

3-(4-Chlorobutyl)-3*H*-indole-5-carbonitrile. Corrigendum

Devakumar Manikandan,^a Sundaramoorthy Gomathi,^a Jeyaraman Selvaraj Nirmalram,^b Sadasivam Sharmila Tagore,^a Velusamy Sethuraman,^a* Joseph Agim^c and Ray Butcher^c

^aDepartment of Chemistry, Periyar Maniammai University, Thanjavur 613 403, Tamil Nadu, India, ^bCentre for Research and Development, PRIST University, Thanjavur 613 403, Tamil Nadu, India, and ^cInorganic & Structural Chemistry, Howard University, Washington, DC 20059, USA. *Correspondence e-mail: lvsethu13@gmail.com

In the paper by Manikandan *et al.* [*IUCrData* (2017). **2**, x170376], a proton on the indole N was missed in the structure solution. The proton is now added and the changes are reported here. The title, scheme, Figs. 1 and 2, the hydrogenbonding table, the crystallographic data table and description of the supra-molecular architectures are corrected.

Structure description

In the paper by Manikandan *et al.* (2017), a proton on the indole N atom was missed in the structure solution. The proton has been added and the changes are reported here. The title and the chemical name of the compound should be '3-(4-Chlorobutyl)-1*H*-indole-5-carbonitrile'.

The proton on the indole nitrogen (N1) is involved in an N-H···N hydrogen bond with symmetry-related neighboring molecules and forms an $R_3^3(23)$ ring motif instead of a chain with a C(9) graph set.

The figure caption of Fig. 2, the hydrogen-bonding table and the crystallographic data table are updated. In the structure description section, the sentence 'In the crystal,

Table 1	
Hydrogen-bond ge	cometry (Å, °).

$\frac{D - H \cdot \cdot A}{D - H \cdot \cdot A}$	лену (А,). D-Н	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} N1 {-} H1 {\cdots} N2^i \\ C4 {-} H4 {\cdots} C11^{ii} \end{array}$	0.787 (19)	2.263 (19)	3.039 (2)	168.7 (19)
	0.95	2.80	3.7497 (18)	178

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

CCDC references: 1573008-1573009;

ACCESS

OPEN d

The asymmetric unit of (I), shown with 50% probability displacement ellipsoids.

neighboring molecules self-assemble through weak $C-H\cdots Cl$ interactions (Table 1), forming zigzag supramolecular C(9)chains extending along the *b*-axis direction, as shown in Fig. 2*a*.' should be replaced by 'In the crystal, neighboring molecules self-assemble through $N-H\cdots N$ and weak C-

Table 2Updated experimental details.	
Crystal data	
Chemical formula	$C_{13}H_{13}CIN_2$
M _r	232.70
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.097, 1.05
No. of parameters	149
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.29, -0.24

H···Cl interactions (Table 1), resulting in an $R_3^3(23)$ ring motif, which forms a supramolecular sheet extending along the *b* axis, as shown in Fig. 2*a*.' Revised experimental details are given in Table 2.

References

Manikandan, D., Gomathi, S., Nirmalram, J. S., Tagore, S. S., Sethuraman, V., Agim, J. & Butcher, R. J. (2017). *IUCrData*, **2**, x170376.

Figure 2

A view of two-dimensional supramolecular sheet via N-H···N and weak intermolecular C-H···Cl hydrogen bonding, aromatic π - π and weak C-H··· π interactions. [Symmetry codes: (i) 1 - x, $-\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) -x, 1 - y, 1 - z; (iii) 1 - x, 1 - y, 1 - z; (iv) x, $\frac{3}{2} - y$, $-\frac{1}{2} + z$; (v) x, 1 + y, z.]

full crystallographic data

IUCrData (2017). 2, x171132 [https://doi.org/10.1107/S2414314617011324]

3-(4-Chlorobutyl)-3H-indole-5-carbonitrile. Corrigendum

Devakumar Manikandan, Sundaramoorthy Gomathi, Jeyaraman Selvaraj Nirmalram, Sadasivam Sharmila Tagore, Velusamy Sethuraman, Joseph Agim and Ray Butcher

F(000) = 488

 $\theta = 2.6-24.6^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$

Block, colourless

 $0.18 \times 0.17 \times 0.15 \text{ mm}$

 $\theta_{\rm max} = 24.6^\circ, \ \theta_{\rm min} = 2.6^\circ$

1952 independent reflections

1632 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.039$

 $h = -10 \rightarrow 10$

 $k = -10 \rightarrow 10$

 $l = -17 \rightarrow 16$

 $D_{\rm x} = 1.317 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1952 reflections

