

ISSN 2414-3146

Received 6 August 2017 Accepted 31 August 2017

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; amino- λ^6 -sulfanenitrile; iminosulfonium salt; hydrogen bonding.

CCDC reference: 1454894

Structural data: full structural data are available from iucrdata.iucr.org

S,S-Diphenyl-*S*-pyrrolidinoiminosulfonium perchlorate

Md. Chanmiya Sheikh,^a Toshiaki Yoshimura,^a* Eiichi Takata,^a Takayoshi Fujii^a and Ryuta Miyatake^b

^aDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and ^bCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan. *Correspondence e-mail: by4ut6@bma.biglobe.ne.jp

The asymmetric unit of the title salt, $C_{16}H_{19}N_2S^+ \cdot ClO_4^-$, consists of two crystallographically independent cations and anions. In the salt, protonation occurs at the nitrile N atom attached to the S atom of the corresponding λ^6 -sulfanenitrile. The structures of the two independent cations are almost the same and the configuration around the S atom is a slightly distorted tetrahedral geometry, with two S–N bonds and two S–C bonds. The S–N(pyrrolidine) and S=N bond lengths are 1.6216 (18) and 1.503 (2) Å, respectively, for one cation, and 1.6236 (19) and 1.502 (2) Å, respectively, for the other. The dihedral angles between the two phenyl rings in the cations are 76.61 (9) and 76.42 (9)°. There are N–H···O hydrogen bonds, which link the cation and the anion. The cation–anion pairs are further linked by C–H···O and C–H···N hydrogen bonds, forming a three-dimensional network.

Structure description

The chemistry of heteroatom-substituted sulfonium salts (heterosulfonium salts) is very interesting because of their anomalous reactivity (Oae *et al.*, 1981). Meanwhile, only a few sulfur(VI) sulfonium compounds, such as oxosulfonium salts, have been reported to date (Mori *et al.*, 1990). Furthermore, iminosulfonium salts belong to the isoelectronic compounds of the oxosulfonium salts and are very rare. Previously, we prepared *S*,*S*,*S*-triphenylsulfanenitrile bearing an S=N triple bond and found that its N atom has a nucleophilic character (Yoshimura *et al.*, 1997) and thus reported the preparation of iminosulfonium salts bearing three carbon ligands by its alkylation or neutralization (Yoshimura *et al.*, 1998). However, iminosulfonium salts bearing two carbons and one amino ligand are also very rare. Furthermore, we reported that the reaction of *S*,*S*-diaryl-

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H19\cdots O2^{i}$	0.76 (4)	2.34 (4)	3.057 (4)	159 (4)
N4-H38···O8 ⁱⁱ	0.79 (3)	2.16 (3)	2.952 (4)	173 (3)
$C2-H1\cdots O1$	0.95	2.58	3.531 (3)	178
C10−H8···O7 ⁱⁱⁱ	0.95	2.56	3.453 (4)	157
C12−H10···O1	0.95	2.43	3.379 (4)	174
$C16-H18\cdots O4^{i}$	0.99	2.58	3.392 (4)	139
C18-H20···O6	0.95	2.47	3.362 (3)	156
$C25-H26\cdots O3^{iv}$	0.95	2.57	3.512 (5)	171
$C29-H30\cdots O5^{ii}$	0.99	2.50	3.344 (3)	142
$C28-H29\cdots N4^{v}$	0.95	2.58	3.401 (4)	145

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) -x, -y, -z + 1.

S-fluorosulfanenitrile with cyclic secondary amines afforded the corresponding aminosulfanenitriles (Yoshimura, Kita *et al.*, 1992; Yoshimura, Takata *et al.*, 1992), though the corresponding pyrrolidinosulfanenitrile was an impure oily material and thus its identification remained ambiguous. The crystal structure of the title compound, which is now successfully resolved, is a precursor of the sulfanenitrile.

The molecular structure of the title compound is illustrated in Fig. 1. The S1-N1(pyrrolidine) and S1-N2(NH) bond lengths in one cation are 1.6216 (18) and 1.503 (2) Å, respectively. The corresponding bond lengths of the other cation, S2-N3(pyrrolidine) and S2-N4(NH), are 1.6236 (19) and 1.502 (2) Å, respectively. The S1-N2 and S2-N4 bond lengths are significantly longer than the S=N triple bond of triphenylsulfanenitrile [1.462 (3) Å; Yoshimura et al., 1997] and close to the double bond of S,S-dimethylsulfonediimine [1.533 (2) Å, electron diffraction study; Oberhammer & Zeil, 1969] and those of S1-N1 and S2-N3 are close to the S-N single bond of a sulfonediiminosulfonium salt [1.599 (3) Å;Ohkubo et al., 1997]. There are $N-H \cdots O$ hydrogen bonds involving the perchlorate counter-anion. In the extended structure, the anions are linked through weak C-H...O and C-H···N hydrogen bonds, forming a three-dimensional network (Table 1 and Fig. 2).

