *V* = 1083.62 (18) Å³

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2014 $T_{\min} = 0.692, T_{\max} = 0.746$ 36403 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.105$ S = 1.053811 reflections 299 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites Z = 2 F(000) = 472 $D_x = 1.387 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71072 \text{ Å}$ Cell parameters from 2626 reflections $\theta = 2.3-25.1^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.22 \times 0.18 \times 0.16 \text{ mm}$

3811 independent reflections 3556 reflections with $I > 2\sigma(I)$ $R_{int} = 0.020$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -12 \rightarrow 12$

H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0483P)^{2} + 0.4417P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.45 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL, $Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.025 (3)

Special details

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71072 9.659 10.596 10.800 80.389 85.626 85.030

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were constrained and refined in the riding atom approximation with C—H = 0.93–0.98 Å and $U_{iso}(H) = 1.2 U_{eq}(\text{parent carbon atom})$.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.16821 (16)	0.94782 (16)	0.43525 (14)	0.0419 (4)	
C2	0.08043 (18)	1.0250 (2)	0.34855 (16)	0.0552 (5)	
H2	0.0870	1.1133	0.3314	0.066*	
C3	-0.01329 (19)	0.9704 (2)	0.29033 (16)	0.0628 (6)	
H3	-0.0703	1.0218	0.2335	0.075*	
C4	-0.02495 (19)	0.8380 (2)	0.31488 (17)	0.0640 (6)	
H4	-0.0917	0.8027	0.2763	0.077*	
C5	0.06089 (19)	0.7593 (2)	0.39528 (16)	0.0555 (5)	
Н5	0.0534	0.6711	0.4098	0.067*	
C6	0.16019 (16)	0.81288 (17)	0.45565 (14)	0.0423 (4)	
C7	0.33029 (15)	0.79076 (14)	0.59133 (13)	0.0338 (3)	
C8	0.44071 (15)	0.72538 (13)	0.67951 (13)	0.0320 (3)	
C9	0.49965 (15)	0.84094 (13)	0.71767 (13)	0.0334 (3)	
C10	0.59533 (16)	0.84225 (15)	0.80668 (14)	0.0398 (3)	
H10	0.6413	0.7664	0.8443	0.048*	
C11	0.62108 (18)	0.95912 (17)	0.83850 (17)	0.0494 (4)	
H11	0.6845	0.9614	0.8986	0.059*	
C12	0.5539 (2)	1.07226 (17)	0.78235 (18)	0.0543 (5)	
H12	0.5727	1.1496	0.8052	0.065*	
C13	0.45922 (18)	1.07213 (15)	0.69270 (17)	0.0479 (4)	
H13	0.4146	1.1485	0.6546	0.057*	
C14	0.43210 (15)	0.95551 (14)	0.66074 (13)	0.0358 (3)	
C15	0.33201 (15)	0.92623 (14)	0.57640 (13)	0.0349 (3)	
C16	0.38043 (15)	0.63542 (13)	0.79674 (12)	0.0323 (3)	
H16	0.4513	0.6211	0.8589	0.039*	
C17	0.38082 (17)	0.51239 (13)	0.74259 (14)	0.0376 (3)	
H17	0.3080	0.5222	0.6825	0.045*	
C18	0.52387 (17)	0.50359 (14)	0.67073 (14)	0.0406 (4)	
H18	0.5213	0.4494	0.6059	0.049*	
C19	0.6508 (2)	0.45782 (18)	0.75106 (18)	0.0568 (5)	
H19A	0.6837	0.3707	0.7412	0.068*	
H19B	0.6246	0.4593	0.8394	0.068*	
C20	0.67779 (17)	0.66080 (16)	0.57722 (17)	0.0471 (4)	
H20A	0.6906	0.7513	0.5729	0.057*	
H20B	0.7051	0.6370	0.4954	0.057*	