3-(4-Chlorobutyl)-1H-indole-5-carbonitrile

Crystal data

C₁₃H₁₃ClN₂ $M_r = 232.70$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.870 (2) Å b = 9.271 (2) Å c = 14.498 (3) Å $\beta = 100.236$ (4)° V = 1173.3 (4) Å³ Z = 4

Data collection

Bruker APEXII diffractometer Detector resolution: 18.4 pixels mm⁻¹ ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2008) $T_{min} = 0.618, T_{max} = 0.745$ 7342 measured reflections

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.034$	and constrained refinement
$wR(F^2) = 0.097$	$w = 1/[\Sigma^2(FO^2) + (0.0615P)^2 + 0.1055P]$
<i>S</i> = 1.05	where $P = (FO^2 + 2FC^2)/3$
1952 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
149 parameters	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2sigma(F^2)$ is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.64036 (6)	0.62781 (5)	0.10556 (3)	0.0373 (2)
N1	0.17181 (16)	0.77684 (15)	0.56118 (10)	0.0202 (4)
N2	0.10999 (16)	0.07038 (15)	0.64000 (9)	0.0248 (5)
C2	0.24682 (17)	0.77009 (16)	0.48566 (10)	0.0193 (5)
C3	0.27344 (17)	0.62953 (17)	0.46452 (11)	0.0177 (5)
C4	0.19953 (17)	0.39623 (17)	0.54478 (10)	0.0160 (5)
C5	0.12918 (17)	0.34723 (16)	0.61736 (10)	0.0170 (5)
C6	0.07019 (17)	0.44431 (16)	0.67723 (10)	0.0180 (5)
C7	0.07908 (18)	0.59143 (17)	0.66461 (11)	0.0190 (5)
C8	0.14877 (17)	0.64002 (16)	0.59099 (11)	0.0175 (5)
С9	0.21099 (16)	0.54435 (17)	0.53130 (10)	0.0154 (4)
C10	0.11661 (17)	0.19387 (17)	0.63039 (11)	0.0187 (5)
C11	0.34895 (17)	0.56971 (18)	0.38827 (10)	0.0185 (5)
C12	0.40919 (18)	0.68138 (17)	0.32640 (11)	0.0200 (5)
C13	0.48445 (18)	0.60781 (16)	0.25127 (10)	0.0189 (5)
C14	0.54689 (19)	0.71647 (17)	0.19063 (11)	0.0212 (5)
H1	0.147 (2)	0.847 (2)	0.5852 (15)	0.033 (6)*
H2	0.27584	0.85143	0.45299	0.0230*
H4	0.23903	0.32991	0.50516	0.0190*
H6	0.02389	0.40786	0.72672	0.0220*
H7	0.03936	0.65728	0.70443	0.0230*
H11A	0.27441	0.50716	0.34779	0.0220*
H11B	0.43558	0.50800	0.41731	0.0220*
H12A	0.32349	0.74283	0.29573	0.0240*
H12B	0.48506	0.74413	0.36573	0.0240*
H13A	0.40795	0.54624	0.21146	0.0230*
H13B	0.56878	0.54494	0.28208	0.0230*
H14A	0.46214	0.77713	0.15787	0.0250*
H14B	0.62099	0.78019	0.23049	0.0250*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0598 (4)	0.0245 (3)	0.0364 (3)	0.0068 (2)	0.0329 (2)	0.0054 (2)
N1	0.0273 (8)	0.0099 (7)	0.0255 (7)	0.0006 (6)	0.0108 (6)	-0.0031 (6)
N2	0.0349 (8)	0.0165 (8)	0.0256 (8)	0.0013 (6)	0.0125 (6)	0.0011 (6)
C2	0.0227 (8)	0.0148 (8)	0.0217 (8)	-0.0020 (6)	0.0077 (7)	0.0029 (6)
C3	0.0163 (8)	0.0183 (9)	0.0191 (8)	-0.0002 (6)	0.0046 (6)	0.0012 (6)
C4	0.0172 (8)	0.0146 (8)	0.0169 (8)	0.0019 (6)	0.0049 (6)	-0.0018 (6)