Figure 1

The asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{16}H_{19}N_2S^+ \cdot ClO_4^-$
Mr	370.85
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	173
<i>a</i> , <i>b</i> , <i>c</i> (Å)	13.4430 (3), 15.9737 (3), 17.6478 (4)
β (°)	113.0241 (7)
$V(Å^3)$	3487.71 (12)
Ζ	8
Radiation type	Cu Kα
$\mu \text{ (mm}^{-1})$	3.26
Crystal size (mm)	$0.55 \times 0.47 \times 0.12$
Data collection	
Diffractometer	Rigaku R-AXIS RAPID
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T_{\min}, T_{\max}	0.549, 0.676
No. of measured, independent and observed $[F^2 > 2.0\sigma(F^2)]$ reflections	40289, 6302, 5448
R _{int}	0.088
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.602
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.149, 1.12
No. of reflections	6302
No. of parameters	441
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.55, -0.32

Computer programs: RAPID-AUTO (Rigaku, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) and CrystalStructure (Rigaku, 2010).

Synthesis and crystallization

Fluorodiphenyl- λ^6 -sulfanenitrile (Yoshimura *et al.*, 1998) (219 mg, 0.91 mmol) was treated with an excess of pyrrolidine

(512 mg, 7.2 mmol) at 303 K for 8 h. The excess pyrrolidine was removed in a vacuum and the residue was dissolved in $CHCl_3$ (20 ml). The solution was then washed with water (3 \times 30 ml), dried over anhydrous MgSO₄ and concentrated under reduced pressure to give the corresponding S,S-diphenyl-Spyrrolidino- λ^6 -sulfanenitrile (yield: 226 mg, 92%) as a colourless oil. HClO₄ (183 mg, 1.8 mmol) was added to the icecooled oily pyrrolidino- λ^6 -sulfanenitrile to give the corresponding title compound (vield: 250 mg, 74%) as a solid. Single crystals were obtained from a THF/hexane (1:1 v/v) solution (m.p. 414-415 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture, Japan (Nos. 09239218 and 14044032) and Japan Society for the Promotion of Science, JSPS (No. P11336). The authors are grateful to the Department of Applied Chemistry, Faculty of Engineering, University of Toyama, for the provision of laboratory facilities.

The authors acknowledge the University of Toyama for providing funds for single-crystal X-ray analyses.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Mori, M., Takeuchi, H., Minato, H., Kobayashi, M., Yoshida, M., Matsuyama, H. & Kamigata, N. (1990). Phosphorus Sulfur Silicon, **47**, 157–164.
- Oae, S., Numata, T. & Yoshimura, T. (1981). The Chemistry of the Sulphonium Group, Part 2, edited by C. J. M. Stirling, p. 571. New York: John Wiley & Sons.
- Oberhammer, H. & Zeil, W. (1969). Z. Naturforsch. Teil A, 24, 1612-1616
- Ohkubo, M., Fujii, T., Ono, S., Morita, H., Yoshimura, T., Ernst, H. & Sato, S. (1997). Chem. Lett. 26, 153-154.
- Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yoshimura, T., Fujii, T., Hamata, K., Imado, M., Morita, H., Ono, S. & Horn, E. (1998). Chem. Lett. 27, 1013-1014.
- Yoshimura, T., Hamada, K., Imado, M., Hamata, K., Tomoda, T., Fujii, T., Morita, H., Shimasaki, S., Ono, S., Tsukurimichi, E., Furukawa, N. & Kimura, T. (1997). J. Org. Chem. 62, 3802-3803.
- Yoshimura, T., Kita, H., Takeuchi, K., Takata, E., Hasegawa, K., Shimasaki, C. & Tsukurimichi, E. (1992). Chem. Lett. 21, 1433-1436.
- Yoshimura, T., Takata, E., Miyake, T., Shimasaki, C., Hasegawa, K. & Tsukurimichi, E. (1992). Chem. Lett. 21, 2213-2216.

full crystallographic data

IUCrData (2017). **2**, x171251 [https://doi.org/10.1107/S2414314617012512]

S,*S*-Diphenyl-*S*-pyrrolidinoiminosulfonium perchlorate

Md. Chanmiya Sheikh, Toshiaki Yoshimura, Eiichi Takata, Takayoshi Fujii and Ryuta Miyatake