C21	0.24702 (15)	0.68381 (14)	0.86165 (13)	0.0355 (3)	
C22	0.25499 (18)	0.76582 (17)	0.94828 (15)	0.0470 (4)	
H22	0.3413	0.7915	0.9626	0.056*	
C23	0.1374 (2)	0.8099 (2)	1.01342 (18)	0.0599 (5)	
H23	0.1449	0.8652	1.0706	0.072*	
C24	0.0088 (2)	0.7723 (2)	0.99425 (18)	0.0625 (5)	
H24	-0.0705	0.8015	1.0387	0.075*	
C25	-0.00121 (19)	0.6919 (2)	0.90945 (19)	0.0651 (5)	
H25	-0.0878	0.6661	0.8965	0.078*	
C26	0.11658 (18)	0.64828 (19)	0.84232 (17)	0.0527 (4)	
H26	0.1079	0.5947	0.7838	0.063*	
N1	0.24762 (14)	0.73187 (13)	0.53455 (11)	0.0404 (3)	
N2	0.25567 (13)	1.00594 (13)	0.49817 (12)	0.0415 (3)	
N3	0.53473 (13)	0.63686 (11)	0.61145 (11)	0.0351 (3)	
N4	0.35731 (15)	0.39744 (12)	0.84065 (14)	0.0482 (4)	
01	0.3921 (2)	0.39548 (16)	0.94584 (14)	0.0938 (6)	
O2	0.30317 (17)	0.31038 (13)	0.80879 (15)	0.0753 (4)	
S1	0.78439 (6)	0.56426 (5)	0.69783 (6)	0.0733 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0359 (8)	0.0552 (10)	0.0292 (7)	0.0073 (7)	0.0049 (6)	0.0002 (6)
C2	0.0432 (9)	0.0741 (12)	0.0388 (9)	0.0140 (8)	0.0033 (7)	0.0059 (8)
C3	0.0438 (10)	0.1011 (17)	0.0359 (9)	0.0196 (10)	-0.0031 (7)	-0.0015 (9)
C4	0.0438 (10)	0.1116 (19)	0.0388 (9)	0.0078 (10)	-0.0100 (8)	-0.0222 (10)
C5	0.0506 (10)	0.0767 (13)	0.0427 (9)	0.0018 (9)	-0.0103 (8)	-0.0202 (9)
C6	0.0389 (8)	0.0593 (10)	0.0279 (7)	0.0031 (7)	-0.0023 (6)	-0.0084 (7)
C7	0.0385 (7)	0.0358 (7)	0.0264 (7)	-0.0030 (6)	-0.0008 (6)	-0.0037 (5)
C8	0.0375 (7)	0.0304 (7)	0.0286 (7)	-0.0048 (6)	-0.0048 (6)	-0.0035 (5)
C9	0.0377 (7)	0.0319 (7)	0.0310(7)	-0.0075 (6)	0.0023 (6)	-0.0055 (5)
C10	0.0427 (8)	0.0399 (8)	0.0384 (8)	-0.0099 (6)	-0.0038 (6)	-0.0065 (6)
C11	0.0500 (9)	0.0531 (10)	0.0501 (9)	-0.0162 (8)	-0.0034 (8)	-0.0167 (8)
C12	0.0612 (11)	0.0420 (9)	0.0655 (11)	-0.0135 (8)	0.0012 (9)	-0.0235 (8)
C13	0.0551 (10)	0.0323 (8)	0.0560 (10)	-0.0024 (7)	0.0041 (8)	-0.0105 (7)
C14	0.0380 (8)	0.0336 (7)	0.0348 (7)	-0.0047 (6)	0.0060 (6)	-0.0053 (6)
C15	0.0353 (7)	0.0356 (7)	0.0307 (7)	0.0000 (6)	0.0058 (6)	-0.0014 (6)
C16	0.0395 (8)	0.0304 (7)	0.0280 (7)	-0.0077 (6)	-0.0079 (6)	-0.0024 (5)
C17	0.0503 (9)	0.0299 (7)	0.0337 (7)	-0.0089 (6)	-0.0094 (6)	-0.0023 (6)
C18	0.0570 (9)	0.0307 (7)	0.0352 (8)	-0.0033 (6)	-0.0050(7)	-0.0079 (6)
C19	0.0604 (11)	0.0520 (10)	0.0522 (10)	0.0139 (8)	-0.0065 (8)	0.0007 (8)
C20	0.0444 (9)	0.0466 (9)	0.0524 (10)	-0.0049 (7)	0.0017 (7)	-0.0149 (7)
C21	0.0406 (8)	0.0374 (8)	0.0277 (7)	-0.0075 (6)	-0.0048 (6)	0.0005 (6)
C22	0.0452 (9)	0.0590 (10)	0.0401 (8)	-0.0128 (8)	0.0002 (7)	-0.0147 (7)
C23	0.0583 (11)	0.0767 (13)	0.0494 (10)	-0.0087 (9)	0.0063 (8)	-0.0262 (9)
C24	0.0484 (10)	0.0895 (15)	0.0493 (10)	-0.0025 (10)	0.0067 (8)	-0.0161 (10)
C25	0.0402 (10)	0.0965 (16)	0.0622 (12)	-0.0155 (10)	-0.0042 (8)	-0.0172 (11)
C26	0.0475 (9)	0.0670 (11)	0.0486 (9)	-0.0140 (8)	-0.0060 (8)	-0.0178 (8)