C5	0.0191 (8)	0.0136 (8)	0.0182 (8)	0.0003 (6)	0.0032 (6)	-0.0002 (6)
C6	0.0198 (8)	0.0184 (8)	0.0178 (8)	-0.0011 (7)	0.0085 (6)	0.0012 (6)
C7	0.0221 (8)	0.0156 (8)	0.0210 (8)	0.0012 (7)	0.0082 (7)	-0.0029 (6)
C8	0.0177 (8)	0.0145 (9)	0.0202 (8)	0.0007 (6)	0.0035 (6)	-0.0008 (6)
C9	0.0150 (8)	0.0155 (8)	0.0161 (7)	0.0001 (6)	0.0040 (6)	-0.0002 (6)
C10	0.0203 (8)	0.0191 (9)	0.0184 (8)	0.0019 (7)	0.0079 (7)	0.0000(7)
C11	0.0207 (9)	0.0166 (8)	0.0194 (8)	0.0004 (6)	0.0066 (7)	0.0020 (6)
C12	0.0224 (9)	0.0177 (8)	0.0211 (8)	0.0006 (7)	0.0072 (7)	0.0025 (7)
C13	0.0234 (9)	0.0159 (8)	0.0185 (8)	-0.0007 (7)	0.0066 (7)	0.0005 (6)
C14	0.0278 (9)	0.0171 (8)	0.0214 (8)	0.0007 (7)	0.0114 (7)	-0.0001 (7)

Geometric parameters (Å, °)

Cl1—C14	1.8021 (17)	C11—C12	1.527 (2)
N1—C2	1.380 (2)	C12—C13	1.535 (2)
N1—C8	1.367 (2)	C13—C14	1.506 (2)
N2—C10	1.156 (2)	C2—H2	0.9500
N1—H1	0.787 (19)	C4—H4	0.9500
C2—C3	1.369 (2)	С6—Н6	0.9500
С3—С9	1.435 (2)	С7—Н7	0.9500
C3—C11	1.497 (2)	C11—H11A	0.9900
C4—C9	1.393 (2)	C11—H11B	0.9900
C4—C5	1.392 (2)	C12—H12A	0.9900
C5—C6	1.414 (2)	C12—H12B	0.9900
C5—C10	1.441 (2)	C13—H13A	0.9900
С6—С7	1.380 (2)	C13—H13B	0.9900
C7—C8	1.400 (2)	C14—H14A	0.9900
C8—C9	1.418 (2)	C14—H14B	0.9900
C2—N1—C8	109.21 (13)	C5—C4—H4	121.00
C8—N1—H1	123.9 (14)	C9—C4—H4	121.00
C2—N1—H1	126.9 (14)	С5—С6—Н6	120.00
N1—C2—C3	110.34 (13)	С7—С6—Н6	120.00
C2—C3—C11	129.47 (14)	С6—С7—Н7	121.00
C2—C3—C9	105.68 (13)	С8—С7—Н7	121.00
C9—C3—C11	124.85 (14)	C3—C11—H11A	108.00
C5—C4—C9	118.78 (14)	C3—C11—H11B	108.00
C4—C5—C6	121.40 (14)	C12—C11—H11A	108.00
C6—C5—C10	120.12 (13)	C12—C11—H11B	108.00
C4C5C10	118.47 (14)	H11A—C11—H11B	107.00
C5—C6—C7	120.77 (14)	C11—C12—H12A	109.00
C6—C7—C8	117.55 (14)	C11—C12—H12B	109.00
N1—C8—C7	130.61 (14)	C13—C12—H12A	109.00
N1—C8—C9	106.93 (13)	C13—C12—H12B	109.00
C7—C8—C9	122.46 (14)	H12A—C12—H12B	108.00
C3—C9—C4	133.13 (14)	C12—C13—H13A	109.00
C4—C9—C8	119.01 (13)	C12—C13—H13B	109.00
C3—C9—C8	107.84 (13)	C14—C13—H13A	109.00

N2-C10-C5	178.25 (17)	C14—C13—H13B	109.00
C3-C11-C12	115.58 (14)	H13A—C13—H13B	108.00
C11-C12-C13	110.93 (13)	C11—C14—H14A	109.00
C12-C13-C14	111.62 (13)	C11—C14—H14B	109.00
C11-C14-C13	110.86 (11)	C13—C14—H14A	109.00
N1-C2-H2	125.00	C13—C14—H14B	109.00
C3-C2-H2	125.00	H14A—C14—H14B	108.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.28 (18) 179.69 (16) -0.39 (17) -0.05 (18) 179.18 (15) 178.35 (16) -0.19 (17) -0.9 (3) -179.47 (14) 1.8 (2) -179.05 (14) -0.2 (2) 179.49 (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.9 \ (2) \\ 0.8 \ (2) \\ -178.90 \ (14) \\ -0.2 \ (2) \\ 179.00 \ (16) \\ -0.9 \ (2) \\ 0.35 \ (17) \\ -178.43 \ (14) \\ -179.72 \ (14) \\ 1.5 \ (2) \\ 179.79 \ (13) \\ -179.04 \ (13) \\ 178.05 \ (11) \end{array}$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···N2 ⁱ	0.787 (19)	2.263 (19)	3.039 (2)	168.7 (19)
C4—H4···Cl1 ⁱⁱ	0.95	2.80	3.7497 (18)	178

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, *y*–1/2, –*z*+1/2.