S,S-Diphenyl-S-pyrrolidinoiminosulfonium perchlorate

Crystal data $C_{16}H_{19}N_2S^+ \cdot ClO_4^-$ F(000) = 1552.00 $M_r = 370.85$ $D_{\rm x} = 1.412 {\rm Mg m^{-3}}$ Cu *K* α radiation, $\lambda = 1.54187$ Å Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Cell parameters from 32602 reflections *a* = 13.4430 (3) Å $\theta = 3.5 - 68.3^{\circ}$ $\mu = 3.26 \text{ mm}^{-1}$ b = 15.9737(3) Å c = 17.6478 (4) Å T = 173 K $\beta = 113.0241 (7)^{\circ}$ Prism, colorless $V = 3487.71 (12) Å^3$ $0.55 \times 0.47 \times 0.12 \text{ mm}$ Z = 8Data collection Rigaku R-AXIS RAPID 6302 independent reflections diffractometer 5448 reflections with $F^2 > 2.0\sigma(F^2)$ Detector resolution: 10.000 pixels mm⁻¹ $R_{\rm int} = 0.088$ $\theta_{\rm max} = 68.3^{\circ}$ ω scans $h = -16 \rightarrow 16$ Absorption correction: multi-scan $k = -19 \rightarrow 19$ (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.549, T_{\rm max} = 0.676$ $l = -21 \rightarrow 21$ 40289 measured reflections Refinement Refinement on F^2 Secondary atom site location: difference Fourier $R[F^2 > 2\sigma(F^2)] = 0.050$ map $wR(F^2) = 0.149$ Hydrogen site location: inferred from S = 1.12neighbouring sites 6302 reflections H atoms treated by a mixture of independent 441 parameters and constrained refinement 0 restraints $w = 1/[\sigma^2(F_o^2) + (0.0943P)^2 + 0.1549P]$ Primary atom site location: structure-invariant where $P = (F_0^2 + 2F_c^2)/3$ direct methods $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 . R-factor (gt) are based on F. The threshold expression of $F^2 > 2.0$ sigma(F^2) is used only for calculating R-factor (gt).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.38944 (5)	0.11435 (3)	0.82405 (4)	0.05096 (19)	
Cl2	-0.14167 (4)	0.38569 (3)	0.15363 (3)	0.04201 (17)	
S 1	0.36462 (4)	0.40529 (3)	0.66582 (3)	0.03120 (16)	
S2	-0.08538 (4)	0.10611 (3)	0.34805 (3)	0.02793 (15)	
01	0.42043 (15)	0.19964 (10)	0.84419 (10)	0.0561 (5)	
02	0.4479 (2)	0.06208 (12)	0.89219 (13)	0.0890 (7)	
03	0.2754 (2)	0.10696 (12)	0.80241 (19)	0.1026 (9)	
O4	0.4133 (3)	0.08960 (13)	0.75582 (14)	0.0900 (7)	
05	-0.13271 (18)	0.41880 (12)	0.23112 (12)	0.0768 (7)	
O6	-0.14848 (14)	0.29633 (9)	0.15370 (10)	0.0536 (5)	
07	-0.23833 (14)	0.41859 (12)	0.09070 (12)	0.0683 (6)	
08	-0.05282 (16)	0.40968 (12)	0.13368 (15)	0.0802 (7)	
N1	0.40788 (14)	0.39352 (10)	0.76479 (10)	0.0328 (4)	
N2	0.35139 (18)	0.48934 (12)	0.62469 (13)	0.0479 (5)	
N3	-0.11238 (14)	0.11995 (10)	0.25085 (10)	0.0342 (4)	
N4	-0.10848 (16)	0.02588 (11)	0.38252 (11)	0.0390 (5)	
C1	0.23451 (16)	0.35996 (13)	0.63014 (13)	0.0370 (5)	
C2	0.21724 (18)	0.28907 (13)	0.66878 (15)	0.0438 (6)	
C3	0.1160 (2)	0.25251 (17)	0.63550 (18)	0.0596 (8)	
C4	0.0359 (2)	0.2863 (3)	0.56709 (19)	0.0720 (10)	
C5	0.0552 (2)	0.3564 (3)	0.53012 (18)	0.0753 (10)	
C6	0.1549 (2)	0.39426 (17)	0.56089 (15)	0.0561 (7)	
C7	0.44895 (15)	0.33417 (12)	0.64093 (11)	0.0310 (5)	