data reports

N1 N2	0.0444 (7) 0.0389 (7)	0.0442 (7) 0.0421 (7)	0.0337 (6) 0.0379 (7)	-0.0024(6) 0.0051(5)	-0.0087(5) 0.0045(5)	-0.0070(5) 0.0022(5)
N3	0.0417 (7)	0.0315 (6)	0.0324 (6)	-0.0036 (5)	-0.0022 (5)	-0.0053 (5)
N4	0.0587 (9)	0.0323 (7)	0.0525 (9)	-0.0099 (6)	0.0005 (7)	-0.0023 (6)
01	0.1585 (18)	0.0699 (10)	0.0520 (9)	-0.0439 (11)	-0.0338 (10)	0.0234 (7)
O2	0.0975 (11)	0.0412 (7)	0.0912 (11)	-0.0303 (7)	0.0084 (9)	-0.0158 (7)
S1	0.0592 (3)	0.0578 (3)	0.1089 (5)	0.0028 (2)	-0.0391 (3)	-0.0195 (3)

Geometric parameters (Å, °)

C1—N2	1.368 (2)	C16—C21	1.511 (2)
C1—C2	1.418 (2)	C16—C17	1.5150 (19)
C1—C6	1.418 (2)	C16—H16	0.9800
C2—C3	1.360 (3)	C17—N4	1.4957 (19)
С2—Н2	0.9300	C17—C18	1.536 (2)
C3—C4	1.396 (3)	C17—H17	0.9800
С3—Н3	0.9300	C18—N3	1.4590 (19)
C4—C5	1.373 (3)	C18—C19	1.552 (2)
C4—H4	0.9300	C18—H18	0.9800
C5—C6	1.407 (2)	C19—S1	1.786 (2)
С5—Н5	0.9300	C19—H19A	0.9700
C6—N1	1.384 (2)	C19—H19B	0.9700
C7—N1	1.3007 (19)	C20—N3	1.436 (2)
C7—C15	1.419 (2)	C20—S1	1.8387 (18)
C7—C8	1.5268 (19)	C20—H20A	0.9700
C8—N3	1.4918 (18)	C20—H20B	0.9700
C8—C9	1.5227 (19)	C21—C26	1.386 (2)
C8—C16	1.5592 (19)	C21—C22	1.389 (2)
C9—C10	1.386 (2)	C22—C23	1.378 (3)
C9—C14	1.397 (2)	C22—H22	0.9300
C10—C11	1.386 (2)	C23—C24	1.377 (3)
C10—H10	0.9300	С23—Н23	0.9300
C11—C12	1.381 (3)	C24—C25	1.365 (3)
C11—H11	0.9300	C24—H24	0.9300
C12—C13	1.382 (3)	C25—C26	1.389 (3)
C12—H12	0.9300	C25—H25	0.9300
C13—C14	1.388 (2)	C26—H26	0.9300
С13—Н13	0.9300	N4—O1	1.205 (2)
C14—C15	1.463 (2)	N4—O2	1.2082 (19)
C15—N2	1.3114 (19)		
N2	119.06 (16)	C8—C16—H16	106.9
N2—C1—C6	122.22 (14)	N4—C17—C16	113.18 (12)
C2—C1—C6	118.71 (16)	N4—C17—C18	113.06 (13)
C3—C2—C1	120.3 (2)	C16—C17—C18	103.43 (12)
C3—C2—H2	119.9	N4—C17—H17	109.0
C1—C2—H2	119.9	С16—С17—Н17	109.0
C2—C3—C4	120.77 (17)	C18—C17—H17	109.0