C8	0.47267 (17)	0.35375 (14)	0.57329 (13)	0.0396 (5)	
C9	0.53268 (17)	0.29701 (15)	0.54894 (14)	0.0462 (6)	
C10	0.56734 (17)	0.22232 (15)	0.59166 (14)	0.0466 (6)	
C11	0.54229 (17)	0.20434 (13)	0.65898 (14)	0.0431 (6)	
C12	0.48232 (16)	0.25963 (12)	0.68421 (12)	0.0359 (5)	
C13	0.34319 (18)	0.43232 (16)	0.80815 (13)	0.0477 (6)	
C14	0.4255 (2)	0.43849 (19)	0.89608 (14)	0.0585 (7)	
C15	0.5300 (2)	0.45794 (16)	0.88720 (15)	0.0546 (7)	
C16	0.52663 (17)	0.40682 (14)	0.81456 (13)	0.0417 (6)	
C17	-0.16429 (15)	0.18334 (11)	0.37007 (11)	0.0303 (5)	
C18	-0.17600 (17)	0.26117 (12)	0.33235 (12)	0.0378 (5)	
C19	-0.23279 (17)	0.32256 (13)	0.35414 (13)	0.0418 (6)	
C20	-0.27669 (17)	0.30589 (13)	0.41160 (13)	0.0412 (5)	
C21	-0.26307 (17)	0.22830 (13)	0.44834 (13)	0.0403 (5)	
C22	-0.20674 (15)	0.16573 (12)	0.42794 (12)	0.0341 (5)	
C23	0.05042 (16)	0.14216 (12)	0.39332 (12)	0.0334 (5)	
C24	0.0867 (2)	0.20851 (14)	0.36060 (15)	0.0479 (6)	
C25	0.1929 (3)	0.23469 (18)	0.4032 (2)	0.0669 (9)	
C26	0.2576 (2)	0.1960 (2)	0.4756 (2)	0.0732 (10)	
C27	0.2200 (2)	0.13014 (19)	0.50700 (17)	0.0636 (8)	
C28	0.11512 (18)	0.10252 (14)	0.46578 (14)	0.0439 (6)	
C29	-0.03949 (19)	0.08011 (14)	0.21546 (13)	0.0443 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C30	-0.1147 (3)	0.03031 (15)	0.14368 (15)	0.0570 (7)
C31	-0.2202 (3)	0.07948 (17)	0.11491 (15)	0.0598 (7)
C32	-0.22891 (19)	0.10621 (14)	0.19396 (13)	0.0452 (6)
H1	0.2729	0.2665	0.7163	0.0525*
H2	0.1017	0.2036	0.6602	0.0716*
Н3	-0.0335	0.2607	0.5453	0.0864*
H4	-0.0008	0.3790	0.4828	0.0904*
Н5	0.1688	0.4427	0.5353	0.0673*
H6	0.4485	0.4048	0.5443	0.0476*
H7	0.5501	0.3093	0.5029	0.0554*
H8	0.6082	0.1836	0.5747	0.0559*
Н9	0.5666	0.1534	0.6881	0.0517*
H10	0.4643	0.2471	0.7299	0.0430*
H11	0.2815	0.3963	0.8044	0.0572*
H12	0.3158	0.4883	0.7854	0.0572*
H13	0.4061	0.4837	0.9262	0.0702*
H14	0.4307	0.3850	0.9257	0.0702*
H15	0.5927	0.4418	0.9375	0.0655*
H16	0.5350	0.5184	0.8769	0.0655*
H17	0.5643	0.3527	0.8327	0.0500*
H18	0.5607	0.4374	0.7822	0.0500*
H19	0.407 (3)	0.5079 (19)	0.633 (2)	0.077 (12)*
H20	-0.1459	0.2720	0.2928	0.0454*
H21	-0.2416	0.3764	0.3295	0.0502*
H22	-0.3163	0.3480	0.4257	0.0495*
H23	-0.2927	0.2176	0.4882	0.0484*
H24	-0.1976	0.1121	0.4531	0.0409*
H25	0.0409	0.2351	0.3111	0.0574*
H26	0.2210	0.2795	0.3821	0.0803*
H27	0.3295	0.2153	0.5043	0.0879*
H28	0.2657	0.1038	0.5567	0.0764*
H29	0.0878	0.0571	0.4867	0.0527*
H30	0.0141	0.0432	0.2564	0.0532*
H31	-0.0007	0.1231	0.1971	0.0532*
H32	-0.1247	-0.0270	0.1609	0.0684*
H33	-0.0868	0.0266	0.0995	0.0684*
H34	-0.2172	0.1287	0.0817	0.0717*
H35	-0.2821	0.0438	0.0817	0.0717*
H36	-0.2627	0.0619	0.2152	0.0542*
H37	-0.2714	0.1584	0.1863	0.0542*
H38	-0.069 (3)	-0.0082 (16)	0.3762 (17)	0.065 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0651 (5)	0.0311 (3)	0.0662 (4)	0.0069 (3)	0.0360 (4)	0.0044 (3)
Cl2	0.0461 (4)	0.0330 (3)	0.0509 (4)	-0.0072 (2)	0.0232 (3)	0.0009(2)
S 1	0.0299 (3)	0.0265 (3)	0.0337 (3)	0.00179 (17)	0.0086 (2)	0.00152 (17)

G2	0.0200(2)	0 00 40 (2)	0.0205 (2)	0.00110.(17)	0.0102(2)	0.00214 (1()
S2	0.0299 (3)	0.0242 (3)	0.0285 (3)	0.00118 (17)	0.0102 (2)	0.00214 (16)
01	0.0770 (13)	0.0362 (9)	0.0530 (10)	-0.0018 (8)	0.0232 (9)	0.0014 (7)
02	0.138 (2)	0.0565 (12)	0.0865 (15)	0.0370 (13)	0.0589 (15)	0.0311 (11)
03	0.0711 (16)	0.0634 (14)	0.182 (3)	-0.0075 (11)	0.0584 (17)	-0.0055 (15)
04	0.150 (3)	0.0563 (13)	0.0881 (16)	0.0058 (14)	0.0734 (16)	-0.0106 (11)
05	0.1163 (19)	0.0560 (12)	0.0627 (13)	-0.0213 (12)	0.0402 (13)	-0.0161 (10)
06	0.0725 (12)	0.0332 (9)	0.0582 (10)	-0.0063 (8)	0.0289 (9)	0.0039 (7)
07	0.0571 (12)	0.0597 (12)	0.0802 (14)	0.0104 (9)	0.0182 (10)	0.0063 (10)
08	0.0650 (13)	0.0598 (12)	0.136 (2)	-0.0101 (10)	0.0613 (14)	0.0111 (12)
N1	0.0285 (9)	0.0340 (9)	0.0330 (9)	0.0021 (7)	0.0089 (8)	-0.0029 (7)
N2	0.0505 (13)	0.0327 (10)	0.0570 (13)	0.0058 (9)	0.0172 (10)	0.0099 (9)
N3	0.0407 (10)	0.0302 (9)	0.0289 (9)	0.0043 (7)	0.0104 (8)	0.0018 (7)
N4	0.0488 (11)	0.0260 (9)	0.0473 (11)	0.0029 (8)	0.0241 (9)	0.0044 (8)
C1	0.0271 (11)	0.0416 (12)	0.0392 (11)	0.0017 (9)	0.0097 (9)	-0.0094 (9)
C2	0.0368 (12)	0.0384 (12)	0.0561 (14)	-0.0049 (9)	0.0182 (11)	-0.0091 (10)
C3	0.0466 (15)	0.0581 (16)	0.083 (2)	-0.0187 (12)	0.0352 (15)	-0.0302 (14)
C4	0.0325 (14)	0.103 (3)	0.078 (2)	-0.0193 (15)	0.0188 (14)	-0.0517 (19)
C5	0.0339 (15)	0.120 (3)	0.0557 (18)	0.0016 (16)	-0.0003 (13)	-0.0209 (18)
C6	0.0379 (14)	0.0797 (19)	0.0396 (13)	0.0098 (12)	0.0032 (11)	-0.0011 (12)
C7	0.0259 (10)	0.0314 (10)	0.0327 (10)	-0.0020 (8)	0.0081 (8)	-0.0032 (8)
C8	0.0318 (11)	0.0461 (12)	0.0380 (11)	-0.0065 (9)	0.0104 (9)	-0.0006 (9)
C9	0.0337 (12)	0.0652 (16)	0.0421 (12)	-0.0069 (11)	0.0175 (10)	-0.0103 (11)
C10	0.0297 (11)	0.0565 (15)	0.0523 (14)	-0.0005 (10)	0.0146 (10)	-0.0183 (11)
C11	0.0368 (12)	0.0379 (12)	0.0470 (13)	0.0034 (9)	0.0083 (10)	-0.0055 (10)
C12	0.0356 (11)	0.0313 (10)	0.0383 (11)	0.0013 (9)	0.0118 (9)	-0.0017 (8)
C13	0.0424 (13)	0.0579 (15)	0.0415 (13)	0.0049 (11)	0.0150 (10)	-0.0121 (11)
C14	0.0555 (16)	0.0770 (19)	0.0398 (13)	0.0022 (14)	0.0152 (12)	-0.0139 (12)
C15	0.0484 (14)	0.0570 (15)	0.0456 (13)	0.0034 (12)	0.0045 (11)	-0.0115 (11)
C16	0.0314 (12)	0.0464 (13)	0.0388 (12)	-0.0005 (9)	0.0046 (10)	-0.0048 (9)
C17	0.0291 (10)	0.0257 (9)	0.0306 (10)	0.0017 (8)	0.0057 (8)	-0.0018 (8)
C18	0.0467 (13)	0.0309 (10)	0.0354 (11)	0.0039 (9)	0.0157 (10)	0.0029 (8)
C19	0.0496 (13)	0.0303 (11)	0.0396 (12)	0.0101 (9)	0.0109 (10)	0.0023 (9)
C20	0.0375 (12)	0.0427 (12)	0.0379 (11)	0.0098 (10)	0.0087 (9)	-0.0072 (9)
C21	0.0349 (11)	0.0460 (13)	0.0404 (12)	0.0034 (10)	0.0151 (10)	-0.0017 (9)
C22	0.0291 (10)	0.0350 (11)	0.0360 (11)	-0.0015 (8)	0.0105 (9)	0.0008 (8)
C23	0.0294 (11)	0.0324 (10)	0.0381 (11)	0.0004 (8)	0.0129 (9)	-0.0062 (8)
C24	0.0490 (14)	0.0411 (12)	0.0591 (15)	-0.0107 (11)	0.0273 (12)	-0.0083 (11)
C25	0.0617 (18)	0.0554 (17)	0.098 (3)	-0.0209 (14)	0.0467 (18)	-0.0279 (16)
C26	0.0333 (14)	0.080(2)	0.099 (3)	-0.0082 (14)	0.0181 (15)	-0.0472 (19)
C27	0.0354 (14)	0.0767 (19)	0.0609 (17)	0.0126 (13)	-0.0005 (12)	-0.0243 (14)
C28	0.0369 (12)	0.0514 (14)	0.0396 (13)	0.0092 (10)	0.0108 (10)	-0.0048 (10)
C29	0.0582 (15)	0.0432 (13)	0.0377 (12)	0.0010 (11)	0.0255 (11)	-0.0006 (10)
C30	0.0808 (19)	0.0502 (14)	0.0477 (14)	-0.0105 (13)	0.0333 (14)	-0.0167 (11)
C31	0.0714 (18)	0.0594 (16)	0.0364 (13)	-0.0020 (14)	0.0079 (12)	-0.0033 (11)
C32	0.0417 (13)	0.0435 (13)	0.0359 (12)	0.0060 (10)	-0.0005 (10)	-0.0037 (9)