С2—С3—Н3	119.6	N3—C18—C17	101.11 (12)
С4—С3—Н3	119.6	N3—C18—C19	109.68 (13)
C5—C4—C3	120.84 (19)	C17—C18—C19	116.57 (13)
C5—C4—H4	119.6	N3—C18—H18	109.7
C3—C4—H4	119.6	C17—C18—H18	109.7
C4—C5—C6	119.7 (2)	C19—C18—H18	109.7
C4—C5—H5	120.2	C18—C19—S1	107.71 (12)
C6—C5—H5	120.2	C18—C19—H19A	110.2
N1-C6-C5	118 86 (16)	S1—C19—H19A	110.2
N1-C6-C1	121 49 (14)	C18 - C19 - H19B	110.2
C_{5}	119 66 (15)	S1-C19-H19B	110.2
N1 - C7 - C15	123 98 (14)	H19A - C19 - H19B	108.5
N1-C7-C8	125.36 (13)	N3_C20_S1	107.83(11)
C_{15} C_{7} C_{8}	125.50(15) 110.64(12)	$N_3 = C_{20} = B_1$	110.1
$N_{3} = C_{8} = C_{9}$	110.04(12) 110.03(12)	N3-C20-H20A	110.1
$N_{3} = C_{6} = C_{7}$	119.03(12) 108.41(11)	N2 C20 H20P	110.1
$N_{3} = C_{0} = C_{1}$	100.41(11) 101.22(11)	N_{3} C_{20} H_{20} H_{20}	110.1
$C_{2} = C_{3} = C_{1}$	101.22 (11)	SI-C20-H20B	110.1
$N_{3} = C_{8} = C_{16}$	103.78 (11)	$H_20A = C_20 = H_20B$	108.5
C9—C8—C16	111.13 (11)	$C_{26} = C_{21} = C_{22}$	117.76(15)
C/C8C16	113.64 (11)	C26—C21—C16	123.68 (14)
C10—C9—C14	120.35 (13)	C22—C21—C16	118.53 (13)
C10—C9—C8	128.25 (13)	C23—C22—C21	121.20 (16)
C14—C9—C8	111.01 (12)	C23—C22—H22	119.4
C9—C10—C11	118.57 (15)	C21—C22—H22	119.4
C9—C10—H10	120.7	C24—C23—C22	120.28 (18)
C11—C10—H10	120.7	C24—C23—H23	119.9
C12—C11—C10	121.00 (16)	C22—C23—H23	119.9
C12—C11—H11	119.5	C25—C24—C23	119.41 (18)
C10-C11-H11	119.5	C25—C24—H24	120.3
C11—C12—C13	120.90 (15)	C23—C24—H24	120.3
C11—C12—H12	119.6	C24—C25—C26	120.68 (17)
C13—C12—H12	119.6	C24—C25—H25	119.7
C12—C13—C14	118.54 (16)	C26—C25—H25	119.7
C12—C13—H13	120.7	C21—C26—C25	120.65 (17)
C14—C13—H13	120.7	C21—C26—H26	119.7
C13—C14—C9	120.63 (15)	C25—C26—H26	119.7
C13—C14—C15	130.20 (14)	C7—N1—C6	114.26 (13)
C9—C14—C15	109.07 (13)	C15—N2—C1	114.29 (14)
N2—C15—C7	123.56 (14)	C20—N3—C18	110.29 (12)
N2-C15-C14	128.65 (14)	C20—N3—C8	121.53 (12)
C7-C15-C14	107 79 (12)	C18 - N3 - C8	110.98(11)
C_{21} — C_{16} — C_{17}	118.23 (12)	01 - N4 - 02	123 38 (15)
C_{21} $-C_{16}$ $-C_{8}$	117 04 (12)	01 - N4 - C17	119 57 (13)
C17 - C16 - C8	99 98 (11)	02 - N4 - C17	117.05(15)
C21—C16—H16	106.9	C19 - S1 - C20	92 82 (8)
C17_C16_H16	106.9	017 51-020	72.02 (0)
	100.7		
N2—C1—C2—C3	-176.11 (15)	C21—C16—C17—N4	-64.47 (17)
	. ,		· /