Geometric parameters (Å, °)

Cl1—01	1.4283 (17)	C25—C26	1.380 (5)
Cl1—O2	1.422 (2)	C26—C27	1.375 (5)
C11—O3	1.432 (3)	C27—C28	1.381 (4)
C11—O4	1.418 (3)	C29—C30	1.503 (3)
C12—O5	1.427 (3)	C30—C31	1.524 (4)
Cl2—06	1.4304 (16)	$C_{31} - C_{32}$	1.507 (4)
Cl2—07	1 4385 (17)	N2—H19	0.76 (4)
C12—O8	1.424 (3)	N4—H38	0.79 (3)
S1—N1	1.6216(18)	C2—H1	0.950
S1—N2	1.0210(10) 1.503(2)	C3—H2	0.950
S1	1.766 (2)	C4—H3	0.950
S1C7	1.700(2) 1.777(3)	C5	0.950
S1_C7 S2_N3	1.777 (3)	C6H5	0.950
S2 N/	1.0230(17)	С8 Н6	0.950
52 - 17	1.302(2) 1.767(3)	C9 H7	0.950
S2-C17	1.707(3) 1.778(2)	C_{2}	0.950
S2-C23	1.770(2) 1.400(4)	C_{10} H_{0}	0.950
NI-C16	1.499 (4)	C_{11} H_{10}	0.950
NI-C10	1.300(3)		0.930
N3-C29	1.495 (4)		0.990
$N_3 - C_{32}$	1.510 (3)		0.990
C1 = C2	1.387 (4)		0.990
C1 = C6	1.384 (3)		0.990
$C_2 = C_3$	1.383 (4)	C15—H15	0.990
C3—C4	1.375 (4)	C15—H16	0.990
C4—C5	1.371 (6)	C16—H17	0.990
C5—C6	1.374 (4)	C16—H18	0.990
C7—C8	1.386 (4)	C18—H20	0.950
C7—C12	1.391 (3)	C19—H21	0.950
C8—C9	1.389 (4)	С20—Н22	0.950
C9—C10	1.391 (4)	C21—H23	0.950
C10—C11	1.386 (4)	C22—H24	0.950
C11—C12	1.382 (4)	C24—H25	0.950
C13—C14	1.516 (3)	C25—H26	0.950
C14—C15	1.506 (5)	C26—H27	0.950
C15—C16	1.506 (4)	C27—H28	0.950
C17—C18	1.390 (3)	C28—H29	0.950
C17—C22	1.380 (4)	С29—Н30	0.990
C18—C19	1.386 (4)	С29—Н31	0.990
C19—C20	1.384 (4)	С30—Н32	0.990
C20—C21	1.377 (3)	С30—Н33	0.990
C21—C22	1.384 (4)	C31—H34	0.990
C23—C24	1.383 (4)	С31—Н35	0.990
C23—C28	1.387 (3)	С32—Н36	0.990
C24—C25	1.392 (4)	С32—Н37	0.990
01—C11—O2	109.80 (11)	C3—C4—H3	119.715

O1—C11—O3	108.82 (12)	С5—С4—Н3	119.711
O1—C11—O4	109.67 (14)	C4—C5—H4	119.717
O2—C11—O3	110.92 (17)	C6—C5—H4	119.703
O2—Cl1—O4	108.71 (15)	C1—C6—H5	120.907
O3—Cl1—O4	108.91 (18)	С5—С6—Н5	120.905
O5—Cl2—O6	110.52 (12)	С7—С8—Н6	120.776
O5—Cl2—O7	108.46 (13)	С9—С8—Н6	120.779
O5—Cl2—O8	111.89 (14)	С8—С9—Н7	119.853
O6—Cl2—O7	109.05 (10)	С10—С9—Н7	119.868
O6—C12—O8	109.21 (13)	С9—С10—Н8	119.996
07-C12-08	107.62 (13)	С11—С10—Н8	119.983
N1—S1—N2	123.26 (11)	С10—С11—Н9	119.605
N1—S1—C1	102.97 (11)	С12—С11—Н9	119.606
N1—S1—C7	101.38 (9)	C7—C12—H10	120.855
N2—S1—C1	106.28 (11)	C11—C12—H10	120.865
N2 = S1 = C7	114.71 (13)	N1—C13—H11	111.310
C1 - S1 - C7	106 76 (10)	N1—C13—H12	111.306
N3—S2—N4	123 22 (10)	C_{14} C_{13} H_{11}	111.300
$N_3 = S_2 = C_{17}$	103 41 (9)	C14-C13-H12	111.321
$N_3 = S_2 = C_{23}^2$	103.11(5) 101.34(11)	H11_C13_H12	109 199
$N_4 = S_2 = C_{17}$	101.54(11) 105.64(12)	C13 - C14 - H13	110 935
N4 = S2 = C23	115.65(10)	C_{13} C_{14} H_{14}	110.930
C17 = S2 = C23	105.92 (10)	C15 - C14 - H13	110.930
S1N1C13	117.82 (13)	C_{15} C_{14} H_{14}	110.942
S1N1C16	117.62(17)	H_{13} C_{14} H_{14}	108 947
C13 N1 $C16$	109.77 (16)	C14— $C15$ — $H15$	110 755
S2_N3_C29	118 12 (13)	C14 - C15 - H16	110.755
$S_2 = N_3 = C_2^2$	115.12(13) 115.33(17)	C_{16} C_{15} H_{15}	110.747
C_{29} N3 C_{32}	109.85(17)	C_{16} C_{15} H_{16}	110.700
$S_{1} = C_{1} = C_{2}$	109.09(17) 119.48(15)	H15-C15-H16	108 838
$S_1 - C_1 - C_6$	117.93 (19)	N1-C16-H17	110 914
$C_{2}-C_{1}-C_{6}$	122 5 (2)	N1-C16-H18	110.917
$C_{1} - C_{2} - C_{3}$	122.5(2) 117.5(2)	C_{15} C_{16} H_{17}	110.917
$C_{2}^{-} C_{3}^{-} C_{4}^{-}$	117.5(2) 120.7(3)	C_{15} C_{16} H_{18}	110.915
$C_{2} = C_{3} = C_{4} = C_{5}$	120.7(3)	H17-C16-H18	108 947
C4-C5-C6	120.6(3)	C_{17} C_{18} H_{20}	120.936
$C_1 - C_6 - C_5$	120.0(3) 118 2 (3)	C19 - C18 - H20	120.930
S1-C7-C8	116.2(5)	C_{18} C_{19} H_{21}	110 803
S1 - C7 - C12	120.76 (18)	C_{20} C_{19} H_{21}	119.005
C8-C7-C12	122.70(10)	C_{19} C_{20} H_{22}	119.722
C7 - C8 - C9	122.2(2) 1184(2)	C_{21} C_{20} H_{22}	110 040
$C_{8}^{-} C_{9}^{-} C_{10}^{10}$	120.3(3)	$C_{21} = C_{20} = H_{23}$	119.540
C_{0} C_{10} C_{11}	120.0(3)	$C_{20} = C_{21} = H_{23}$	110.571
C_{10} C_{11} C_{12}	120.0(3) 120.8(2)	$C_{22} = C_{21} = H_{23}$	120.910
C7-C12-C11	118 3 (3)	$C_{1} = C_{2} = H_{2}$	120.018
N1 - C13 - C14	102 28 (19)	$C_{23} = C_{22} = H_{25}$	120.210
C13 - C14 - C15	104.1 (3)	C25—C24—H25	121.334
C14 - C15 - C16	105.0(2)	C24_C25_H26	110 756
	100.0 (4)	021 023 -1120	117.150

N1—C16—C15	104.2 (2)	С26—С25—Н26	119.751
S2—C17—C18	118.99 (19)	С25—С26—Н27	119.399
S2—C17—C22	118.57 (14)	С27—С26—Н27	119.403
C18—C17—C22	122.3 (2)	С26—С27—Н28	120.233
C17—C18—C19	118.1 (3)	С28—С27—Н28	120.236
C18—C19—C20	120.4 (2)	C23—C28—H29	120.572
C19—C20—C21	120.1 (3)	C27—C28—H29	120.574
C20—C21—C22	120.9 (3)	N3—C29—H30	110.938
C17—C22—C21	118.17 (19)	N3—C29—H31	110.938
S2-C23-C24	121.85 (15)	C30—C29—H30	110.950
\$2-C23-C28	115.46 (18)	C30—C29—H31	110.951
C_{24} C_{23} C_{28}	122.58 (19)	H30-C29-H31	108.967
C^{23} C^{24} C^{25}	117 3 (3)	C29—C30—H32	110 984
C_{24} C_{25} C_{26} C_{26}	1205(3)	C29—C30—H33	110.979
C_{25} C_{26} C_{27}	120.0(3)	C_{31} C_{30} H_{32}	110.982
$C_{26} = C_{27} = C_{28}$	1195(3)	$C_{31} = C_{30} = H_{33}$	110.982
C_{23} C_{28} C_{27}	118.9 (3)	H32-C30-H33	108 994
N_{3} C_{29} C_{30}	104.0(2)	C_{30} C_{31} H_{34}	111 013
C_{29} C_{30} C_{31}	103.9(2)	C_{30} C_{31} H_{35}	111.012
$C_{2}^{(2)} = C_{3}^{(2)} = C_{3}^{(2)}$	103.9(2) 103.70(19)	C_{32} C_{31} H_{34}	111.012
$N_3 = C_3^2 = C_3^2$	102.7(3)	$C_{32} = C_{31} = H_{35}$	111.020
S1N2H19	102.7(3)	H_{34} C_{31} H_{35}	109.004
S2N/2H38	106 (3)	N3_C32_H36	111 219
$S_2 = 104 = 1150$	100 (3)	N3 C32 H37	111.219
$C_1 = C_2 = H_1$	121.247	$N_{3} = C_{32} = H_{37}$	111.222
$C_2 = C_2 = H_2$	121.241	$C_{21} C_{22} H_{27}$	111.210
$C_2 = C_3 = H_2$	119.001	$C_{31} - C_{32} - H_{37}$	111.210
C4—C3—H2	119.000	H30-C32-H37	109.134
N2-S1-N1-C13	60 74 (19)	S2—N3—C32—C31	-152.09(12)
$N_2 = S_1 = N_1 = C_{16}$	-74 31 (18)	$C_{29} N_{3} C_{22} C_{31}$	-156(2)
$N_1 = S_1 = C_1 = C_2$	-37.16(19)	$C_{32} = N_3 = C_{29} = C_{30}$	-91(2)
$N_1 = S_1 = C_1 = C_6$	146 68 (16)	$S_{1} = C_{1} = C_{2} = C_{3}$	-17587(16)
C1 = S1 = N1 = C13	-58.94(14)	$S_1 - C_1 - C_6 - C_5$	176 40 (17)
C1 = S1 = N1 = C16	166.01 (12)	C_{2} C_{1} C_{6} C_{5}	0.4(4)
N1 - S1 - C7 - C8	-150.09(12)	C6-C1-C2-C3	0.1(4)
N1 - S1 - C7 - C12	34 47 (14)	C1 - C2 - C3 - C4	-0.6(5)
C7 = S1 = N1 = C13	-16932(12)	$C_2 - C_3 - C_4 - C_5$	0.0(5)
C7 = S1 = N1 = C16	55 63 (13)	C_{3} C_{4} C_{5} C_{6}	-0.2(6)
$N_{2}=S_{1}=C_{1}=C_{2}$	-167.98(17)	C4-C5-C6-C1	-0.3(5)
$N_2 = S_1 = C_1 = C_6$	15.9 (2)	S1 - C7 - C8 - C9	-176.01(12)
$N_2 = S_1 = C_7 = C_8$	-14.98(16)	$S_1 = C_7 = C_1^2 = C_{11}^2$	176.09 (11)
$N_2 = S_1 = C_7 = C_1^2$	169 58 (12)	C8 - C7 - C12 - C11	0.9(3)
C1 - S1 - C7 - C8	102.36(12) 102.46(14)	$C_{12}^{}C_{$	-0.6(3)
$C_1 = S_1 = C_7 = C_0^2$	-72 97 (14)	$C_{12} = C_{1} = C_{0} = C_{10}$	0.0(3)
$C_{1} = 5_{1} = C_{1} = C_{12}$	60 15 (10)	$C_{8} = C_{9} = C_{10} = C_{10}$	-0.2(3)
$C_{7} = S_{1} = C_{1} = C_{2}$	-107 00 (16)	C_{0} C_{10} C_{11} C_{12}	0.2(3)
$V_{1} = V_{1} = V_{1} = V_{0}$	-75.05(17)	$C_{10} = C_{10} = C_{11} = C_{12} = C_{12}$	-0.8(3)
N4 = S2 = N2 = C22	-13.93(17)	$U_{10} - U_{11} - U_{12} - U_{14}$	-0.8(3)
1N4 - 52 - 1N3 - C32	30./9(1/)	NI-UI3-UI4-UI5	33.0 (3)