C6—C1—C2—C3	2.6 (2)	C8—C16—C17—N4	167.34 (12)
C1—C2—C3—C4	0.1 (3)	C21—C16—C17—C18	172.83 (12)
C2—C3—C4—C5	-2.1(3)	C8—C16—C17—C18	44.63 (13)
C3—C4—C5—C6	1.2 (3)	N4—C17—C18—N3	-164.28 (12)
C4—C5—C6—N1	-178.79 (15)	C16—C17—C18—N3	-41.50 (13)
C4—C5—C6—C1	1.6 (2)	N4—C17—C18—C19	-45.48 (18)
N2—C1—C6—N1	-4.4 (2)	C16—C17—C18—C19	77.31 (15)
C2-C1-C6-N1	176.92 (13)	N3-C18-C19-S1	-19.19 (16)
N2-C1-C6-C5	175.24 (14)	C17—C18—C19—S1	-133.25 (12)
C2-C1-C6-C5	-3.5 (2)	C17—C16—C21—C26	-20.8 (2)
N1—C7—C8—N3	55.24 (18)	C8—C16—C21—C26	98.89 (17)
C15—C7—C8—N3	-123.18 (12)	C17—C16—C21—C22	157.41 (14)
N1—C7—C8—C9	-178.78 (13)	C8—C16—C21—C22	-82.94 (17)
C15—C7—C8—C9	2.80 (14)	C26—C21—C22—C23	0.4 (3)
N1-C7-C8-C16	-59.58 (18)	C16—C21—C22—C23	-177.91 (16)
C15—C7—C8—C16	122.01 (13)	C21—C22—C23—C24	0.5 (3)
N3—C8—C9—C10	-68.10 (19)	C22—C23—C24—C25	-0.5 (3)
C7—C8—C9—C10	173.32 (14)	C23—C24—C25—C26	-0.2 (3)
C16—C8—C9—C10	52.33 (19)	C22—C21—C26—C25	-1.1 (3)
N3—C8—C9—C14	119.07 (13)	C16—C21—C26—C25	177.07 (17)
C7—C8—C9—C14	0.50 (15)	C24—C25—C26—C21	1.1 (3)
C16—C8—C9—C14	-120.50 (13)	C15—C7—N1—C6	0.6 (2)
C14—C9—C10—C11	0.6 (2)	C8—C7—N1—C6	-177.62 (13)
C8—C9—C10—C11	-171.59 (14)	C5—C6—N1—C7	-176.33 (14)
C9—C10—C11—C12	-0.5 (2)	C1—C6—N1—C7	3.3 (2)
C10-C11-C12-C13	-0.1 (3)	C7—C15—N2—C1	2.9 (2)
C11—C12—C13—C14	0.4 (3)	C14—C15—N2—C1	-177.84 (13)
C12—C13—C14—C9	-0.3 (2)	C2—C1—N2—C15	179.77 (13)
C12—C13—C14—C15	175.64 (15)	C6—C1—N2—C15	1.1 (2)
C10-C9-C14-C13	-0.3 (2)	S1—C20—N3—C18	-35.00 (14)
C8—C9—C14—C13	173.21 (13)	S1—C20—N3—C8	97.43 (13)
C10—C9—C14—C15	-176.97 (13)	C17—C18—N3—C20	159.14 (12)
C8—C9—C14—C15	-3.50 (16)	C19—C18—N3—C20	35.48 (17)
N1—C7—C15—N2	-4.0 (2)	C17—C18—N3—C8	21.51 (14)
C8—C7—C15—N2	174.44 (12)	C19—C18—N3—C8	-102.16 (14)
N1—C7—C15—C14	176.59 (13)	C9—C8—N3—C20	-2.32 (19)
C8—C7—C15—C14	-4.97 (15)	C7—C8—N3—C20	112.47 (14)
C13—C14—C15—N2	9.6 (3)	C16—C8—N3—C20	-126.41 (14)
C9—C14—C15—N2	-174.13 (14)	C9—C8—N3—C18	129.83 (13)
C13—C14—C15—C7	-171.05 (15)	C7—C8—N3—C18	-115.38 (13)
C9—C14—C15—C7	5.25 (16)	C16—C8—N3—C18	5.73 (14)
N3—C8—C16—C21	-159.76 (11)	C16—C17—N4—O1	-28.0(2)
C9—C8—C16—C21	71.16 (15)	C18—C17—N4—O1	89.1 (2)
C7—C8—C16—C21	-42.22 (16)	C16—C17—N4—O2	151.84 (15)
N3-C8-C16-C17	-30.78 (13)	C18—C17—N4—O2	-90.97 (18)
C9—C8—C16—C17	-159.87 (12)	C18—C19—S1—C20	-0.35 (13)
C7—C8—C16—C17	86.75 (13)	N3—C20—S1—C19	19.92 (12)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C17—H17…N1	0.98	2.56	3.208 (2)	123
C19—H19B…O1	0.97	2.54	3.182 (3)	124
C16—H16···O1 ⁱ	0.98	2.66	3.629 (2)	169
C10—H10····O1 ⁱ	0.93	2.62	3.355 (2)	136
C19—H19 <i>B</i> ···O1 ⁱ	0.97	2.98	3.832 (3)	148
C20—H20A····N2 ⁱⁱ	0.97	2.64	3.592 (2)	166
C4—H4···O2 ⁱⁱⁱ	0.93	2.74	3.669 (3)	173
C13—H13…O2 ^{iv}	0.93	2.69	3.214 (2)	116
C18—H18…N3 ^v	0.98	2.76	3.7077 (19)	162

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1.