N3—S2—C17—C18	-37.29 (14)	C13—C14—C15—C16	-38.2 (3)
N3—S2—C17—C22	146.53 (12)	C14—C15—C16—N1	24.7 (3)
C17—S2—N3—C29	164.87 (11)	S2-C17-C18-C19	-176.20 (11)
C17—S2—N3—C32	-62.38 (13)	S2—C17—C22—C21	176.26 (10)
N3—S2—C23—C24	35.34 (18)	C18—C17—C22—C21	0.2 (3)
N3—S2—C23—C28	-148.21 (14)	C22-C17-C18-C19	-0.2 (3)
C23—S2—N3—C29	55.27 (13)	C17—C18—C19—C20	-0.3 (3)
C23—S2—N3—C32	-171.98 (11)	C18—C19—C20—C21	0.8 (3)
N4—S2—C17—C18	-167.96 (11)	C19—C20—C21—C22	-0.8 (3)
N4—S2—C17—C22	15.86 (14)	C20-C21-C22-C17	0.3 (3)
N4—S2—C23—C24	171.07 (16)	S2—C23—C24—C25	176.69 (16)
N4—S2—C23—C28	-12.5 (2)	S2—C23—C28—C27	-176.52 (16)
C17—S2—C23—C24	-72.31 (18)	C24—C23—C28—C27	-0.1 (4)
C17—S2—C23—C28	104.14 (15)	C28—C23—C24—C25	0.5 (4)
C23—S2—C17—C18	68.86 (14)	C23—C24—C25—C26	-0.9 (5)
C23—S2—C17—C22	-107.32 (13)	C24—C25—C26—C27	1.0 (6)
S1—N1—C13—C14	-158.92 (12)	C25—C26—C27—C28	-0.6 (6)
S1—N1—C16—C15	136.13 (13)	C26—C27—C28—C23	0.1 (5)
C13—N1—C16—C15	-2.3 (2)	N3-C29-C30-C31	30.1 (3)
C16—N1—C13—C14	-20.6 (2)	C29—C30—C31—C32	-40.5 (3)
S2—N3—C29—C30	126.00 (13)	C30—C31—C32—N3	33.8 (3)

Hydrogen-bond geometry (Å, °)

	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
N2—H19…O2 ⁱ	0.76 (4)	2.34 (4)	3.057 (4)	159 (4)
N4—H38…O8 ⁱⁱ	0.79 (3)	2.16 (3)	2.952 (4)	173 (3)
C2—H1…O1	0.95	2.58	3.531 (3)	178
С10—Н8…О7 ^{ііі}	0.95	2.56	3.453 (4)	157
C12—H10…O1	0.95	2.43	3.379 (4)	174
C16—H18…O4 ⁱ	0.99	2.58	3.392 (4)	139
С18—Н20…Об	0.95	2.47	3.362 (3)	156
C25—H26…O3 ^{iv}	0.95	2.57	3.512 (5)	171
C29—H30…O5 ⁱⁱ	0.99	2.50	3.344 (3)	142
C28—H29…N4 ^v	0.95	2.58	3.401 (4)	145
	0.95	2.50	5.101 (1)	115

Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (ii) -x, y-1/2, -z+1/2; (iii) x+1, -y+1/2, z+1/2; (iv) x, -y+1/2, z-1/2; (v) -x, -y, -z+1.